1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (c) 2004-2006 Silicon Graphics, Inc.  All Rights Reserved.
7 */
8
9
10/*
11 * Cross Partition Communication (XPC) structures and macros.
12 */
13
14#ifndef _ASM_IA64_SN_XPC_H
15#define _ASM_IA64_SN_XPC_H
16
17
18#include <linux/interrupt.h>
19#include <linux/sysctl.h>
20#include <linux/device.h>
21#include <linux/mutex.h>
22#include <linux/completion.h>
23#include <asm/pgtable.h>
24#include <asm/processor.h>
25#include <asm/sn/bte.h>
26#include <asm/sn/clksupport.h>
27#include <asm/sn/addrs.h>
28#include <asm/sn/mspec.h>
29#include <asm/sn/shub_mmr.h>
30#include <asm/sn/xp.h>
31
32
33/*
34 * XPC Version numbers consist of a major and minor number. XPC can always
35 * talk to versions with same major #, and never talk to versions with a
36 * different major #.
37 */
38#define _XPC_VERSION(_maj, _min)	(((_maj) << 4) | ((_min) & 0xf))
39#define XPC_VERSION_MAJOR(_v)		((_v) >> 4)
40#define XPC_VERSION_MINOR(_v)		((_v) & 0xf)
41
42
43/*
44 * The next macros define word or bit representations for given
45 * C-brick nasid in either the SAL provided bit array representing
46 * nasids in the partition/machine or the AMO_t array used for
47 * inter-partition initiation communications.
48 *
49 * For SN2 machines, C-Bricks are alway even numbered NASIDs.  As
50 * such, some space will be saved by insisting that nasid information
51 * passed from SAL always be packed for C-Bricks and the
52 * cross-partition interrupts use the same packing scheme.
53 */
54#define XPC_NASID_W_INDEX(_n)	(((_n) / 64) / 2)
55#define XPC_NASID_B_INDEX(_n)	(((_n) / 2) & (64 - 1))
56#define XPC_NASID_IN_ARRAY(_n, _p) ((_p)[XPC_NASID_W_INDEX(_n)] & \
57				    (1UL << XPC_NASID_B_INDEX(_n)))
58#define XPC_NASID_FROM_W_B(_w, _b) (((_w) * 64 + (_b)) * 2)
59
60#define XPC_HB_DEFAULT_INTERVAL		5	/* incr HB every x secs */
61#define XPC_HB_CHECK_DEFAULT_INTERVAL	20	/* check HB every x secs */
62
63/* define the process name of HB checker and the CPU it is pinned to */
64#define XPC_HB_CHECK_THREAD_NAME	"xpc_hb"
65#define XPC_HB_CHECK_CPU		0
66
67/* define the process name of the discovery thread */
68#define XPC_DISCOVERY_THREAD_NAME	"xpc_discovery"
69
70
71/*
72 * the reserved page
73 *
74 *   SAL reserves one page of memory per partition for XPC. Though a full page
75 *   in length (16384 bytes), its starting address is not page aligned, but it
76 *   is cacheline aligned. The reserved page consists of the following:
77 *
78 *   reserved page header
79 *
80 *     The first cacheline of the reserved page contains the header
81 *     (struct xpc_rsvd_page). Before SAL initialization has completed,
82 *     SAL has set up the following fields of the reserved page header:
83 *     SAL_signature, SAL_version, partid, and nasids_size. The other
84 *     fields are set up by XPC. (xpc_rsvd_page points to the local
85 *     partition's reserved page.)
86 *
87 *   part_nasids mask
88 *   mach_nasids mask
89 *
90 *     SAL also sets up two bitmaps (or masks), one that reflects the actual
91 *     nasids in this partition (part_nasids), and the other that reflects
92 *     the actual nasids in the entire machine (mach_nasids). We're only
93 *     interested in the even numbered nasids (which contain the processors
94 *     and/or memory), so we only need half as many bits to represent the
95 *     nasids. The part_nasids mask is located starting at the first cacheline
96 *     following the reserved page header. The mach_nasids mask follows right
97 *     after the part_nasids mask. The size in bytes of each mask is reflected
98 *     by the reserved page header field 'nasids_size'. (Local partition's
99 *     mask pointers are xpc_part_nasids and xpc_mach_nasids.)
100 *
101 *   vars
102 *   vars part
103 *
104 *     Immediately following the mach_nasids mask are the XPC variables
105 *     required by other partitions. First are those that are generic to all
106 *     partitions (vars), followed on the next available cacheline by those
107 *     which are partition specific (vars part). These are setup by XPC.
108 *     (Local partition's vars pointers are xpc_vars and xpc_vars_part.)
109 *
110 * Note: Until vars_pa is set, the partition XPC code has not been initialized.
111 */
112struct xpc_rsvd_page {
113	u64 SAL_signature;	/* SAL: unique signature */
114	u64 SAL_version;	/* SAL: version */
115	u8 partid;		/* SAL: partition ID */
116	u8 version;
117	u8 pad1[6];		/* align to next u64 in cacheline */
118	volatile u64 vars_pa;
119	struct timespec stamp;	/* time when reserved page was setup by XPC */
120	u64 pad2[9];		/* align to last u64 in cacheline */
121	u64 nasids_size;	/* SAL: size of each nasid mask in bytes */
122};
123
124#define XPC_RP_VERSION _XPC_VERSION(1,1) /* version 1.1 of the reserved page */
125
126#define XPC_SUPPORTS_RP_STAMP(_version) \
127			(_version >= _XPC_VERSION(1,1))
128
129/*
130 * compare stamps - the return value is:
131 *
132 *	< 0,	if stamp1 < stamp2
133 *	= 0,	if stamp1 == stamp2
134 *	> 0,	if stamp1 > stamp2
135 */
136static inline int
137xpc_compare_stamps(struct timespec *stamp1, struct timespec *stamp2)
138{
139	int ret;
140
141
142	if ((ret = stamp1->tv_sec - stamp2->tv_sec) == 0) {
143		ret = stamp1->tv_nsec - stamp2->tv_nsec;
144	}
145	return ret;
146}
147
148
149/*
150 * Define the structures by which XPC variables can be exported to other
151 * partitions. (There are two: struct xpc_vars and struct xpc_vars_part)
152 */
153
154/*
155 * The following structure describes the partition generic variables
156 * needed by other partitions in order to properly initialize.
157 *
158 * struct xpc_vars version number also applies to struct xpc_vars_part.
