1/*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
4
5#include <asm/uaccess.h>
6#include <linux/string.h>
7#include <linux/time.h>
8#include <linux/reiserfs_fs.h>
9#include <linux/buffer_head.h>
10
11/* this is one and only function that is used outside (do_balance.c) */
12int balance_internal(struct tree_balance *,
13		     int, int, struct item_head *, struct buffer_head **);
14
15/* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
16#define INTERNAL_SHIFT_FROM_S_TO_L 0
17#define INTERNAL_SHIFT_FROM_R_TO_S 1
18#define INTERNAL_SHIFT_FROM_L_TO_S 2
19#define INTERNAL_SHIFT_FROM_S_TO_R 3
20#define INTERNAL_INSERT_TO_S 4
21#define INTERNAL_INSERT_TO_L 5
22#define INTERNAL_INSERT_TO_R 6
23
24static void internal_define_dest_src_infos(int shift_mode,
25					   struct tree_balance *tb,
26					   int h,
27					   struct buffer_info *dest_bi,
28					   struct buffer_info *src_bi,
29					   int *d_key, struct buffer_head **cf)
30{
31	memset(dest_bi, 0, sizeof(struct buffer_info));
32	memset(src_bi, 0, sizeof(struct buffer_info));
33	/* define dest, src, dest parent, dest position */
34	switch (shift_mode) {
35	case INTERNAL_SHIFT_FROM_S_TO_L:	/* used in internal_shift_left */
36		src_bi->tb = tb;
37		src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
38		src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
39		src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
40		dest_bi->tb = tb;
41		dest_bi->bi_bh = tb->L[h];
42		dest_bi->bi_parent = tb->FL[h];
43		dest_bi->bi_position = get_left_neighbor_position(tb, h);
44		*d_key = tb->lkey[h];
45		*cf = tb->CFL[h];
46		break;
47	case INTERNAL_SHIFT_FROM_L_TO_S:
48		src_bi->tb = tb;
49		src_bi->bi_bh = tb->L[h];
50		src_bi->bi_parent = tb->FL[h];
51		src_bi->bi_position = get_left_neighbor_position(tb, h);
52		dest_bi->tb = tb;
53		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
54		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
55		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);	/* dest position is analog of dest->b_item_order */
56		*d_key = tb->lkey[h];
57		*cf = tb->CFL[h];
58		break;
59
60	case INTERNAL_SHIFT_FROM_R_TO_S:	/* used in internal_shift_left */
61		src_bi->tb = tb;
62		src_bi->bi_bh = tb->R[h];
63		src_bi->bi_parent = tb->FR[h];
64		src_bi->bi_position = get_right_neighbor_position(tb, h);
65		dest_bi->tb = tb;
66		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
67		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
68		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
69		*d_key = tb->rkey[h];
70		*cf = tb->CFR[h];
71		break;
72
73	case INTERNAL_SHIFT_FROM_S_TO_R:
74		src_bi->tb = tb;
75		src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
76		src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
77		src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
78		dest_bi->tb = tb;
79		dest_bi->bi_bh = tb->R[h];
80		dest_bi->bi_parent = tb->FR[h];
81		dest_bi->bi_position = get_right_neighbor_position(tb, h);
82		*d_key = tb->rkey[h];
83		*cf = tb->CFR[h];
84		break;
85
86	case INTERNAL_INSERT_TO_L:
87		dest_bi->tb = tb;
88		dest_bi->bi_bh = tb->L[h];
89		dest_bi->bi_parent = tb->FL[h];
90		dest_bi->bi_position = get_left_neighbor_position(tb, h);
91		break;
92
93	case INTERNAL_INSERT_TO_S:
94		dest_bi->tb = tb;
95		dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
96		dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
97		dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
98		break;
99
100	case INTERNAL_INSERT_TO_R:
101		dest_bi->tb = tb;
102		dest_bi->bi_bh = tb->R[h];
103		dest_bi->bi_parent = tb->FR[h];
104		dest_bi->bi_position = get_right_neighbor_position(tb, h);
105		break;
106
107	default:
108		reiserfs_panic(tb->tb_sb,
109			       "internal_define_dest_src_infos: shift type is unknown (%d)",
110			       shift_mode);
111	}
112}
113
114/* Insert count node pointers into buffer cur before position to + 1.
