1#ifndef _PARISC_PGTABLE_H
2#define _PARISC_PGTABLE_H
3
4#include <asm-generic/4level-fixup.h>
5
6#include <asm/fixmap.h>
7
8#ifndef __ASSEMBLY__
9/*
10 * we simulate an x86-style page table for the linux mm code
11 */
12
13#include <linux/mm.h>		/* for vm_area_struct */
14#include <asm/processor.h>
15#include <asm/cache.h>
16#include <asm/bitops.h>
17
18#define kern_addr_valid(addr)	(1)
19
20/* Certain architectures need to do special things when PTEs
21 * within a page table are directly modified.  Thus, the following
22 * hook is made available.
23 */
24#define set_pte(pteptr, pteval)                                 \
25        do{                                                     \
26                *(pteptr) = (pteval);                           \
27        } while(0)
28#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
29
30#endif /* !__ASSEMBLY__ */
31
32#define pte_ERROR(e) \
33	printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
34#define pmd_ERROR(e) \
35	printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e))
36#define pgd_ERROR(e) \
37	printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e))
38
39 /* Note: If you change ISTACK_SIZE, you need to change the corresponding
40  * values in vmlinux.lds and vmlinux64.lds (init_istack section). Also,
41  * the "order" and size need to agree.
42  */
43
44#define  ISTACK_SIZE  32768 /* Interrupt Stack Size */
45#define  ISTACK_ORDER 3
46
47/* This is the size of the initially mapped kernel memory */
48#ifdef CONFIG_64BIT
49#define KERNEL_INITIAL_ORDER	24	/* 0 to 1<<24 = 16MB */
50#else
51#define KERNEL_INITIAL_ORDER	23	/* 0 to 1<<23 = 8MB */
52#endif
53#define KERNEL_INITIAL_SIZE	(1 << KERNEL_INITIAL_ORDER)
54
55#if defined(CONFIG_64BIT) && defined(CONFIG_PARISC_PAGE_SIZE_4KB)
56#define PT_NLEVELS	3
57#define PGD_ORDER	1 /* Number of pages per pgd */
58#define PMD_ORDER	1 /* Number of pages per pmd */
59#define PGD_ALLOC_ORDER	2 /* first pgd contains pmd */
60#else
61#define PT_NLEVELS	2
62#define PGD_ORDER	1 /* Number of pages per pgd */
63#define PGD_ALLOC_ORDER	PGD_ORDER
64#endif
65
66/* Definitions for 3rd level (we use PLD here for Page Lower directory
67 * because PTE_SHIFT is used lower down to mean shift that has to be
68 * done to get usable bits out of the PTE) */
69#define PLD_SHIFT	PAGE_SHIFT
70#define PLD_SIZE	PAGE_SIZE
71#define BITS_PER_PTE	(PAGE_SHIFT - BITS_PER_PTE_ENTRY)
72#define PTRS_PER_PTE    (1UL << BITS_PER_PTE)
73
74/* Definitions for 2nd level */
75#define pgtable_cache_init()	do { } while (0)
76
77#define PMD_SHIFT       (PLD_SHIFT + BITS_PER_PTE)
78#define PMD_SIZE	(1UL << PMD_SHIFT)
79#define PMD_MASK	(~(PMD_SIZE-1))
80#if PT_NLEVELS == 3
81#define BITS_PER_PMD	(PAGE_SHIFT + PMD_ORDER - BITS_PER_PMD_ENTRY)
82#else
83#define BITS_PER_PMD	0
84#endif
85#define PTRS_PER_PMD    (1UL << BITS_PER_PMD)
86
87/* Definitions for 1st level */
88#define PGDIR_SHIFT	(PMD_SHIFT + BITS_PER_PMD)
89#define BITS_PER_PGD	(PAGE_SHIFT + PGD_ORDER - BITS_PER_PGD_ENTRY)
90#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
91#define PGDIR_MASK	(~(PGDIR_SIZE-1))
92#define PTRS_PER_PGD    (1UL << BITS_PER_PGD)
93#define USER_PTRS_PER_PGD       PTRS_PER_PGD
94
95#define MAX_ADDRBITS	(PGDIR_SHIFT + BITS_PER_PGD)
96#define MAX_ADDRESS	(1UL << MAX_ADDRBITS)
97
98#define SPACEID_SHIFT	(MAX_ADDRBITS - 32)
99
100/* This calculates the number of initial pages we need for the initial
101 * page tables */
