1#ifndef _ASM_IA64_PGTABLE_H
2#define _ASM_IA64_PGTABLE_H
3
4/*
5 * This file contains the functions and defines necessary to modify and use
6 * the IA-64 page table tree.
7 *
8 * This hopefully works with any (fixed) IA-64 page-size, as defined
9 * in <asm/page.h>.
10 *
11 * Copyright (C) 1998-2005 Hewlett-Packard Co
12 *	David Mosberger-Tang <davidm@hpl.hp.com>
13 */
14
15
16#include <asm/mman.h>
17#include <asm/page.h>
18#include <asm/processor.h>
19#include <asm/system.h>
20#include <asm/types.h>
21
22#define IA64_MAX_PHYS_BITS	50	/* max. number of physical address bits (architected) */
23
24/*
25 * First, define the various bits in a PTE.  Note that the PTE format
26 * matches the VHPT short format, the firt doubleword of the VHPD long
27 * format, and the first doubleword of the TLB insertion format.
28 */
29#define _PAGE_P_BIT		0
30#define _PAGE_A_BIT		5
31#define _PAGE_D_BIT		6
32
33#define _PAGE_P			(1 << _PAGE_P_BIT)	/* page present bit */
34#define _PAGE_MA_WB		(0x0 <<  2)	/* write back memory attribute */
35#define _PAGE_MA_UC		(0x4 <<  2)	/* uncacheable memory attribute */
36#define _PAGE_MA_UCE		(0x5 <<  2)	/* UC exported attribute */
37#define _PAGE_MA_WC		(0x6 <<  2)	/* write coalescing memory attribute */
38#define _PAGE_MA_NAT		(0x7 <<  2)	/* not-a-thing attribute */
39#define _PAGE_MA_MASK		(0x7 <<  2)
40#define _PAGE_PL_0		(0 <<  7)	/* privilege level 0 (kernel) */
41#define _PAGE_PL_1		(1 <<  7)	/* privilege level 1 (unused) */
42#define _PAGE_PL_2		(2 <<  7)	/* privilege level 2 (unused) */
43#define _PAGE_PL_3		(3 <<  7)	/* privilege level 3 (user) */
44#define _PAGE_PL_MASK		(3 <<  7)
45#define _PAGE_AR_R		(0 <<  9)	/* read only */
46#define _PAGE_AR_RX		(1 <<  9)	/* read & execute */
47#define _PAGE_AR_RW		(2 <<  9)	/* read & write */
48#define _PAGE_AR_RWX		(3 <<  9)	/* read, write & execute */
49#define _PAGE_AR_R_RW		(4 <<  9)	/* read / read & write */
50#define _PAGE_AR_RX_RWX		(5 <<  9)	/* read & exec / read, write & exec */
51#define _PAGE_AR_RWX_RW		(6 <<  9)	/* read, write & exec / read & write */
52#define _PAGE_AR_X_RX		(7 <<  9)	/* exec & promote / read & exec */
53#define _PAGE_AR_MASK		(7 <<  9)
54#define _PAGE_AR_SHIFT		9
55#define _PAGE_A			(1 << _PAGE_A_BIT)	/* page accessed bit */
56#define _PAGE_D			(1 << _PAGE_D_BIT)	/* page dirty bit */
57#define _PAGE_PPN_MASK		(((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
58#define _PAGE_ED		(__IA64_UL(1) << 52)	/* exception deferral */
59#define _PAGE_PROTNONE		(__IA64_UL(1) << 63)
60
61/* Valid only for a PTE with the present bit cleared: */
62#define _PAGE_FILE		(1 << 1)		/* see swap & file pte remarks below */
63
64#define _PFN_MASK		_PAGE_PPN_MASK
65/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
66#define _PAGE_CHG_MASK	(_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
67
68#define _PAGE_SIZE_4K	12
69#define _PAGE_SIZE_8K	13
70#define _PAGE_SIZE_16K	14
71#define _PAGE_SIZE_64K	16
72#define _PAGE_SIZE_256K	18
73#define _PAGE_SIZE_1M	20
74#define _PAGE_SIZE_4M	22
75#define _PAGE_SIZE_16M	24
76#define _PAGE_SIZE_64M	26
77#define _PAGE_SIZE_256M	28
78#define _PAGE_SIZE_1G	30
79#define _PAGE_SIZE_4G	32
80
81#define __ACCESS_BITS		_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
82#define __DIRTY_BITS_NO_ED	_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
83#define __DIRTY_BITS		_PAGE_ED | __DIRTY_BITS_NO_ED
84
85/*
86 * How many pointers will a page table level hold expressed in shift
87 */
88#define PTRS_PER_PTD_SHIFT	(PAGE_SHIFT-3)
89
90/*
91 * Definitions for fourth level:
92 */
93#define PTRS_PER_PTE	(__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
94
95/*
96 * Definitions for third level:
97 *
98 * PMD_SHIFT determines the size of the area a third-level page table
99 * can map.
