1/* $Id: apollodma.h,v 1.1.1.1 2007/08/03 18:53:27 Exp $
2 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
3 * Written by Hennus Bergman, 1992.
4 * High DMA channel support & info by Hannu Savolainen
5 * and John Boyd, Nov. 1992.
6 */
7
8#ifndef _ASM_APOLLO_DMA_H
9#define _ASM_APOLLO_DMA_H
10
11#include <asm/apollohw.h>		/* need byte IO */
12#include <linux/spinlock.h>		/* And spinlocks */
13#include <linux/delay.h>
14
15
16#define dma_outb(val,addr) (*((volatile unsigned char *)(addr+IO_BASE)) = (val))
17#define dma_inb(addr)	   (*((volatile unsigned char *)(addr+IO_BASE)))
18
19/*
20 * NOTES about DMA transfers:
21 *
22 *  controller 1: channels 0-3, byte operations, ports 00-1F
23 *  controller 2: channels 4-7, word operations, ports C0-DF
24 *
25 *  - ALL registers are 8 bits only, regardless of transfer size
26 *  - channel 4 is not used - cascades 1 into 2.
27 *  - channels 0-3 are byte - addresses/counts are for physical bytes
28 *  - channels 5-7 are word - addresses/counts are for physical words
29 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
30 *  - transfer count loaded to registers is 1 less than actual count
31 *  - controller 2 offsets are all even (2x offsets for controller 1)
32 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
33 *  - page registers for 0-3 use bit 0, represent 64K pages
34 *
35 * DMA transfers are limited to the lower 16MB of _physical_ memory.
36 * Note that addresses loaded into registers must be _physical_ addresses,
37 * not logical addresses (which may differ if paging is active).
38 *
39 *  Address mapping for channels 0-3:
40 *
41 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
42 *    |  ...  |   |  ... |   |  ... |
43 *    |  ...  |   |  ... |   |  ... |
44 *    |  ...  |   |  ... |   |  ... |
45 *   P7  ...  P0  A7 ... A0  A7 ... A0
46 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
47 *
48 *  Address mapping for channels 5-7:
49 *
50 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
51 *    |  ...  |   \   \   ... \  \  \  ... \  \
52 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
53 *    |  ...  |     \   \   ... \  \  \  ... \
54 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
55 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
56 *
57 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
58 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
59 * the hardware level, so odd-byte transfers aren't possible).
60 *
61 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
62 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
63 * and up to 128K bytes may be transferred on channels 5-7 in one operation.
64 *
65 */
66
67#define MAX_DMA_CHANNELS	8
68
69/* The maximum address that we can perform a DMA transfer to on this platform */#define MAX_DMA_ADDRESS      (PAGE_OFFSET+0x1000000)
70
71/* 8237 DMA controllers */
72#define IO_DMA1_BASE	0x10C00	/* 8 bit slave DMA, channels 0..3 */
73#define IO_DMA2_BASE	0x10D00	/* 16 bit master DMA, ch 4(=slave input)..7 */
74
75/* DMA controller registers */
76#define DMA1_CMD_REG		(IO_DMA1_BASE+0x08) /* command register (w) */
77#define DMA1_STAT_REG		(IO_DMA1_BASE+0x08) /* status register (r) */
78#define DMA1_REQ_REG            (IO_DMA1_BASE+0x09) /* request register (w) */
79#define DMA1_MASK_REG		(IO_DMA1_BASE+0x0A) /* single-channel mask (w) */
80#define DMA1_MODE_REG		(IO_DMA1_BASE+0x0B) /* mode register (w) */
81#define DMA1_CLEAR_FF_REG	(IO_DMA1_BASE+0x0C) /* clear pointer flip-flop (w) */
82#define DMA1_TEMP_REG           (IO_DMA1_BASE+0x0D) /* Temporary Register (r) */
83#define DMA1_RESET_REG		(IO_DMA1_BASE+0x0D) /* Master Clear (w) */
84#define DMA1_CLR_MASK_REG       (IO_DMA1_BASE+0x0E) /* Clear Mask */
85#define DMA1_MASK_ALL_REG       (IO_DMA1_BASE+0x0F) /* all-channels mask (w) */
86
87#define DMA2_CMD_REG		(IO_DMA2_BASE+0x10) /* command register (w) */
88#define DMA2_STAT_REG		(IO_DMA2_BASE+0x10) /* status register (r) */
89#define DMA2_REQ_REG            (IO_DMA2_BASE+0x12) /* request register (w) */
90#define DMA2_MASK_REG		(IO_DMA2_BASE+0x14) /* single-channel mask (w) */
91#define DMA2_MODE_REG		(IO_DMA2_BASE+0x16) /* mode register (w) */
92#define DMA2_CLEAR_FF_REG	(IO_DMA2_BASE+0x18) /* clear pointer flip-flop (w) */
93#define DMA2_TEMP_REG           (IO_DMA2_BASE+0x1A) /* Temporary Register (r) */
94#define DMA2_RESET_REG		(IO_DMA2_BASE+0x1A) /* Master Clear (w) */
95#define DMA2_CLR_MASK_REG       (IO_DMA2_BASE+0x1C) /* Clear Mask */
96#define DMA2_MASK_ALL_REG       (IO_DMA2_BASE+0x1E) /* all-channels mask (w) */
97
98#define DMA_ADDR_0              (IO_DMA1_BASE+0x00) /* DMA address registers */
99#define DMA_ADDR_1              (IO_DMA1_BASE+0x02)
100#define DMA_ADDR_2              (IO_DMA1_BASE+0x04)
101#define DMA_ADDR_3              (IO_DMA1_BASE+0x06)
102#define DMA_ADDR_4              (IO_DMA2_BASE+0x00)