102#if (KERNEL_INITIAL_ORDER) >= (PMD_SHIFT)
103# define PT_INITIAL	(1 << (KERNEL_INITIAL_ORDER - PMD_SHIFT))
104#else
105# define PT_INITIAL	(1)  /* all initial PTEs fit into one page */
106#endif
107
108/*
109 * pgd entries used up by user/kernel:
110 */
111
112#define FIRST_USER_ADDRESS	0
113
114#ifndef __ASSEMBLY__
115extern  void *vmalloc_start;
116#define PCXL_DMA_MAP_SIZE   (8*1024*1024)
117#define VMALLOC_START   ((unsigned long)vmalloc_start)
118/* this is a fixmap remnant, see fixmap.h */
119#define VMALLOC_END	(KERNEL_MAP_END)
120#endif
121
122/* NB: The tlb miss handlers make certain assumptions about the order */
123/*     of the following bits, so be careful (One example, bits 25-31  */
124/*     are moved together in one instruction).                        */
125
126#define _PAGE_READ_BIT     31   /* (0x001) read access allowed */
127#define _PAGE_WRITE_BIT    30   /* (0x002) write access allowed */
128#define _PAGE_EXEC_BIT     29   /* (0x004) execute access allowed */
129#define _PAGE_GATEWAY_BIT  28   /* (0x008) privilege promotion allowed */
130#define _PAGE_DMB_BIT      27   /* (0x010) Data Memory Break enable (B bit) */
131#define _PAGE_DIRTY_BIT    26   /* (0x020) Page Dirty (D bit) */
132#define _PAGE_FILE_BIT	_PAGE_DIRTY_BIT	/* overload this bit */
133#define _PAGE_REFTRAP_BIT  25   /* (0x040) Page Ref. Trap enable (T bit) */
134#define _PAGE_NO_CACHE_BIT 24   /* (0x080) Uncached Page (U bit) */
135#define _PAGE_ACCESSED_BIT 23   /* (0x100) Software: Page Accessed */
136#define _PAGE_PRESENT_BIT  22   /* (0x200) Software: translation valid */
137#define _PAGE_FLUSH_BIT    21   /* (0x400) Software: translation valid */
138				/*             for cache flushing only */
139#define _PAGE_USER_BIT     20   /* (0x800) Software: User accessible page */
140
141/* N.B. The bits are defined in terms of a 32 bit word above, so the */
142/*      following macro is ok for both 32 and 64 bit.                */
143
144#define xlate_pabit(x) (31 - x)
145
146/* this defines the shift to the usable bits in the PTE it is set so
147 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set
148 * to zero */
149#define PTE_SHIFT	   	xlate_pabit(_PAGE_USER_BIT)
150
151/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */
152#define PFN_PTE_SHIFT		12
153
154
155/* this is how many bits may be used by the file functions */
156#define PTE_FILE_MAX_BITS	(BITS_PER_LONG - PTE_SHIFT)
157
158#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_SHIFT)
159#define pgoff_to_pte(off) ((pte_t) { ((off) << PTE_SHIFT) | _PAGE_FILE })
160
161#define _PAGE_READ     (1 << xlate_pabit(_PAGE_READ_BIT))
162#define _PAGE_WRITE    (1 << xlate_pabit(_PAGE_WRITE_BIT))
163#define _PAGE_RW       (_PAGE_READ | _PAGE_WRITE)
164#define _PAGE_EXEC     (1 << xlate_pabit(_PAGE_EXEC_BIT))
165#define _PAGE_GATEWAY  (1 << xlate_pabit(_PAGE_GATEWAY_BIT))
166#define _PAGE_DMB      (1 << xlate_pabit(_PAGE_DMB_BIT))
167#define _PAGE_DIRTY    (1 << xlate_pabit(_PAGE_DIRTY_BIT))
168#define _PAGE_REFTRAP  (1 << xlate_pabit(_PAGE_REFTRAP_BIT))
169#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT))
170#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT))
171#define _PAGE_PRESENT  (1 << xlate_pabit(_PAGE_PRESENT_BIT))
172#define _PAGE_FLUSH    (1 << xlate_pabit(_PAGE_FLUSH_BIT))
173#define _PAGE_USER     (1 << xlate_pabit(_PAGE_USER_BIT))
174#define _PAGE_FILE     (1 << xlate_pabit(_PAGE_FILE_BIT))
175