100 */
101#define PMD_SHIFT	(PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
102#define PMD_SIZE	(1UL << PMD_SHIFT)
103#define PMD_MASK	(~(PMD_SIZE-1))
104#define PTRS_PER_PMD	(1UL << (PTRS_PER_PTD_SHIFT))
105
106#ifdef CONFIG_PGTABLE_4
107/*
108 * Definitions for second level:
109 *
110 * PUD_SHIFT determines the size of the area a second-level page table
111 * can map.
112 */
113#define PUD_SHIFT	(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
114#define PUD_SIZE	(1UL << PUD_SHIFT)
115#define PUD_MASK	(~(PUD_SIZE-1))
116#define PTRS_PER_PUD	(1UL << (PTRS_PER_PTD_SHIFT))
117#endif
118
119/*
120 * Definitions for first level:
121 *
122 * PGDIR_SHIFT determines what a first-level page table entry can map.
123 */
124#ifdef CONFIG_PGTABLE_4
125#define PGDIR_SHIFT		(PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
126#else
127#define PGDIR_SHIFT		(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
128#endif
129#define PGDIR_SIZE		(__IA64_UL(1) << PGDIR_SHIFT)
130#define PGDIR_MASK		(~(PGDIR_SIZE-1))
131#define PTRS_PER_PGD_SHIFT	PTRS_PER_PTD_SHIFT
132#define PTRS_PER_PGD		(1UL << PTRS_PER_PGD_SHIFT)
133#define USER_PTRS_PER_PGD	(5*PTRS_PER_PGD/8)	/* regions 0-4 are user regions */
134#define FIRST_USER_ADDRESS	0
135
136/*
137 * All the normal masks have the "page accessed" bits on, as any time
138 * they are used, the page is accessed. They are cleared only by the
139 * page-out routines.
140 */
141#define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_A)
142#define PAGE_SHARED	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
143#define PAGE_READONLY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
144#define PAGE_COPY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
145#define PAGE_COPY_EXEC	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
146#define PAGE_GATE	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
147#define PAGE_KERNEL	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX)
148#define PAGE_KERNELRX	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
149
150# ifndef __ASSEMBLY__
151
152#include <linux/sched.h>	/* for mm_struct */
153#include <asm/bitops.h>
154#include <asm/cacheflush.h>
155#include <asm/mmu_context.h>
156#include <asm/processor.h>
157
158/*
159 * Next come the mappings that determine how mmap() protection bits
160 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented.  The
161 * _P version gets used for a private shared memory segment, the _S
162 * version gets used for a shared memory segment with MAP_SHARED on.
163 * In a private shared memory segment, we do a copy-on-write if a task
164 * attempts to write to the page.