159 * Changes to either structure and/or related functionality should be
160 * reflected by incrementing either the major or minor version numbers
161 * of struct xpc_vars.
162 */
163struct xpc_vars {
164	u8 version;
165	u64 heartbeat;
166	u64 heartbeating_to_mask;
167	u64 heartbeat_offline;	/* if 0, heartbeat should be changing */
168	int act_nasid;
169	int act_phys_cpuid;
170	u64 vars_part_pa;
171	u64 amos_page_pa;	/* paddr of page of AMOs from MSPEC driver */
172	AMO_t *amos_page;	/* vaddr of page of AMOs from MSPEC driver */
173};
174
175#define XPC_V_VERSION _XPC_VERSION(3,1) /* version 3.1 of the cross vars */
176
177#define XPC_SUPPORTS_DISENGAGE_REQUEST(_version) \
178			(_version >= _XPC_VERSION(3,1))
179
180
181static inline int
182xpc_hb_allowed(partid_t partid, struct xpc_vars *vars)
183{
184	return ((vars->heartbeating_to_mask & (1UL << partid)) != 0);
185}
186
187static inline void
188xpc_allow_hb(partid_t partid, struct xpc_vars *vars)
189{
190	u64 old_mask, new_mask;
191
192	do {
193		old_mask = vars->heartbeating_to_mask;
194		new_mask = (old_mask | (1UL << partid));
195	} while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) !=
196							old_mask);
197}
198
199static inline void
200xpc_disallow_hb(partid_t partid, struct xpc_vars *vars)
201{
202	u64 old_mask, new_mask;
203
204	do {
205		old_mask = vars->heartbeating_to_mask;
206		new_mask = (old_mask & ~(1UL << partid));
207	} while (cmpxchg(&vars->heartbeating_to_mask, old_mask, new_mask) !=
208							old_mask);
209}
210
211
212/*
213 * The AMOs page consists of a number of AMO variables which are divided into
214 * four groups, The first two groups are used to identify an IRQ's sender.
215 * These two groups consist of 64 and 128 AMO variables respectively. The last
216 * two groups, consisting of just one AMO variable each, are used to identify
217 * the remote partitions that are currently engaged (from the viewpoint of
218 * the XPC running on the remote partition).
219 */
220#define XPC_NOTIFY_IRQ_AMOS	   0
221#define XPC_ACTIVATE_IRQ_AMOS	   (XPC_NOTIFY_IRQ_AMOS + XP_MAX_PARTITIONS)
222#define XPC_ENGAGED_PARTITIONS_AMO (XPC_ACTIVATE_IRQ_AMOS + XP_NASID_MASK_WORDS)
223#define XPC_DISENGAGE_REQUEST_AMO  (XPC_ENGAGED_PARTITIONS_AMO + 1)
224
225
226/*
227 * The following structure describes the per partition specific variables.
228 *
229 * An array of these structures, one per partition, will be defined. As a
230 * partition becomes active XPC will copy the array entry corresponding to
231 * itself from that partition. It is desirable that the size of this
232 * structure evenly divide into a cacheline, such that none of the entries
233 * in this array crosses a cacheline boundary. As it is now, each entry
234 * occupies half a cacheline.
235 */
236struct xpc_vars_part {
237	volatile u64 magic;
238
239	u64 openclose_args_pa;	/* physical address of open and close args */
240	u64 GPs_pa;		/* physical address of Get/Put values */
241
242	u64 IPI_amo_pa;		/* physical address of IPI AMO_t structure */
243	int IPI_nasid;		/* nasid of where to send IPIs */
244	int IPI_phys_cpuid;	/* physical CPU ID of where to send IPIs */
245
246	u8 nchannels;		/* #of defined channels supported */
247
248	u8 reserved[23];	/* pad to a full 64 bytes */
249};
250
251/*
252 * The vars_part MAGIC numbers play a part in the first contact protocol.
253 *
254 * MAGIC1 indicates that the per partition specific variables for a remote
255 * partition have been initialized by this partition.
256 *
257 * MAGIC2 indicates that this partition has pulled the remote partititions
258 * per partition variables that pertain to this partition.
259 */
260#define XPC_VP_MAGIC1	0x0053524156435058L  /* 'XPCVARS\0'L (little endian) */
261#define XPC_VP_MAGIC2	0x0073726176435058L  /* 'XPCvars\0'L (little endian) */
262
263
264/* the reserved page sizes and offsets */
265
266#define XPC_RP_HEADER_SIZE	L1_CACHE_ALIGN(sizeof(struct xpc_rsvd_page))
267#define XPC_RP_VARS_SIZE 	L1_CACHE_ALIGN(sizeof(struct xpc_vars))
268
269#define XPC_RP_PART_NASIDS(_rp) (u64 *) ((u8 *) _rp + XPC_RP_HEADER_SIZE)
270#define XPC_RP_MACH_NASIDS(_rp) (XPC_RP_PART_NASIDS(_rp) + xp_nasid_mask_words)
271#define XPC_RP_VARS(_rp)	((struct xpc_vars *) XPC_RP_MACH_NASIDS(_rp) + xp_nasid_mask_words)
272#define XPC_RP_VARS_PART(_rp)	(struct xpc_vars_part *) ((u8 *) XPC_RP_VARS(rp) + XPC_RP_VARS_SIZE)
273
274
275/*
276 * Functions registered by add_timer() or called by kernel_thread() only
277 * allow for a single 64-bit argument. The following macros can be used to
278 * pack and unpack two (32-bit, 16-bit or 8-bit) arguments into or out from
279 * the passed argument.
280 */
281#define XPC_PACK_ARGS(_arg1, _arg2) \
282			((((u64) _arg1) & 0xffffffff) | \
283			((((u64) _arg2) & 0xffffffff) << 32))
284
285#define XPC_UNPACK_ARG1(_args)	(((u64) _args) & 0xffffffff)
286#define XPC_UNPACK_ARG2(_args)	((((u64) _args) >> 32) & 0xffffffff)
287
288
289
290/*
291 * Define a Get/Put value pair (pointers) used with a message queue.
292 */
293struct xpc_gp {
294	volatile s64 get;	/* Get value */
295	volatile s64 put;	/* Put value */
296};
297
298#define XPC_GP_SIZE \
299		L1_CACHE_ALIGN(sizeof(struct xpc_gp) * XPC_NCHANNELS)
300
301
302
303/*
304 * Define a structure that contains arguments associated with opening and
305 * closing a channel.