176#define _PAGE_TABLE	(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE |  _PAGE_DIRTY | _PAGE_ACCESSED)
177#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
178#define _PAGE_KERNEL	(_PAGE_PRESENT | _PAGE_EXEC | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)
179
180/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds
181 * are page-aligned, we don't care about the PAGE_OFFSET bits, except
182 * for a few meta-information bits, so we shift the address to be
183 * able to effectively address 40/42/44-bits of physical address space
184 * depending on 4k/16k/64k PAGE_SIZE */
185#define _PxD_PRESENT_BIT   31
186#define _PxD_ATTACHED_BIT  30
187#define _PxD_VALID_BIT     29
188
189#define PxD_FLAG_PRESENT  (1 << xlate_pabit(_PxD_PRESENT_BIT))
190#define PxD_FLAG_ATTACHED (1 << xlate_pabit(_PxD_ATTACHED_BIT))
191#define PxD_FLAG_VALID    (1 << xlate_pabit(_PxD_VALID_BIT))
192#define PxD_FLAG_MASK     (0xf)
193#define PxD_FLAG_SHIFT    (4)
194#define PxD_VALUE_SHIFT   (8) /* (PAGE_SHIFT-PxD_FLAG_SHIFT) */
195
196#ifndef __ASSEMBLY__
197
198#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
199#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_ACCESSED)
200/* Others seem to make this executable, I don't know if that's correct
201   or not.  The stack is mapped this way though so this is necessary
202   in the short term - dhd@linuxcare.com, 2000-08-08 */
203#define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_ACCESSED)
204#define PAGE_WRITEONLY  __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE | _PAGE_ACCESSED)
205#define PAGE_EXECREAD   __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC |_PAGE_ACCESSED)
206#define PAGE_COPY       PAGE_EXECREAD
207#define PAGE_RWX        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC |_PAGE_ACCESSED)
208#define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
209#define PAGE_KERNEL_RO	__pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
210#define PAGE_KERNEL_UNC	__pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE)
211#define PAGE_GATEWAY    __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_GATEWAY| _PAGE_READ)
212#define PAGE_FLUSH      __pgprot(_PAGE_FLUSH)
213
214
215/*
216 * We could have an execute only page using "gateway - promote to priv
217 * level 3", but that is kind of silly. So, the way things are defined
218 * now, we must always have read permission for pages with execute
219 * permission. For the fun of it we'll go ahead and support write only
220 * pages.
221 */
222
223	 /*xwr*/
224#define __P000  PAGE_NONE
225#define __P001  PAGE_READONLY
226#define __P010  __P000 /* copy on write */
227#define __P011  __P001 /* copy on write */
228#define __P100  PAGE_EXECREAD
229#define __P101  PAGE_EXECREAD
230#define __P110  __P100 /* copy on write */
231#define __P111  __P101 /* copy on write */
232
233#define __S000  PAGE_NONE
234#define __S001  PAGE_READONLY
235#define __S010  PAGE_WRITEONLY
236#define __S011  PAGE_SHARED
237#define __S100  PAGE_EXECREAD
238#define __S101  PAGE_EXECREAD
239#define __S110  PAGE_RWX
240#define __S111  PAGE_RWX
241
242
243extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */
244
245/* initial page tables for 0-8MB for kernel */
246
247extern pte_t pg0[];
248
249/* zero page used for uninitialized stuff */
250
251extern unsigned long *empty_zero_page;
252
253/*
254 * ZERO_PAGE is a global shared page that is always zero: used
255 * for zero-mapped memory areas etc..