165 */
166	/* xwr */
167#define __P000	PAGE_NONE
168#define __P001	PAGE_READONLY
169#define __P010	PAGE_READONLY	/* write to priv pg -> copy & make writable */
170#define __P011	PAGE_READONLY	/* ditto */
171#define __P100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
172#define __P101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
173#define __P110	PAGE_COPY_EXEC
174#define __P111	PAGE_COPY_EXEC
175
176#define __S000	PAGE_NONE
177#define __S001	PAGE_READONLY
178#define __S010	PAGE_SHARED	/* we don't have (and don't need) write-only */
179#define __S011	PAGE_SHARED
180#define __S100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
181#define __S101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
182#define __S110	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
183#define __S111	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
184
185#define pgd_ERROR(e)	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
186#ifdef CONFIG_PGTABLE_4
187#define pud_ERROR(e)	printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
188#endif
189#define pmd_ERROR(e)	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
190#define pte_ERROR(e)	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
191
192
193/*
194 * Some definitions to translate between mem_map, PTEs, and page addresses:
195 */
196
197
198/* Quick test to see if ADDR is a (potentially) valid physical address. */
199static inline long
200ia64_phys_addr_valid (unsigned long addr)
201{
202	return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
203}
204
205#define kern_addr_valid(addr)	(1)
206
207
208/*
209 * Now come the defines and routines to manage and access the three-level
210 * page table.
211 */
212
213/*
214 * On some architectures, special things need to be done when setting
215 * the PTE in a page table.  Nothing special needs to be on IA-64.
216 */
217#define set_pte(ptep, pteval)	(*(ptep) = (pteval))
218#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
219
220#define VMALLOC_START		(RGN_BASE(RGN_GATE) + 0x200000000UL)
221#ifdef CONFIG_VIRTUAL_MEM_MAP
222# define VMALLOC_END_INIT	(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
223# define VMALLOC_END		vmalloc_end
224  extern unsigned long vmalloc_end;
225#else
226# define VMALLOC_END		(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
227#endif
228
229/* fs/proc/kcore.c */
230#define	kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
231#define	kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
232
233#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
234#define RGN_MAP_LIMIT	((1UL << RGN_MAP_SHIFT) - PAGE_SIZE)	/* per region addr limit */
235
236/*
237 * Conversion functions: convert page frame number (pfn) and a protection value to a page
238 * table entry (pte).
239 */
240#define pfn_pte(pfn, pgprot) \
241({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
242
243/* Extract pfn from pte.  */
244#define pte_pfn(_pte)		((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
245
246#define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
247
248/* This takes a physical page address that is used by the remapping functions */
249#define mk_pte_phys(physpage, pgprot) \
250({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
251
252#define pte_modify(_pte, newprot) \
253	(__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
254
255#define pte_none(pte) 			(!pte_val(pte))
256#define pte_present(pte)		(pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
257#define pte_clear(mm,addr,pte)		(pte_val(*(pte)) = 0UL)
258/* pte_page() returns the "struct page *" corresponding to the PTE: */
259#define pte_page(pte)			virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
260
261#define pmd_none(pmd)			(!pmd_val(pmd))
262#define pmd_bad(pmd)			(!ia64_phys_addr_valid(pmd_val(pmd)))
263#define pmd_present(pmd)		(pmd_val(pmd) != 0UL)
264#define pmd_clear(pmdp)			(pmd_val(*(pmdp)) = 0UL)
265#define pmd_page_vaddr(pmd)		((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
266#define pmd_page(pmd)			virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
267
268#define pud_none(pud)			(!pud_val(pud))
269#define pud_bad(pud)			(!ia64_phys_addr_valid(pud_val(pud)))
270#define pud_present(pud)		(pud_val(pud) != 0UL)
271#define pud_clear(pudp)			(pud_val(*(pudp)) = 0UL)
272#define pud_page_vaddr(pud)		((unsigned long) __va(pud_val(pud) & _PFN_MASK))
273#define pud_page(pud)			virt_to_page((pud_val(pud) + PAGE_OFFSET))
274
275#ifdef CONFIG_PGTABLE_4
276#define pgd_none(pgd)			(!pgd_val(pgd))
277#define pgd_bad(pgd)			(!ia64_phys_addr_valid(pgd_val(pgd)))
278#define pgd_present(pgd)		(pgd_val(pgd) != 0UL)
279#define pgd_clear(pgdp)			(pgd_val(*(pgdp)) = 0UL)
280#define pgd_page_vaddr(pgd)		((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
281#define pgd_page(pgd)			virt_to_page((pgd_val(pgd) + PAGE_OFFSET))
282#endif
283
284/*
285 * The following have defined behavior only work if pte_present() is true.