306 */
307struct xpc_openclose_args {
308	u16 reason;		/* reason why channel is closing */
309	u16 msg_size;		/* sizeof each message entry */
310	u16 remote_nentries;	/* #of message entries in remote msg queue */
311	u16 local_nentries;	/* #of message entries in local msg queue */
312	u64 local_msgqueue_pa;	/* physical address of local message queue */
313};
314
315#define XPC_OPENCLOSE_ARGS_SIZE \
316	      L1_CACHE_ALIGN(sizeof(struct xpc_openclose_args) * XPC_NCHANNELS)
317
318
319
320/* struct xpc_msg flags */
321
322#define	XPC_M_DONE		0x01	/* msg has been received/consumed */
323#define	XPC_M_READY		0x02	/* msg is ready to be sent */
324#define	XPC_M_INTERRUPT		0x04	/* send interrupt when msg consumed */
325
326
327#define XPC_MSG_ADDRESS(_payload) \
328		((struct xpc_msg *)((u8 *)(_payload) - XPC_MSG_PAYLOAD_OFFSET))
329
330
331
332/*
333 * Defines notify entry.
334 *
335 * This is used to notify a message's sender that their message was received
336 * and consumed by the intended recipient.
337 */
338struct xpc_notify {
339	volatile u8 type;		/* type of notification */
340
341	/* the following two fields are only used if type == XPC_N_CALL */
342	xpc_notify_func func;		/* user's notify function */
343	void *key;			/* pointer to user's key */
344};
345
346/* struct xpc_notify type of notification */
347
348#define	XPC_N_CALL		0x01	/* notify function provided by user */
349
350
351
352/*
353 * Define the structure that manages all the stuff required by a channel. In
354 * particular, they are used to manage the messages sent across the channel.
355 *
356 * This structure is private to a partition, and is NOT shared across the
357 * partition boundary.
358 *
359 * There is an array of these structures for each remote partition. It is
360 * allocated at the time a partition becomes active. The array contains one
361 * of these structures for each potential channel connection to that partition.
362 *
363 * Each of these structures manages two message queues (circular buffers).
364 * They are allocated at the time a channel connection is made. One of
365 * these message queues (local_msgqueue) holds the locally created messages
366 * that are destined for the remote partition. The other of these message
367 * queues (remote_msgqueue) is a locally cached copy of the remote partition's
368 * own local_msgqueue.
369 *
370 * The following is a description of the Get/Put pointers used to manage these
371 * two message queues. Consider the local_msgqueue to be on one partition
372 * and the remote_msgqueue to be its cached copy on another partition. A
373 * description of what each of the lettered areas contains is included.
374 *
375 *
376 *                     local_msgqueue      remote_msgqueue
377 *
378 *                        |/////////|      |/////////|
379 *    w_remote_GP.get --> +---------+      |/////////|
380 *                        |    F    |      |/////////|
381 *     remote_GP.get  --> +---------+      +---------+ <-- local_GP->get
382 *                        |         |      |         |
383 *                        |         |      |    E    |
384 *                        |         |      |         |
385 *                        |         |      +---------+ <-- w_local_GP.get
386 *                        |    B    |      |/////////|
387 *                        |         |      |////D////|
388 *                        |         |      |/////////|
389 *                        |         |      +---------+ <-- w_remote_GP.put
390 *                        |         |      |////C////|
391 *      local_GP->put --> +---------+      +---------+ <-- remote_GP.put
392 *                        |         |      |/////////|
393 *                        |    A    |      |/////////|
394 *                        |         |      |/////////|
395 *     w_local_GP.put --> +---------+      |/////////|
396 *                        |/////////|      |/////////|
397 *
398 *
399 *	    ( remote_GP.[get|put] are cached copies of the remote
400 *	      partition's local_GP->[get|put], and thus their values can
401 *	      lag behind their counterparts on the remote partition. )
402 *
403 *
404 *  A - Messages that have been allocated, but have not yet been sent to the
405 *	remote partition.
406 *
407 *  B - Messages that have been sent, but have not yet been acknowledged by the
408 *      remote partition as having been received.
409 *
410 *  C - Area that needs to be prepared for the copying of sent messages, by
411 *	the clearing of the message flags of any previously received messages.
412 *
413 *  D - Area into which sent messages are to be copied from the remote
414 *	partition's local_msgqueue and then delivered to their intended
415 *	recipients. [ To allow for a multi-message copy, another pointer
416 *	(next_msg_to_pull) has been added to keep track of the next message
417 *	number needing to be copied (pulled). It chases after w_remote_GP.put.
418 *	Any messages lying between w_local_GP.get and next_msg_to_pull have
419 *	been copied and are ready to be delivered. ]
420 *
421 *  E - Messages that have been copied and delivered, but have not yet been
422 *	acknowledged by the recipient as having been received.
423 *
424 *  F - Messages that have been acknowledged, but XPC has not yet notified the
425 *	sender that the message was received by its intended recipient.
426 *	This is also an area that needs to be prepared for the allocating of
427 *	new messages, by the clearing of the message flags of the acknowledged
428 *	messages.