256 */
257
258#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
259
260#define pte_none(x)     ((pte_val(x) == 0) || (pte_val(x) & _PAGE_FLUSH))
261#define pte_present(x)	(pte_val(x) & _PAGE_PRESENT)
262#define pte_clear(mm,addr,xp)	do { pte_val(*(xp)) = 0; } while (0)
263
264#define pmd_flag(x)	(pmd_val(x) & PxD_FLAG_MASK)
265#define pmd_address(x)	((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
266#define pgd_flag(x)	(pgd_val(x) & PxD_FLAG_MASK)
267#define pgd_address(x)	((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT)
268
269#if PT_NLEVELS == 3
270/* The first entry of the permanent pmd is not there if it contains
271 * the gateway marker */
272#define pmd_none(x)	(!pmd_val(x) || pmd_flag(x) == PxD_FLAG_ATTACHED)
273#else
274#define pmd_none(x)	(!pmd_val(x))
275#endif
276#define pmd_bad(x)	(!(pmd_flag(x) & PxD_FLAG_VALID))
277#define pmd_present(x)	(pmd_flag(x) & PxD_FLAG_PRESENT)
278static inline void pmd_clear(pmd_t *pmd) {
279#if PT_NLEVELS == 3
280	if (pmd_flag(*pmd) & PxD_FLAG_ATTACHED)
281		/* This is the entry pointing to the permanent pmd
282		 * attached to the pgd; cannot clear it */
283		__pmd_val_set(*pmd, PxD_FLAG_ATTACHED);
284	else
285#endif
286		__pmd_val_set(*pmd,  0);
287}
288
289
290
291#if PT_NLEVELS == 3
292#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_address(pgd)))
293#define pgd_page(pgd)	virt_to_page((void *)pgd_page_vaddr(pgd))
294
295/* For 64 bit we have three level tables */
296
297#define pgd_none(x)     (!pgd_val(x))
298#define pgd_bad(x)      (!(pgd_flag(x) & PxD_FLAG_VALID))
299#define pgd_present(x)  (pgd_flag(x) & PxD_FLAG_PRESENT)
300static inline void pgd_clear(pgd_t *pgd) {
301#if PT_NLEVELS == 3
302	if(pgd_flag(*pgd) & PxD_FLAG_ATTACHED)
303		/* This is the permanent pmd attached to the pgd; cannot
304		 * free it */
305		return;
306#endif
307	__pgd_val_set(*pgd, 0);
308}
309#else
310/*
311 * The "pgd_xxx()" functions here are trivial for a folded two-level
312 * setup: the pgd is never bad, and a pmd always exists (as it's folded
313 * into the pgd entry)
314 */
315extern inline int pgd_none(pgd_t pgd)		{ return 0; }
316extern inline int pgd_bad(pgd_t pgd)		{ return 0; }
317extern inline int pgd_present(pgd_t pgd)	{ return 1; }
318extern inline void pgd_clear(pgd_t * pgdp)	{ }
319#endif
320
321/*
322 * The following only work if pte_present() is true.
323 * Undefined behaviour if not..
324 */
325extern inline int pte_read(pte_t pte)		{ return pte_val(pte) & _PAGE_READ; }
326extern inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
327extern inline int pte_young(pte_t pte)		{ return pte_val(pte) & _PAGE_ACCESSED; }
328extern inline int pte_write(pte_t pte)		{ return pte_val(pte) & _PAGE_WRITE; }
329extern inline int pte_file(pte_t pte)		{ return pte_val(pte) & _PAGE_FILE; }
330extern inline int pte_user(pte_t pte) 		{ return pte_val(pte) & _PAGE_USER; }
331
332extern inline pte_t pte_rdprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_READ; return pte; }
333extern inline pte_t pte_mkclean(pte_t pte)	{ pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
334extern inline pte_t pte_mkold(pte_t pte)	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
335extern inline pte_t pte_wrprotect(pte_t pte)	{ pte_val(pte) &= ~_PAGE_WRITE; return pte; }
336extern inline pte_t pte_mkread(pte_t pte)	{ pte_val(pte) |= _PAGE_READ; return pte; }
337extern inline pte_t pte_mkdirty(pte_t pte)	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
338extern inline pte_t pte_mkyoung(pte_t pte)	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
339extern inline pte_t pte_mkwrite(pte_t pte)	{ pte_val(pte) |= _PAGE_WRITE; return pte; }
340
341/*
342 * Conversion functions: convert a page and protection to a page entry,
343 * and a page entry and page directory to the page they refer to.