115 * Insert count items into buffer cur before position to.
116 * Items and node pointers are specified by inserted and bh respectively.
117 */
118static void internal_insert_childs(struct buffer_info *cur_bi,
119				   int to, int count,
120				   struct item_head *inserted,
121				   struct buffer_head **bh)
122{
123	struct buffer_head *cur = cur_bi->bi_bh;
124	struct block_head *blkh;
125	int nr;
126	struct reiserfs_key *ih;
127	struct disk_child new_dc[2];
128	struct disk_child *dc;
129	int i;
130
131	if (count <= 0)
132		return;
133
134	blkh = B_BLK_HEAD(cur);
135	nr = blkh_nr_item(blkh);
136
137	RFALSE(count > 2, "too many children (%d) are to be inserted", count);
138	RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
139	       "no enough free space (%d), needed %d bytes",
140	       B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
141
142	/* prepare space for count disk_child */
143	dc = B_N_CHILD(cur, to + 1);
144
145	memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
146
147	/* copy to_be_insert disk children */
148	for (i = 0; i < count; i++) {
149		put_dc_size(&(new_dc[i]),
150			    MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
151		put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr);
152	}
153	memcpy(dc, new_dc, DC_SIZE * count);
154
155	/* prepare space for count items  */
156	ih = B_N_PDELIM_KEY(cur, ((to == -1) ? 0 : to));
157
158	memmove(ih + count, ih,
159		(nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
160
161	/* copy item headers (keys) */
162	memcpy(ih, inserted, KEY_SIZE);
163	if (count > 1)
164		memcpy(ih + 1, inserted + 1, KEY_SIZE);
165
166	/* sizes, item number */
167	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
168	set_blkh_free_space(blkh,
169			    blkh_free_space(blkh) - count * (DC_SIZE +
170							     KEY_SIZE));
171
172	do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
173
174	/*&&&&&&&&&&&&&&&&&&&&&&&& */
175	check_internal(cur);
176	/*&&&&&&&&&&&&&&&&&&&&&&&& */
177
178	if (cur_bi->bi_parent) {
179		struct disk_child *t_dc =
180		    B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
181		put_dc_size(t_dc,
182			    dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
183		do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
184					       0);
185
186		/*&&&&&&&&&&&&&&&&&&&&&&&& */
187		check_internal(cur_bi->bi_parent);
188		/*&&&&&&&&&&&&&&&&&&&&&&&& */
189	}
190
191}
192
193/* Delete del_num items and node pointers from buffer cur starting from *
194 * the first_i'th item and first_p'th pointers respectively.		*/
195static void internal_delete_pointers_items(struct buffer_info *cur_bi,
196					   int first_p,
197					   int first_i, int del_num)
198{
199	struct buffer_head *cur = cur_bi->bi_bh;
200	int nr;
201	struct block_head *blkh;
202	struct reiserfs_key *key;
203	struct disk_child *dc;
204
205	RFALSE(cur == NULL, "buffer is 0");
206	RFALSE(del_num < 0,
207	       "negative number of items (%d) can not be deleted", del_num);
208	RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
209	       || first_i < 0,
210	       "first pointer order (%d) < 0 or "
211	       "no so many pointers (%d), only (%d) or "
212	       "first key order %d < 0", first_p, first_p + del_num,
213	       B_NR_ITEMS(cur) + 1, first_i);
214	if (del_num == 0)
215		return;
216
217	blkh = B_BLK_HEAD(cur);
218	nr = blkh_nr_item(blkh);
219
220	if (first_p == 0 && del_num == nr + 1) {
221		RFALSE(first_i != 0,
222		       "1st deleted key must have order 0, not %d", first_i);
223		make_empty_node(cur_bi);
224		return;
225	}
226
227	RFALSE(first_i + del_num > B_NR_ITEMS(cur),
228	       "first_i = %d del_num = %d "
229	       "no so many keys (%d) in the node (%b)(%z)",
230	       first_i, del_num, first_i + del_num, cur, cur);
231
232	/* deleting */
233	dc = B_N_CHILD(cur, first_p);
234
235	memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
236	key = B_N_PDELIM_KEY(cur, first_i);
237	memmove(key, key + del_num,
238		(nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
239						       del_num) * DC_SIZE);
240
241	/* sizes, item number */
242	set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
243	set_blkh_free_space(blkh,
244			    blkh_free_space(blkh) +