429 */
430struct xpc_channel {
431	partid_t partid;		/* ID of remote partition connected */
432	spinlock_t lock;		/* lock for updating this structure */
433	u32 flags;			/* general flags */
434
435	enum xpc_retval reason;		/* reason why channel is disconnect'g */
436	int reason_line;		/* line# disconnect initiated from */
437
438	u16 number;			/* channel # */
439
440	u16 msg_size;			/* sizeof each msg entry */
441	u16 local_nentries;		/* #of msg entries in local msg queue */
442	u16 remote_nentries;		/* #of msg entries in remote msg queue*/
443
444	void *local_msgqueue_base;	/* base address of kmalloc'd space */
445	struct xpc_msg *local_msgqueue;	/* local message queue */
446	void *remote_msgqueue_base;	/* base address of kmalloc'd space */
447	struct xpc_msg *remote_msgqueue;/* cached copy of remote partition's */
448					/* local message queue */
449	u64 remote_msgqueue_pa;		/* phys addr of remote partition's */
450					/* local message queue */
451
452	atomic_t references;		/* #of external references to queues */
453
454	atomic_t n_on_msg_allocate_wq;   /* #on msg allocation wait queue */
455	wait_queue_head_t msg_allocate_wq; /* msg allocation wait queue */
456
457	u8 delayed_IPI_flags;		/* IPI flags received, but delayed */
458					/* action until channel disconnected */
459
460	/* queue of msg senders who want to be notified when msg received */
461
462	atomic_t n_to_notify;		/* #of msg senders to notify */
463	struct xpc_notify *notify_queue;/* notify queue for messages sent */
464
465	xpc_channel_func func;		/* user's channel function */
466	void *key;			/* pointer to user's key */
467
468	struct mutex msg_to_pull_mutex;	/* next msg to pull serialization */
469	struct completion wdisconnect_wait; /* wait for channel disconnect */
470
471	struct xpc_openclose_args *local_openclose_args; /* args passed on */
472					/* opening or closing of channel */
473
474	/* various flavors of local and remote Get/Put values */
475
476	struct xpc_gp *local_GP;	/* local Get/Put values */
477	struct xpc_gp remote_GP;	/* remote Get/Put values */
478	struct xpc_gp w_local_GP;	/* working local Get/Put values */
479	struct xpc_gp w_remote_GP;	/* working remote Get/Put values */
480	s64 next_msg_to_pull;		/* Put value of next msg to pull */
481
482	/* kthread management related fields */
483
484// >>> rethink having kthreads_assigned_limit and kthreads_idle_limit; perhaps
485// >>> allow the assigned limit be unbounded and let the idle limit be dynamic
486// >>> dependent on activity over the last interval of time
487	atomic_t kthreads_assigned;	/* #of kthreads assigned to channel */
488	u32 kthreads_assigned_limit; 	/* limit on #of kthreads assigned */
489	atomic_t kthreads_idle;		/* #of kthreads idle waiting for work */
490	u32 kthreads_idle_limit;	/* limit on #of kthreads idle */
491	atomic_t kthreads_active;	/* #of kthreads actively working */
492	// >>> following field is temporary
493	u32 kthreads_created;		/* total #of kthreads created */
494
495	wait_queue_head_t idle_wq;	/* idle kthread wait queue */
496
497} ____cacheline_aligned;
498
499
500/* struct xpc_channel flags */
501
502#define	XPC_C_WASCONNECTED	0x00000001 /* channel was connected */
503
504#define	XPC_C_ROPENREPLY	0x00000002 /* remote open channel reply */
505#define	XPC_C_OPENREPLY		0x00000004 /* local open channel reply */
506#define	XPC_C_ROPENREQUEST	0x00000008 /* remote open channel request */
507#define	XPC_C_OPENREQUEST	0x00000010 /* local open channel request */
508
509#define	XPC_C_SETUP		0x00000020 /* channel's msgqueues are alloc'd */
510#define	XPC_C_CONNECTEDCALLOUT	0x00000040 /* connected callout initiated */
511#define	XPC_C_CONNECTEDCALLOUT_MADE \
512				0x00000080 /* connected callout completed */
513#define	XPC_C_CONNECTED		0x00000100 /* local channel is connected */
514#define	XPC_C_CONNECTING	0x00000200 /* channel is being connected */
515
516#define	XPC_C_RCLOSEREPLY	0x00000400 /* remote close channel reply */
517#define	XPC_C_CLOSEREPLY	0x00000800 /* local close channel reply */
518#define	XPC_C_RCLOSEREQUEST	0x00001000 /* remote close channel request */
519#define	XPC_C_CLOSEREQUEST	0x00002000 /* local close channel request */
520
521#define	XPC_C_DISCONNECTED	0x00004000 /* channel is disconnected */
522#define	XPC_C_DISCONNECTING	0x00008000 /* channel is being disconnected */
523#define	XPC_C_DISCONNECTINGCALLOUT \
524				0x00010000 /* disconnecting callout initiated */
525#define	XPC_C_DISCONNECTINGCALLOUT_MADE \
526				0x00020000 /* disconnecting callout completed */
527#define	XPC_C_WDISCONNECT	0x00040000 /* waiting for channel disconnect */
528
529
530
531/*
532 * Manages channels on a partition basis. There is one of these structures
533 * for each partition (a partition will never utilize the structure that
534 * represents itself).
535 */
536struct xpc_partition {
537
538	/* XPC HB infrastructure */
539
540	u8 remote_rp_version;		/* version# of partition's rsvd pg */
541	struct timespec remote_rp_stamp;/* time when rsvd pg was initialized */
542	u64 remote_rp_pa;		/* phys addr of partition's rsvd pg */
543	u64 remote_vars_pa;		/* phys addr of partition's vars */
544	u64 remote_vars_part_pa;	/* phys addr of partition's vars part */
545	u64 last_heartbeat;		/* HB at last read */
546	u64 remote_amos_page_pa;	/* phys addr of partition's amos page */
547	int remote_act_nasid;		/* active part's act/deact nasid */
548	int remote_act_phys_cpuid;	/* active part's act/deact phys cpuid */
549	u32 act_IRQ_rcvd;		/* IRQs since activation */
550	spinlock_t act_lock;		/* protect updating of act_state */
551	u8 act_state;			/* from XPC HB viewpoint */
552	u8 remote_vars_version;		/* version# of partition's vars */
553	enum xpc_retval reason;		/* reason partition is deactivating */
554	int reason_line;		/* line# deactivation initiated from */
555	int reactivate_nasid;		/* nasid in partition to reactivate */
556
557	unsigned long disengage_request_timeout; /* timeout in jiffies */
558	struct timer_list disengage_request_timer;
559
560
561	/* XPC infrastructure referencing and teardown control */
562
563	volatile u8 setup_state;	/* infrastructure setup state */
564	wait_queue_head_t teardown_wq;	/* kthread waiting to teardown infra */
565	atomic_t references;		/* #of references to infrastructure */
566
567
568	/*
569	 * NONE OF THE PRECEDING FIELDS OF THIS STRUCTURE WILL BE CLEARED WHEN
570	 * XPC SETS UP THE NECESSARY INFRASTRUCTURE TO SUPPORT CROSS PARTITION
571	 * COMMUNICATION. ALL OF THE FOLLOWING FIELDS WILL BE CLEARED. (THE
572	 * 'nchannels' FIELD MUST BE THE FIRST OF THE FIELDS TO BE CLEARED.)