344 */
345#define __mk_pte(addr,pgprot) \
346({									\
347	pte_t __pte;							\
348									\
349	pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot));	\
350									\
351	__pte;								\
352})
353
354#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
355
356static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
357{
358	pte_t pte;
359	pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot);
360	return pte;
361}
362
363extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
364{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
365
366/* Permanent address of a page.  On parisc we don't have highmem. */
367
368#define pte_pfn(x)		(pte_val(x) >> PFN_PTE_SHIFT)
369
370#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
371
372#define pmd_page_vaddr(pmd)	((unsigned long) __va(pmd_address(pmd)))
373
374#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd)))
375#define pmd_page(pmd)	virt_to_page((void *)__pmd_page(pmd))
376
377#define pgd_index(address) ((address) >> PGDIR_SHIFT)
378
379/* to find an entry in a page-table-directory */
380#define pgd_offset(mm, address) \
381((mm)->pgd + ((address) >> PGDIR_SHIFT))
382
383/* to find an entry in a kernel page-table-directory */
384#define pgd_offset_k(address) pgd_offset(&init_mm, address)
385
386/* Find an entry in the second-level page table.. */
387
388#if PT_NLEVELS == 3
389#define pmd_offset(dir,address) \
390((pmd_t *) pgd_page_vaddr(*(dir)) + (((address)>>PMD_SHIFT) & (PTRS_PER_PMD-1)))
391#else
392#define pmd_offset(dir,addr) ((pmd_t *) dir)
393#endif
394
395/* Find an entry in the third-level page table.. */
396#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
397#define pte_offset_kernel(pmd, address) \
398	((pte_t *) pmd_page_vaddr(*(pmd)) + pte_index(address))
399#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
400#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
401#define pte_unmap(pte) do { } while (0)
402#define pte_unmap_nested(pte) do { } while (0)
403
404#define pte_unmap(pte)			do { } while (0)
405#define pte_unmap_nested(pte)		do { } while (0)
406
407extern void paging_init (void);
408
409/* Used for deferring calls to flush_dcache_page() */
410
411#define PG_dcache_dirty         PG_arch_1
412
413extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t);
414
415/* Encode and de-code a swap entry */
416
417#define __swp_type(x)                     ((x).val & 0x1f)
418#define __swp_offset(x)                   ( (((x).val >> 6) &  0x7) | \
419					  (((x).val >> 8) & ~0x7) )
420#define __swp_entry(type, offset)         ((swp_entry_t) { (type) | \
421					    ((offset &  0x7) << 6) | \
422					    ((offset & ~0x7) << 8) })
423#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
424#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
425
426static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
427{
428#ifdef CONFIG_SMP
429	if (!pte_young(*ptep))
430		return 0;
431	return test_and_clear_bit(xlate_pabit(_PAGE_ACCESSED_BIT), &pte_val(*ptep));
432#else
433	pte_t pte = *ptep;
434	if (!pte_young(pte))
435		return 0;
436	set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
437	return 1;
438#endif
439}
440
441static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
442{
443#ifdef CONFIG_SMP
444	if (!pte_dirty(*ptep))
445		return 0;
446	return test_and_clear_bit(xlate_pabit(_PAGE_DIRTY_BIT), &pte_val(*ptep));
447#else
448	pte_t pte = *ptep;
449	if (!pte_dirty(pte))
450		return 0;
451	set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte));
452	return 1;
453#endif
454}
455
456extern spinlock_t pa_dbit_lock;
457
458struct mm_struct;
459static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
460{
461	pte_t old_pte;
462	pte_t pte;
463
464	spin_lock(&pa_dbit_lock);
465	pte = old_pte = *ptep;
466	pte_val(pte) &= ~_PAGE_PRESENT;
467	pte_val(pte) |= _PAGE_FLUSH;
468	set_pte_at(mm,addr,ptep,pte);
469	spin_unlock(&pa_dbit_lock);
470
471	return old_pte;
472}
473
474static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
475{
476#ifdef CONFIG_SMP
477	unsigned long new, old;
478
479	do {
480		old = pte_val(*ptep);
481		new = pte_val(pte_wrprotect(__pte (old)));
482	} while (cmpxchg((unsigned long *) ptep, old, new) != old);
483#else
484	pte_t old_pte = *ptep;
485	set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
486#endif
487}
488
489#define pte_same(A,B)	(pte_val(A) == pte_val(B))
490
491#endif /* !__ASSEMBLY__ */
492
493
494/* TLB page size encoding - see table 3-1 in parisc20.pdf */
495#define _PAGE_SIZE_ENCODING_4K		0
496#define _PAGE_SIZE_ENCODING_16K		1
497#define _PAGE_SIZE_ENCODING_64K		2
498#define _PAGE_SIZE_ENCODING_256K	3
499#define _PAGE_SIZE_ENCODING_1M		4
500#define _PAGE_SIZE_ENCODING_4M		5
501#define _PAGE_SIZE_ENCODING_16M		6
502#define _PAGE_SIZE_ENCODING_64M		7
503
504#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
505# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K
506#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB)
507# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K
508#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB)
509# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K
510#endif
511
512
513#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
514		remap_pfn_range(vma, vaddr, pfn, size, prot)
515
516#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE)
517
518/* We provide our own get_unmapped_area to provide cache coherency */
519
520#define HAVE_ARCH_UNMAPPED_AREA
521
522#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
523#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
524#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
525#define __HAVE_ARCH_PTEP_SET_WRPROTECT
526#define __HAVE_ARCH_PTE_SAME
527#include <asm-generic/pgtable.h>
528
529#endif /* _PARISC_PGTABLE_H */
530