245			    (del_num * (KEY_SIZE + DC_SIZE)));
246
247	do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
248	/*&&&&&&&&&&&&&&&&&&&&&&& */
249	check_internal(cur);
250	/*&&&&&&&&&&&&&&&&&&&&&&& */
251
252	if (cur_bi->bi_parent) {
253		struct disk_child *t_dc;
254		t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
255		put_dc_size(t_dc,
256			    dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
257
258		do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
259					       0);
260		/*&&&&&&&&&&&&&&&&&&&&&&&& */
261		check_internal(cur_bi->bi_parent);
262		/*&&&&&&&&&&&&&&&&&&&&&&&& */
263	}
264}
265
266/* delete n node pointers and items starting from given position */
267static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
268{
269	int i_from;
270
271	i_from = (from == 0) ? from : from - 1;
272
273	/* delete n pointers starting from `from' position in CUR;
274	   delete n keys starting from 'i_from' position in CUR;
275	 */
276	internal_delete_pointers_items(cur_bi, from, i_from, n);
277}
278
279/* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
280* last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
281 * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
282 */
283static void internal_copy_pointers_items(struct buffer_info *dest_bi,
284					 struct buffer_head *src,
285					 int last_first, int cpy_num)
286{
287	/* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
288	 * as delimiting key have already inserted to buffer dest.*/
289	struct buffer_head *dest = dest_bi->bi_bh;
290	int nr_dest, nr_src;
291	int dest_order, src_order;
292	struct block_head *blkh;
293	struct reiserfs_key *key;
294	struct disk_child *dc;
295
296	nr_src = B_NR_ITEMS(src);
297
298	RFALSE(dest == NULL || src == NULL,
299	       "src (%p) or dest (%p) buffer is 0", src, dest);
300	RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
301	       "invalid last_first parameter (%d)", last_first);
302	RFALSE(nr_src < cpy_num - 1,
303	       "no so many items (%d) in src (%d)", cpy_num, nr_src);
304	RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
305	RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
306	       "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
307	       cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
308
309	if (cpy_num == 0)
310		return;
311
312	/* coping */
313	blkh = B_BLK_HEAD(dest);
314	nr_dest = blkh_nr_item(blkh);
315
316	/*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
317	/*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
318	(last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
319					 nr_src - cpy_num + 1) : (dest_order =
320								  nr_dest,
321								  src_order =
322								  0);
323
324	/* prepare space for cpy_num pointers */
325	dc = B_N_CHILD(dest, dest_order);
326
327	memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
328
329	/* insert pointers */
330	memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
331
332	/* prepare space for cpy_num - 1 item headers */
333	key = B_N_PDELIM_KEY(dest, dest_order);
334	memmove(key + cpy_num - 1, key,
335		KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
336							       cpy_num));
337
338	/* insert headers */
339	memcpy(key, B_N_PDELIM_KEY(src, src_order), KEY_SIZE * (cpy_num - 1));
340
341	/* sizes, item number */
342	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
343	set_blkh_free_space(blkh,
344			    blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
345						     DC_SIZE * cpy_num));
346
347	do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
348
349	/*&&&&&&&&&&&&&&&&&&&&&&&& */
350	check_internal(dest);
351	/*&&&&&&&&&&&&&&&&&&&&&&&& */
352
353	if (dest_bi->bi_parent) {
354		struct disk_child *t_dc;
355		t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
356		put_dc_size(t_dc,
357			    dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
358					     DC_SIZE * cpy_num));
359
360		do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
361					       0);
362		/*&&&&&&&&&&&&&&&&&&&&&&&& */
363		check_internal(dest_bi->bi_parent);
364		/*&&&&&&&&&&&&&&&&&&&&&&&& */
365	}
366
367}
368
369/* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
370 * Delete cpy_num - del_par items and node pointers from buffer src.