573	 */
574
575
576	u8 nchannels;		   /* #of defined channels supported */
577	atomic_t nchannels_active; /* #of channels that are not DISCONNECTED */
578	atomic_t nchannels_engaged;/* #of channels engaged with remote part */
579	struct xpc_channel *channels;/* array of channel structures */
580
581	void *local_GPs_base;	  /* base address of kmalloc'd space */
582	struct xpc_gp *local_GPs; /* local Get/Put values */
583	void *remote_GPs_base;    /* base address of kmalloc'd space */
584	struct xpc_gp *remote_GPs;/* copy of remote partition's local Get/Put */
585				  /* values */
586	u64 remote_GPs_pa;	  /* phys address of remote partition's local */
587				  /* Get/Put values */
588
589
590	/* fields used to pass args when opening or closing a channel */
591
592	void *local_openclose_args_base;  /* base address of kmalloc'd space */
593	struct xpc_openclose_args *local_openclose_args;  /* local's args */
594	void *remote_openclose_args_base; /* base address of kmalloc'd space */
595	struct xpc_openclose_args *remote_openclose_args; /* copy of remote's */
596					  /* args */
597	u64 remote_openclose_args_pa;	  /* phys addr of remote's args */
598
599
600	/* IPI sending, receiving and handling related fields */
601
602	int remote_IPI_nasid;	    /* nasid of where to send IPIs */
603	int remote_IPI_phys_cpuid;  /* phys CPU ID of where to send IPIs */
604	AMO_t *remote_IPI_amo_va;   /* address of remote IPI AMO_t structure */
605
606	AMO_t *local_IPI_amo_va;    /* address of IPI AMO_t structure */
607	u64 local_IPI_amo;	    /* IPI amo flags yet to be handled */
608	char IPI_owner[8];	    /* IPI owner's name */
609	struct timer_list dropped_IPI_timer; /* dropped IPI timer */
610
611	spinlock_t IPI_lock;	    /* IPI handler lock */
612
613
614	/* channel manager related fields */
615
616	atomic_t channel_mgr_requests;	/* #of requests to activate chan mgr */
617	wait_queue_head_t channel_mgr_wq; /* channel mgr's wait queue */
618
619} ____cacheline_aligned;
620
621
622/* struct xpc_partition act_state values (for XPC HB) */
623
624#define	XPC_P_INACTIVE		0x00	/* partition is not active */
625#define XPC_P_ACTIVATION_REQ	0x01	/* created thread to activate */
626#define XPC_P_ACTIVATING	0x02	/* activation thread started */
627#define XPC_P_ACTIVE		0x03	/* xpc_partition_up() was called */
628#define XPC_P_DEACTIVATING	0x04	/* partition deactivation initiated */
629
630
631#define XPC_DEACTIVATE_PARTITION(_p, _reason) \
632			xpc_deactivate_partition(__LINE__, (_p), (_reason))
633
634
635/* struct xpc_partition setup_state values */
636
637#define XPC_P_UNSET		0x00	/* infrastructure was never setup */
638#define XPC_P_SETUP		0x01	/* infrastructure is setup */
639#define XPC_P_WTEARDOWN		0x02	/* waiting to teardown infrastructure */
640#define XPC_P_TORNDOWN		0x03	/* infrastructure is torndown */
641
642
643
644/*
645 * struct xpc_partition IPI_timer #of seconds to wait before checking for
646 * dropped IPIs. These occur whenever an IPI amo write doesn't complete until
647 * after the IPI was received.
648 */
649#define XPC_P_DROPPED_IPI_WAIT	(0.25 * HZ)
650
651
652/* number of seconds to wait for other partitions to disengage */
653#define XPC_DISENGAGE_REQUEST_DEFAULT_TIMELIMIT	90
654
655/* interval in seconds to print 'waiting disengagement' messages */
656#define XPC_DISENGAGE_PRINTMSG_INTERVAL		10
657
658
659#define XPC_PARTID(_p)	((partid_t) ((_p) - &xpc_partitions[0]))
660
661
662
663/* found in xp_main.c */
664extern struct xpc_registration xpc_registrations[];
665
666
667/* found in xpc_main.c */
668extern struct device *xpc_part;
669extern struct device *xpc_chan;
670extern int xpc_disengage_request_timelimit;
671extern int xpc_disengage_request_timedout;
672extern irqreturn_t xpc_notify_IRQ_handler(int, void *);
673extern void xpc_dropped_IPI_check(struct xpc_partition *);
674extern void xpc_activate_partition(struct xpc_partition *);
675extern void xpc_activate_kthreads(struct xpc_channel *, int);
676extern void xpc_create_kthreads(struct xpc_channel *, int, int);
677extern void xpc_disconnect_wait(int);
678
679
680/* found in xpc_partition.c */
681extern int xpc_exiting;
682extern struct xpc_vars *xpc_vars;
683extern struct xpc_rsvd_page *xpc_rsvd_page;
684extern struct xpc_vars_part *xpc_vars_part;
685extern struct xpc_partition xpc_partitions[XP_MAX_PARTITIONS + 1];
686extern char *xpc_remote_copy_buffer;
687extern void *xpc_remote_copy_buffer_base;
688extern void *xpc_kmalloc_cacheline_aligned(size_t, gfp_t, void **);
689extern struct xpc_rsvd_page *xpc_rsvd_page_init(void);
690extern void xpc_allow_IPI_ops(void);
691extern void xpc_restrict_IPI_ops(void);
692extern int xpc_identify_act_IRQ_sender(void);
693extern int xpc_partition_disengaged(struct xpc_partition *);
694extern enum xpc_retval xpc_mark_partition_active(struct xpc_partition *);
695extern void xpc_mark_partition_inactive(struct xpc_partition *);
696extern void xpc_discovery(void);
697extern void xpc_check_remote_hb(void);
698extern void xpc_deactivate_partition(const int, struct xpc_partition *,
699						enum xpc_retval);
700extern enum xpc_retval xpc_initiate_partid_to_nasids(partid_t, void *);
701
702
703/* found in xpc_channel.c */
704extern void xpc_initiate_connect(int);
705extern void xpc_initiate_disconnect(int);
706extern enum xpc_retval xpc_initiate_allocate(partid_t, int, u32, void **);
707extern enum xpc_retval xpc_initiate_send(partid_t, int, void *);
708extern enum xpc_retval xpc_initiate_send_notify(partid_t, int, void *,
709						xpc_notify_func, void *);
710extern void xpc_initiate_received(partid_t, int, void *);
711extern enum xpc_retval xpc_setup_infrastructure(struct xpc_partition *);
712extern enum xpc_retval xpc_pull_remote_vars_part(struct xpc_partition *);
713extern void xpc_process_channel_activity(struct xpc_partition *);
714extern void xpc_connected_callout(struct xpc_channel *);
715extern void xpc_deliver_msg(struct xpc_channel *);
716extern void xpc_disconnect_channel(const int, struct xpc_channel *,
717					enum xpc_retval, unsigned long *);
718extern void xpc_disconnect_callout(struct xpc_channel *, enum xpc_retval);
719extern void xpc_partition_going_down(struct xpc_partition *, enum xpc_retval);
720extern void xpc_teardown_infrastructure(struct xpc_partition *);
721
722
723
724static inline void
725xpc_wakeup_channel_mgr(struct xpc_partition *part)
726{
727	if (atomic_inc_return(&part->channel_mgr_requests) == 1) {
728		wake_up(&part->channel_mgr_wq);
729	}
730}
731
732
733
734/*
735 * These next two inlines are used to keep us from tearing down a channel's
736 * msg queues while a thread may be referencing them.