103#define DMA_ADDR_5              (IO_DMA2_BASE+0x04)
104#define DMA_ADDR_6              (IO_DMA2_BASE+0x08)
105#define DMA_ADDR_7              (IO_DMA2_BASE+0x0C)
106
107#define DMA_CNT_0               (IO_DMA1_BASE+0x01)   /* DMA count registers */
108#define DMA_CNT_1               (IO_DMA1_BASE+0x03)
109#define DMA_CNT_2               (IO_DMA1_BASE+0x05)
110#define DMA_CNT_3               (IO_DMA1_BASE+0x07)
111#define DMA_CNT_4               (IO_DMA2_BASE+0x02)
112#define DMA_CNT_5               (IO_DMA2_BASE+0x06)
113#define DMA_CNT_6               (IO_DMA2_BASE+0x0A)
114#define DMA_CNT_7               (IO_DMA2_BASE+0x0E)
115
116#define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
117#define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
118#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
119
120#define DMA_AUTOINIT	0x10
121
122#define DMA_8BIT 0
123#define DMA_16BIT 1
124#define DMA_BUSMASTER 2
125
126extern spinlock_t  dma_spin_lock;
127
128static __inline__ unsigned long claim_dma_lock(void)
129{
130	unsigned long flags;
131	spin_lock_irqsave(&dma_spin_lock, flags);
132	return flags;
133}
134
135static __inline__ void release_dma_lock(unsigned long flags)
136{
137	spin_unlock_irqrestore(&dma_spin_lock, flags);
138}
139
140/* enable/disable a specific DMA channel */
141static __inline__ void enable_dma(unsigned int dmanr)
142{
143	if (dmanr<=3)
144		dma_outb(dmanr,  DMA1_MASK_REG);
145	else
146		dma_outb(dmanr & 3,  DMA2_MASK_REG);
147}
148
149static __inline__ void disable_dma(unsigned int dmanr)
150{
151	if (dmanr<=3)
152		dma_outb(dmanr | 4,  DMA1_MASK_REG);
153	else
154		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
155}
156
157/* Clear the 'DMA Pointer Flip Flop'.
158 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
159 * Use this once to initialize the FF to a known state.
160 * After that, keep track of it. :-)
161 * --- In order to do that, the DMA routines below should ---
162 * --- only be used while holding the DMA lock ! ---
163 */
164static __inline__ void clear_dma_ff(unsigned int dmanr)
165{
166	if (dmanr<=3)
167		dma_outb(0,  DMA1_CLEAR_FF_REG);
168	else
169		dma_outb(0,  DMA2_CLEAR_FF_REG);
170}
171
172/* set mode (above) for a specific DMA channel */
173static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
174{
175	if (dmanr<=3)
176		dma_outb(mode | dmanr,  DMA1_MODE_REG);
177	else
178		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
179}
180
181/* Set transfer address & page bits for specific DMA channel.
182 * Assumes dma flipflop is clear.
183 */
184static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
185{
186	if (dmanr <= 3)  {
187	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
188            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
189	}  else  {
190	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
191	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
192	}
193}
194
195
196/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
197 * a specific DMA channel.
198 * You must ensure the parameters are valid.
199 * NOTE: from a manual: "the number of transfers is one more
200 * than the initial word count"! This is taken into account.
201 * Assumes dma flip-flop is clear.
202 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
203 */
204static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
205{
206        count--;
207	if (dmanr <= 3)  {
208	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
209	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
210        } else {
211	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
212	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
213        }
214}
215
216
217/* Get DMA residue count. After a DMA transfer, this
218 * should return zero. Reading this while a DMA transfer is
219 * still in progress will return unpredictable results.
220 * If called before the channel has been used, it may return 1.
221 * Otherwise, it returns the number of _bytes_ left to transfer.
222 *
223 * Assumes DMA flip-flop is clear.
224 */
225static __inline__ int get_dma_residue(unsigned int dmanr)
226{
227	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
228					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
229
230	/* using short to get 16-bit wrap around */
231	unsigned short count;
232
233	count = 1 + dma_inb(io_port);
234	count += dma_inb(io_port) << 8;
235
236	return (dmanr<=3)? count : (count<<1);
237}
238
239
240/* These are in kernel/dma.c: */
241extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
242extern void free_dma(unsigned int dmanr);	/* release it again */
243
244/* These are in arch/m68k/apollo/dma.c: */
245extern unsigned short dma_map_page(unsigned long phys_addr,int count,int type);
246extern void dma_unmap_page(unsigned short dma_addr);
247
248#endif /* _ASM_APOLLO_DMA_H */
249