371 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
372 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
373 */
374static void internal_move_pointers_items(struct buffer_info *dest_bi,
375					 struct buffer_info *src_bi,
376					 int last_first, int cpy_num,
377					 int del_par)
378{
379	int first_pointer;
380	int first_item;
381
382	internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
383				     cpy_num);
384
385	if (last_first == FIRST_TO_LAST) {	/* shift_left occurs */
386		first_pointer = 0;
387		first_item = 0;
388		/* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
389		   for key - with first_item */
390		internal_delete_pointers_items(src_bi, first_pointer,
391					       first_item, cpy_num - del_par);
392	} else {		/* shift_right occurs */
393		int i, j;
394
395		i = (cpy_num - del_par ==
396		     (j =
397		      B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
398		    del_par;
399
400		internal_delete_pointers_items(src_bi,
401					       j + 1 - cpy_num + del_par, i,
402					       cpy_num - del_par);
403	}
404}
405
406/* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
407static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_before,	/* insert key before key with n_dest number */
408				struct buffer_head *src, int src_position)
409{
410	struct buffer_head *dest = dest_bi->bi_bh;
411	int nr;
412	struct block_head *blkh;
413	struct reiserfs_key *key;
414
415	RFALSE(dest == NULL || src == NULL,
416	       "source(%p) or dest(%p) buffer is 0", src, dest);
417	RFALSE(dest_position_before < 0 || src_position < 0,
418	       "source(%d) or dest(%d) key number less than 0",
419	       src_position, dest_position_before);
420	RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
421	       src_position >= B_NR_ITEMS(src),
422	       "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
423	       dest_position_before, B_NR_ITEMS(dest),
424	       src_position, B_NR_ITEMS(src));
425	RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
426	       "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
427
428	blkh = B_BLK_HEAD(dest);
429	nr = blkh_nr_item(blkh);
430
431	/* prepare space for inserting key */
432	key = B_N_PDELIM_KEY(dest, dest_position_before);
433	memmove(key + 1, key,
434		(nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
435
436	/* insert key */
437	memcpy(key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
438
439	/* Change dirt, free space, item number fields. */
440
441	set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
442	set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE);
443
444	do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
445
446	if (dest_bi->bi_parent) {
447		struct disk_child *t_dc;
448		t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
449		put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
450
451		do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
452					       0);
453	}
454}
455
456/* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
457 * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
458 * Replace  d_key'th key in buffer cfl.
459 * Delete pointer_amount items and node pointers from buffer src.
460 */
461/* this can be invoked both to shift from S to L and from R to S */
462static void internal_shift_left(int mode,	/* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
463				struct tree_balance *tb,
464				int h, int pointer_amount)
465{
466	struct buffer_info dest_bi, src_bi;
467	struct buffer_head *cf;
468	int d_key_position;
469
470	internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
471				       &d_key_position, &cf);
472
473	/*printk("pointer_amount = %d\n",pointer_amount); */
474
475	if (pointer_amount) {
476		/* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
477		internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
478				    d_key_position);
479
480		if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
481			if (src_bi.bi_position /*src->b_item_order */  == 0)
482				replace_key(tb, cf, d_key_position,
483					    src_bi.