737 */
738static inline void
739xpc_msgqueue_ref(struct xpc_channel *ch)
740{
741	atomic_inc(&ch->references);
742}
743
744static inline void
745xpc_msgqueue_deref(struct xpc_channel *ch)
746{
747	s32 refs = atomic_dec_return(&ch->references);
748
749	DBUG_ON(refs < 0);
750	if (refs == 0) {
751		xpc_wakeup_channel_mgr(&xpc_partitions[ch->partid]);
752	}
753}
754
755
756
757#define XPC_DISCONNECT_CHANNEL(_ch, _reason, _irqflgs) \
758		xpc_disconnect_channel(__LINE__, _ch, _reason, _irqflgs)
759
760
761/*
762 * These two inlines are used to keep us from tearing down a partition's
763 * setup infrastructure while a thread may be referencing it.
764 */
765static inline void
766xpc_part_deref(struct xpc_partition *part)
767{
768	s32 refs = atomic_dec_return(&part->references);
769
770
771	DBUG_ON(refs < 0);
772	if (refs == 0 && part->setup_state == XPC_P_WTEARDOWN) {
773		wake_up(&part->teardown_wq);
774	}
775}
776
777static inline int
778xpc_part_ref(struct xpc_partition *part)
779{
780	int setup;
781
782
783	atomic_inc(&part->references);
784	setup = (part->setup_state == XPC_P_SETUP);
785	if (!setup) {
786		xpc_part_deref(part);
787	}
788	return setup;
789}
790
791
792
793/*
794 * The following macro is to be used for the setting of the reason and
795 * reason_line fields in both the struct xpc_channel and struct xpc_partition
796 * structures.
797 */
798#define XPC_SET_REASON(_p, _reason, _line) \
799	{ \
800		(_p)->reason = _reason; \
801		(_p)->reason_line = _line; \
802	}
803
804
805
806/*
807 * This next set of inlines are used to keep track of when a partition is
808 * potentially engaged in accessing memory belonging to another partition.
809 */
810
811static inline void
812xpc_mark_partition_engaged(struct xpc_partition *part)
813{
814	unsigned long irq_flags;
815	AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa +
816				(XPC_ENGAGED_PARTITIONS_AMO * sizeof(AMO_t)));
817
818
819	local_irq_save(irq_flags);
820
821	/* set bit corresponding to our partid in remote partition's AMO */
822	FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR,
823						(1UL << sn_partition_id));
824	/*
825	 * We must always use the nofault function regardless of whether we
826	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
827	 * didn't, we'd never know that the other partition is down and would
828	 * keep sending IPIs and AMOs to it until the heartbeat times out.
829	 */
830	(void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->
831				variable), xp_nofault_PIOR_target));
832
833	local_irq_restore(irq_flags);
834}
835
836static inline void
837xpc_mark_partition_disengaged(struct xpc_partition *part)
838{
839	unsigned long irq_flags;
840	AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa +
841				(XPC_ENGAGED_PARTITIONS_AMO * sizeof(AMO_t)));
842
843
844	local_irq_save(irq_flags);
845
846	/* clear bit corresponding to our partid in remote partition's AMO */
847	FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND,
848						~(1UL << sn_partition_id));
849	/*
850	 * We must always use the nofault function regardless of whether we
851	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
852	 * didn't, we'd never know that the other partition is down and would
853	 * keep sending IPIs and AMOs to it until the heartbeat times out.
854	 */
855	(void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->
856				variable), xp_nofault_PIOR_target));
857
858	local_irq_restore(irq_flags);
859}
860
861static inline void
862xpc_request_partition_disengage(struct xpc_partition *part)
863{
864	unsigned long irq_flags;
865	AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa +
866				(XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t)));
867
868
869	local_irq_save(irq_flags);
870
871	/* set bit corresponding to our partid in remote partition's AMO */
872	FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR,
873						(1UL << sn_partition_id));
874	/*
875	 * We must always use the nofault function regardless of whether we
876	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
877	 * didn't, we'd never know that the other partition is down and would
878	 * keep sending IPIs and AMOs to it until the heartbeat times out.
879	 */
880	(void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->
881				variable), xp_nofault_PIOR_target));
882
883	local_irq_restore(irq_flags);
884}
885
886static inline void
887xpc_cancel_partition_disengage_request(struct xpc_partition *part)
888{
889	unsigned long irq_flags;
890	AMO_t *amo = (AMO_t *) __va(part->remote_amos_page_pa +
891				(XPC_DISENGAGE_REQUEST_AMO * sizeof(AMO_t)));
892
893
894	local_irq_save(irq_flags);
895
896	/* clear bit corresponding to our partid in remote partition's AMO */
897	FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND,
898						~(1UL << sn_partition_id));
899	/*
900	 * We must always use the nofault function regardless of whether we
901	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
902	 * didn't, we'd never know that the other partition is down and would
903	 * keep sending IPIs and AMOs to it until the heartbeat times out.