286 */
287#define pte_user(pte)		((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3)
288#define pte_read(pte)		(((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6)
289#define pte_write(pte)	((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
290#define pte_exec(pte)		((pte_val(pte) & _PAGE_AR_RX) != 0)
291#define pte_dirty(pte)		((pte_val(pte) & _PAGE_D) != 0)
292#define pte_young(pte)		((pte_val(pte) & _PAGE_A) != 0)
293#define pte_file(pte)		((pte_val(pte) & _PAGE_FILE) != 0)
294/*
295 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
296 * access rights:
297 */
298#define pte_wrprotect(pte)	(__pte(pte_val(pte) & ~_PAGE_AR_RW))
299#define pte_mkwrite(pte)	(__pte(pte_val(pte) | _PAGE_AR_RW))
300#define pte_mkexec(pte)		(__pte(pte_val(pte) | _PAGE_AR_RX))
301#define pte_mkold(pte)		(__pte(pte_val(pte) & ~_PAGE_A))
302#define pte_mkyoung(pte)	(__pte(pte_val(pte) | _PAGE_A))
303#define pte_mkclean(pte)	(__pte(pte_val(pte) & ~_PAGE_D))
304#define pte_mkdirty(pte)	(__pte(pte_val(pte) | _PAGE_D))
305#define pte_mkhuge(pte)		(__pte(pte_val(pte)))
306
307/*
308 * Make page protection values cacheable, uncacheable, or write-
309 * combining.  Note that "protection" is really a misnomer here as the
310 * protection value contains the memory attribute bits, dirty bits, and
311 * various other bits as well.
312 */
313#define pgprot_cacheable(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
314#define pgprot_noncached(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
315#define pgprot_writecombine(prot)	__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
316
317struct file;
318extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
319				     unsigned long size, pgprot_t vma_prot);
320#define __HAVE_PHYS_MEM_ACCESS_PROT
321
322static inline unsigned long
323pgd_index (unsigned long address)
324{
325	unsigned long region = address >> 61;
326	unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
327
328	return (region << (PAGE_SHIFT - 6)) | l1index;
329}
330
331/* The offset in the 1-level directory is given by the 3 region bits
332   (61..63) and the level-1 bits.  */
333static inline pgd_t*
334pgd_offset (struct mm_struct *mm, unsigned long address)
335{
336	return mm->pgd + pgd_index(address);
337}
338
339/* In the kernel's mapped region we completely ignore the region number
340   (since we know it's in region number 5). */
341#define pgd_offset_k(addr) \
342	(init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
343
344/* Look up a pgd entry in the gate area.  On IA-64, the gate-area
345   resides in the kernel-mapped segment, hence we use pgd_offset_k()
346   here.  */
347#define pgd_offset_gate(mm, addr)	pgd_offset_k(addr)
348
349#ifdef CONFIG_PGTABLE_4
350/* Find an entry in the second-level page table.. */
351#define pud_offset(dir,addr) \
352	((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
353#endif
354
355/* Find an entry in the third-level page table.. */
356#define pmd_offset(dir,addr) \
357	((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
358
359/*
360 * Find an entry in the third-level page table.  This looks more complicated than it
361 * should be because some platforms place page tables in high memory.