904	 */
905	(void) xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->
906				variable), xp_nofault_PIOR_target));
907
908	local_irq_restore(irq_flags);
909}
910
911static inline u64
912xpc_partition_engaged(u64 partid_mask)
913{
914	AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
915
916
917	/* return our partition's AMO variable ANDed with partid_mask */
918	return (FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_LOAD) &
919								partid_mask);
920}
921
922static inline u64
923xpc_partition_disengage_requested(u64 partid_mask)
924{
925	AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO;
926
927
928	/* return our partition's AMO variable ANDed with partid_mask */
929	return (FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_LOAD) &
930								partid_mask);
931}
932
933static inline void
934xpc_clear_partition_engaged(u64 partid_mask)
935{
936	AMO_t *amo = xpc_vars->amos_page + XPC_ENGAGED_PARTITIONS_AMO;
937
938
939	/* clear bit(s) based on partid_mask in our partition's AMO */
940	FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND,
941								~partid_mask);
942}
943
944static inline void
945xpc_clear_partition_disengage_request(u64 partid_mask)
946{
947	AMO_t *amo = xpc_vars->amos_page + XPC_DISENGAGE_REQUEST_AMO;
948
949
950	/* clear bit(s) based on partid_mask in our partition's AMO */
951	FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_AND,
952								~partid_mask);
953}
954
955
956
957/*
958 * The following set of macros and inlines are used for the sending and
959 * receiving of IPIs (also known as IRQs). There are two flavors of IPIs,
960 * one that is associated with partition activity (SGI_XPC_ACTIVATE) and
961 * the other that is associated with channel activity (SGI_XPC_NOTIFY).
962 */
963
964static inline u64
965xpc_IPI_receive(AMO_t *amo)
966{
967	return FETCHOP_LOAD_OP(TO_AMO((u64) &amo->variable), FETCHOP_CLEAR);
968}
969
970
971static inline enum xpc_retval
972xpc_IPI_send(AMO_t *amo, u64 flag, int nasid, int phys_cpuid, int vector)
973{
974	int ret = 0;
975	unsigned long irq_flags;
976
977
978	local_irq_save(irq_flags);
979
980	FETCHOP_STORE_OP(TO_AMO((u64) &amo->variable), FETCHOP_OR, flag);
981	sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
982
983	/*
984	 * We must always use the nofault function regardless of whether we
985	 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
986	 * didn't, we'd never know that the other partition is down and would
987	 * keep sending IPIs and AMOs to it until the heartbeat times out.
988	 */
989	ret = xp_nofault_PIOR((u64 *) GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
990				xp_nofault_PIOR_target));
991
992	local_irq_restore(irq_flags);
993
994	return ((ret == 0) ? xpcSuccess : xpcPioReadError);
995}
996
997
998/*
999 * IPIs associated with SGI_XPC_ACTIVATE IRQ.
1000 */
1001
1002/*
1003 * Flag the appropriate AMO variable and send an IPI to the specified node.
1004 */
1005static inline void
1006xpc_activate_IRQ_send(u64 amos_page_pa, int from_nasid, int to_nasid,
1007			int to_phys_cpuid)
1008{
1009	int w_index = XPC_NASID_W_INDEX(from_nasid);
1010	int b_index = XPC_NASID_B_INDEX(from_nasid);
1011	AMO_t *amos = (AMO_t *) __va(amos_page_pa +
1012				(XPC_ACTIVATE_IRQ_AMOS * sizeof(AMO_t)));
1013
1014
1015	(void) xpc_IPI_send(&amos[w_index], (1UL << b_index), to_nasid,
1016				to_phys_cpuid, SGI_XPC_ACTIVATE);
1017}
1018
1019static inline void
1020xpc_IPI_send_activate(struct xpc_vars *vars)
1021{
1022	xpc_activate_IRQ_send(vars->amos_page_pa, cnodeid_to_nasid(0),
1023				vars->act_nasid, vars->act_phys_cpuid);
1024}
1025
1026static inline void
1027xpc_IPI_send_activated(struct xpc_partition *part)
1028{
1029	xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
1030			part->remote_act_nasid, part->remote_act_phys_cpuid);
1031}
1032
1033static inline void
1034xpc_IPI_send_reactivate(struct xpc_partition *part)
1035{
1036	xpc_activate_IRQ_send(xpc_vars->amos_page_pa, part->reactivate_nasid,
1037				xpc_vars->act_nasid, xpc_vars->act_phys_cpuid);
1038}
1039
1040static inline void
1041xpc_IPI_send_disengage(struct xpc_partition *part)
1042{
1043	xpc_activate_IRQ_send(part->remote_amos_page_pa, cnodeid_to_nasid(0),
1044			part->remote_act_nasid, part->remote_act_phys_cpuid);
1045}
1046
1047
1048/*
1049 * IPIs associated with SGI_XPC_NOTIFY IRQ.
1050 */
1051
1052/*
1053 * Send an IPI to the remote partition that is associated with the
1054 * specified channel.
1055 */
1056#define XPC_NOTIFY_IRQ_SEND(_ch, _ipi_f, _irq_f) \
1057		xpc_notify_IRQ_send(_ch, _ipi_f, #_ipi_f, _irq_f)
1058
1059static inline void
1060xpc_notify_IRQ_send(struct xpc_channel *ch, u8 ipi_flag, char *ipi_flag_string,
1061			unsigned long *irq_flags)
1062{
1063	struct xpc_partition *part = &xpc_partitions[ch->partid];
1064	enum xpc_retval ret;
1065
1066
1067	if (likely(part->act_state != XPC_P_DEACTIVATING)) {
1068		ret = xpc_IPI_send(part->remote_IPI_amo_va,
1069					(u64) ipi_flag << (ch->number * 8),
1070					part->remote_IPI_nasid,
1071					part->remote_IPI_phys_cpuid,
1072					SGI_XPC_NOTIFY);
1073		dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
1074			ipi_flag_string, ch->partid, ch->number, ret);
1075		if (unlikely(ret != xpcSuccess)) {
1076			if (irq_flags != NULL) {
1077				spin_unlock_irqrestore(&ch->lock, *irq_flags);
1078			}
1079			XPC_DEACTIVATE_PARTITION(part, ret);
1080			if (irq_flags != NULL) {
1081				spin_lock_irqsave(&ch->lock, *irq_flags);
1082			}
1083		}
1084	}
1085}
1086
1087
1088/*
1089 * Make it look like the remote partition, which is associated with the
1090 * specified channel, sent us an IPI. This faked IPI will be handled
1091 * by xpc_dropped_IPI_check().
1092 */
1093#define XPC_NOTIFY_IRQ_SEND_LOCAL(_ch, _ipi_f) \
1094		xpc_notify_IRQ_send_local(_ch, _ipi_f, #_ipi_f)
1095
1096static inline void
1097xpc_notify_IRQ_send_local(struct xpc_channel *ch, u8 ipi_flag,
1098				char *ipi_flag_string)
1099{
1100	struct xpc_partition *part = &xpc_partitions[ch->partid];
1101
1102
1103	FETCHOP_STORE_OP(TO_AMO((u64) &part->local_IPI_amo_va->variable),
1104			FETCHOP_OR, ((u64) ipi_flag << (ch->number * 8)));
1105	dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
1106		ipi_flag_string, ch->partid, ch->number);
1107}
1108
1109
1110/*
1111 * The sending and receiving of IPIs includes the setting of an AMO variable
1112 * to indicate the reason the IPI was sent. The 64-bit variable is divided
1113 * up into eight bytes, ordered from right to left. Byte zero pertains to
1114 * channel 0, byte one to channel 1, and so on. Each byte is described by
1115 * the following IPI flags.
1116 */
1117
1118#define	XPC_IPI_CLOSEREQUEST	0x01
1119#define	XPC_IPI_CLOSEREPLY	0x02
1120#define	XPC_IPI_OPENREQUEST	0x04
1121#define	XPC_IPI_OPENREPLY	0x08
1122#define	XPC_IPI_MSGREQUEST	0x10
1123
1124
1125/* given an AMO variable and a channel#, get its associated IPI flags */
1126#define XPC_GET_IPI_FLAGS(_amo, _c)	((u8) (((_amo) >> ((_c) * 8)) & 0xff))
1127#define XPC_SET_IPI_FLAGS(_amo, _c, _f)	(_amo) |= ((u64) (_f) << ((_c) * 8))
1128
1129#define	XPC_ANY_OPENCLOSE_IPI_FLAGS_SET(_amo) ((_amo) & __IA64_UL_CONST(0x0f0f0f0f0f0f0f0f))
1130#define XPC_ANY_MSG_IPI_FLAGS_SET(_amo)       ((_amo) & __IA64_UL_CONST(0x1010101010101010))
1131
1132
1133static inline void
1134xpc_IPI_send_closerequest(struct xpc_channel *ch, unsigned long *irq_flags)
1135{
1136	struct xpc_openclose_args *args = ch->local_openclose_args;
1137
1138
1139	args->reason = ch->reason;
1140
1141	XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREQUEST, irq_flags);
1142}
1143
1144static inline void
1145xpc_IPI_send_closereply(struct xpc_channel *ch, unsigned long *irq_flags)
1146{
1147	XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_CLOSEREPLY, irq_flags);
1148}
1149
1150static inline void
1151xpc_IPI_send_openrequest(struct xpc_channel *ch, unsigned long *irq_flags)
1152{
1153	struct xpc_openclose_args *args = ch->local_openclose_args;
1154
1155
1156	args->msg_size = ch->msg_size;
1157	args->local_nentries = ch->local_nentries;
1158
1159	XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREQUEST, irq_flags);
1160}
1161
1162static inline void
1163xpc_IPI_send_openreply(struct xpc_channel *ch, unsigned long *irq_flags)
1164{
1165	struct xpc_openclose_args *args = ch->local_openclose_args;
1166
1167
1168	args->remote_nentries = ch->remote_nentries;
1169	args->local_nentries = ch->local_nentries;
1170	args->local_msgqueue_pa = __pa(ch->local_msgqueue);
1171
1172	XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_OPENREPLY, irq_flags);
1173}
1174
1175static inline void
1176xpc_IPI_send_msgrequest(struct xpc_channel *ch)
1177{
1178	XPC_NOTIFY_IRQ_SEND(ch, XPC_IPI_MSGREQUEST, NULL);
1179}
1180
1181static inline void
1182xpc_IPI_send_local_msgrequest(struct xpc_channel *ch)
1183{
1184	XPC_NOTIFY_IRQ_SEND_LOCAL(ch, XPC_IPI_MSGREQUEST);
1185}
1186
1187
1188/*
1189 * Memory for XPC's AMO variables is allocated by the MSPEC driver. These
1190 * pages are located in the lowest granule. The lowest granule uses 4k pages
1191 * for cached references and an alternate TLB handler to never provide a
1192 * cacheable mapping for the entire region. This will prevent speculative
1193 * reading of cached copies of our lines from being issued which will cause
1194 * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
1195 * AMO variables (based on XP_MAX_PARTITIONS) for message notification and an
1196 * additional 128 AMO variables (based on XP_NASID_MASK_WORDS) for partition
1197 * activation and 2 AMO variables for partition deactivation.
1198 */
1199static inline AMO_t *
1200xpc_IPI_init(int index)
1201{
1202	AMO_t *amo = xpc_vars->amos_page + index;
1203
1204
1205	(void) xpc_IPI_receive(amo);	/* clear AMO variable */
1206	return amo;
1207}
1208
1209
1210
1211static inline enum xpc_retval
1212xpc_map_bte_errors(bte_result_t error)
1213{
1214	switch (error) {
1215	case BTE_SUCCESS:	return xpcSuccess;
1216	case BTEFAIL_DIR:	return xpcBteDirectoryError;
1217	case BTEFAIL_POISON:	return xpcBtePoisonError;
1218	case BTEFAIL_WERR:	return xpcBteWriteError;
1219	case BTEFAIL_ACCESS:	return xpcBteAccessError;
1220	case BTEFAIL_PWERR:	return xpcBtePWriteError;
1221	case BTEFAIL_PRERR:	return xpcBtePReadError;
1222	case BTEFAIL_TOUT:	return xpcBteTimeOutError;
1223	case BTEFAIL_XTERR:	return xpcBteXtalkError;
1224	case BTEFAIL_NOTAVAIL:	return xpcBteNotAvailable;
1225	default:		return xpcBteUnmappedError;
1226	}
1227}
1228
1229
1230
1231/*
1232 * Check to see if there is any channel activity to/from the specified
1233 * partition.
1234 */
1235static inline void
1236xpc_check_for_channel_activity(struct xpc_partition *part)
1237{
1238	u64 IPI_amo;
1239	unsigned long irq_flags;
1240
1241
1242	IPI_amo = xpc_IPI_receive(part->local_IPI_amo_va);
1243	if (IPI_amo == 0) {
1244		return;
1245	}
1246
1247	spin_lock_irqsave(&part->IPI_lock, irq_flags);
1248	part->local_IPI_amo |= IPI_amo;
1249	spin_unlock_irqrestore(&part->IPI_lock, irq_flags);
1250
1251	dev_dbg(xpc_chan, "received IPI from partid=%d, IPI_amo=0x%lx\n",
1252		XPC_PARTID(part), IPI_amo);
1253
1254	xpc_wakeup_channel_mgr(part);
1255}
1256
1257
1258#endif /* _ASM_IA64_SN_XPC_H */
1259