362 */
363#define pte_index(addr)	 	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
364#define pte_offset_kernel(dir,addr)	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
365#define pte_offset_map(dir,addr)	pte_offset_kernel(dir, addr)
366#define pte_offset_map_nested(dir,addr)	pte_offset_map(dir, addr)
367#define pte_unmap(pte)			do { } while (0)
368#define pte_unmap_nested(pte)		do { } while (0)
369
370/* atomic versions of the some PTE manipulations: */
371
372static inline int
373ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
374{
375#ifdef CONFIG_SMP
376	if (!pte_young(*ptep))
377		return 0;
378	return test_and_clear_bit(_PAGE_A_BIT, ptep);
379#else
380	pte_t pte = *ptep;
381	if (!pte_young(pte))
382		return 0;
383	set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
384	return 1;
385#endif
386}
387
388static inline int
389ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
390{
391#ifdef CONFIG_SMP
392	if (!pte_dirty(*ptep))
393		return 0;
394	return test_and_clear_bit(_PAGE_D_BIT, ptep);
395#else
396	pte_t pte = *ptep;
397	if (!pte_dirty(pte))
398		return 0;
399	set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte));
400	return 1;
401#endif
402}
403
404static inline pte_t
405ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
406{
407#ifdef CONFIG_SMP
408	return __pte(xchg((long *) ptep, 0));
409#else
410	pte_t pte = *ptep;
411	pte_clear(mm, addr, ptep);
412	return pte;
413#endif
414}
415
416static inline void
417ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
418{
419#ifdef CONFIG_SMP
420	unsigned long new, old;
421
422	do {
423		old = pte_val(*ptep);
424		new = pte_val(pte_wrprotect(__pte (old)));
425	} while (cmpxchg((unsigned long *) ptep, old, new) != old);
426#else
427	pte_t old_pte = *ptep;
428	set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
429#endif
430}
431
432static inline int
433pte_same (pte_t a, pte_t b)
434{
435	return pte_val(a) == pte_val(b);
436}
437
438#define update_mmu_cache(vma, address, pte) do { } while (0)
439
440extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
441extern void paging_init (void);
442
443/*
444 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
445 *	 bits in the swap-type field of the swap pte.  It would be nice to
446 *	 enforce that, but we can't easily include <linux/swap.h> here.
447 *	 (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
448 *
449 * Format of swap pte:
450 *	bit   0   : present bit (must be zero)
451 *	bit   1   : _PAGE_FILE (must be zero)
452 *	bits  2- 8: swap-type
453 *	bits  9-62: swap offset
454 *	bit  63   : _PAGE_PROTNONE bit
455 *
456 * Format of file pte:
457 *	bit   0   : present bit (must be zero)
458 *	bit   1   : _PAGE_FILE (must be one)
459 *	bits  2-62: file_offset/PAGE_SIZE
460 *	bit  63   : _PAGE_PROTNONE bit
461 */
462#define __swp_type(entry)		(((entry).val >> 2) & 0x7f)
463#define __swp_offset(entry)		(((entry).val << 1) >> 10)
464#define __swp_entry(type,offset)	((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) })
465#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
466#define __swp_entry_to_pte(x)		((pte_t) { (x).val })
467
468#define PTE_FILE_MAX_BITS		61
469#define pte_to_pgoff(pte)		((pte_val(pte) << 1) >> 3)
470#define pgoff_to_pte(off)		((pte_t) { ((off) << 2) | _PAGE_FILE })
471
472#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
473		remap_pfn_range(vma, vaddr, pfn, size, prot)
474
475/*
476 * ZERO_PAGE is a global shared page that is always zero: used
477 * for zero-mapped memory areas etc..
478 */
479extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
480extern struct page *zero_page_memmap_ptr;
481#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
482
483/* We provide our own get_unmapped_area to cope with VA holes for userland */
484#define HAVE_ARCH_UNMAPPED_AREA
485
486#ifdef CONFIG_HUGETLB_PAGE
487#define HUGETLB_PGDIR_SHIFT	(HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
488#define HUGETLB_PGDIR_SIZE	(__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
489#define HUGETLB_PGDIR_MASK	(~(HUGETLB_PGDIR_SIZE-1))
490#endif
491
492/*
493 * IA-64 doesn't have any external MMU info: the page tables contain all the necessary
494 * information.  However, we use this routine to take care of any (delayed) i-cache
495 * flushing that may be necessary.
496 */
497extern void lazy_mmu_prot_update (pte_t pte);
498
499#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
500/*
501 * Update PTEP with ENTRY, which is guaranteed to be a less
502 * restrictive PTE.  That is, ENTRY may have the ACCESSED, DIRTY, and
503 * WRITABLE bits turned on, when the value at PTEP did not.  The
504 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
505 *
506 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
507 * having to worry about races.  On SMP machines, there are only two
508 * cases where this is true:
509 *
510 *	(1) *PTEP has the PRESENT bit turned OFF
511 *	(2) ENTRY has the DIRTY bit turned ON
512 *
513 * On ia64, we could implement this routine with a cmpxchg()-loop
514 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
515 * However, like on x86, we can get a more streamlined version by
516 * observing that it is OK to drop ACCESSED bit updates when
517 * SAFELY_WRITABLE is FALSE.  Besides being rare, all that would do is
518 * result in an extra Access-bit fault, which would then turn on the
519 * ACCESSED bit in the low-level fault handler (iaccess_bit or
520 * daccess_bit in ivt.S).
521 */
522#ifdef CONFIG_SMP
523# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
524({									\
525	int __changed = !pte_same(*(__ptep), __entry);			\
526	if (__changed && __safely_writable) {				\
527		set_pte(__ptep, __entry);				\
528		flush_tlb_page(__vma, __addr);				\
529	}								\
530	__changed;							\
531})
532#else
533# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
534({									\
535	int __changed = !pte_same(*(__ptep), __entry);			\
536	if (__changed)							\
537		ptep_establish(__vma, __addr, __ptep, __entry);		\
538	__changed;							\
539})
540#endif
541
542#  ifdef CONFIG_VIRTUAL_MEM_MAP
543  /* arch mem_map init routine is needed due to holes in a virtual mem_map */
544#   define __HAVE_ARCH_MEMMAP_INIT
545    extern void memmap_init (unsigned long size, int nid, unsigned long zone,
546			     unsigned long start_pfn);
547#  endif /* CONFIG_VIRTUAL_MEM_MAP */
548# endif /* !__ASSEMBLY__ */
549
550/*
551 * Identity-mapped regions use a large page size.  We'll call such large pages
552 * "granules".  If you can think of a better name that's unambiguous, let me
553 * know...
554 */
555#if defined(CONFIG_IA64_GRANULE_64MB)
556# define IA64_GRANULE_SHIFT	_PAGE_SIZE_64M
557#elif defined(CONFIG_IA64_GRANULE_16MB)
558# define IA64_GRANULE_SHIFT	_PAGE_SIZE_16M
559#endif
560#define IA64_GRANULE_SIZE	(1 << IA64_GRANULE_SHIFT)
561/*
562 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
563 */
564#define KERNEL_TR_PAGE_SHIFT	_PAGE_SIZE_64M
565#define KERNEL_TR_PAGE_SIZE	(1 << KERNEL_TR_PAGE_SHIFT)
566
567/*
568 * No page table caches to initialise
569 */
570#define pgtable_cache_init()	do { } while (0)
571
572/* These tell get_user_pages() that the first gate page is accessible from user-level.  */
573#define FIXADDR_USER_START	GATE_ADDR
574#ifdef HAVE_BUGGY_SEGREL
575# define FIXADDR_USER_END	(GATE_ADDR + 2*PAGE_SIZE)
576#else
577# define FIXADDR_USER_END	(GATE_ADDR + 2*PERCPU_PAGE_SIZE)
578#endif
579
580#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
581#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
582#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
583#define __HAVE_ARCH_PTEP_SET_WRPROTECT
584#define __HAVE_ARCH_PTE_SAME
585#define __HAVE_ARCH_PGD_OFFSET_GATE
586#define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE
587
588#ifndef CONFIG_PGTABLE_4
589#include <asm-generic/pgtable-nopud.h>
590#endif
591#include <asm-generic/pgtable.h>
592
593#endif /* _ASM_IA64_PGTABLE_H */
594