484					    bi_parent /*src->b_parent */ , 0);
485		} else
486			replace_key(tb, cf, d_key_position, src_bi.bi_bh,
487				    pointer_amount - 1);
488	}
489	/* last parameter is del_parameter */
490	internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
491				     pointer_amount, 0);
492
493}
494
495/* Insert delimiting key to L[h].
496 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
497 * Delete n - 1 items and node pointers from buffer S[h].
498 */
499/* it always shifts from S[h] to L[h] */
500static void internal_shift1_left(struct tree_balance *tb,
501				 int h, int pointer_amount)
502{
503	struct buffer_info dest_bi, src_bi;
504	struct buffer_head *cf;
505	int d_key_position;
506
507	internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
508				       &dest_bi, &src_bi, &d_key_position, &cf);
509
510	if (pointer_amount > 0)	/* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
511		internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
512				    d_key_position);
513	/*            internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */
514
515	/* last parameter is del_parameter */
516	internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
517				     pointer_amount, 1);
518	/*    internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
519}
520
521/* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
522 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
523 * Replace  d_key'th key in buffer cfr.
524 * Delete n items and node pointers from buffer src.
525 */
526static void internal_shift_right(int mode,	/* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
527				 struct tree_balance *tb,
528				 int h, int pointer_amount)
529{
530	struct buffer_info dest_bi, src_bi;
531	struct buffer_head *cf;
532	int d_key_position;
533	int nr;
534
535	internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
536				       &d_key_position, &cf);
537
538	nr = B_NR_ITEMS(src_bi.bi_bh);
539
540	if (pointer_amount > 0) {
541		/* insert delimiting key from common father of dest and src to dest node into position 0 */
542		internal_insert_key(&dest_bi, 0, cf, d_key_position);
543		if (nr == pointer_amount - 1) {
544			RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
545			       dest_bi.bi_bh != tb->R[h],
546			       "src (%p) must be == tb->S[h](%p) when it disappears",
547			       src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
548			/* when S[h] disappers replace left delemiting key as well */
549			if (tb->CFL[h])
550				replace_key(tb, cf, d_key_position, tb->CFL[h],
551					    tb->lkey[h]);
552		} else
553			replace_key(tb, cf, d_key_position, src_bi.bi_bh,
554				    nr - pointer_amount);
555	}
556
557	/* last parameter is del_parameter */
558	internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
559				     pointer_amount, 0);
560}
561
562/* Insert delimiting key to R[h].
563 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
564 * Delete n - 1 items and node pointers from buffer S[h].
565 */
566/* it always shift from S[h] to R[h] */
567static void internal_shift1_right(struct tree_balance *tb,
568				  int h, int pointer_amount)
569{
570	struct buffer_info dest_bi, src_bi;
571	struct buffer_head *cf;
572	int d_key_position;
573
574	internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
575				       &dest_bi, &src_bi, &d_key_position, &cf);
576
577	if (pointer_amount > 0)	/* insert rkey from CFR[h] to right neighbor R[h] */
578		internal_insert_key(&dest_bi, 0, cf, d_key_position);
579	/*            internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */
580
581	/* last parameter is del_parameter */
582	internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
583				     pointer_amount, 1);
584	/*    internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */
585}
586
587/* Delete insert_num node pointers together with their left items
588 * and balance current node.*/
589static void balance_internal_when_delete(struct tree_balance *tb,
590					 int h, int child_pos)
591{
592	int insert_num;
593	int n;
594	struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
595	struct buffer_info bi;
596
597	insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
598
599	/* delete child-node-pointer(s) together with their left item(s) */
600	bi.tb = tb;
601	bi.bi_bh = tbSh;
602	bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
603	bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
604
605	internal_delete_childs(&bi, child_pos, -insert_num);
606
607	RFALSE(tb->blknum[h] > 1,
608	       "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
609
610	n = B_NR_ITEMS(tbSh);
611
612	if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
613		if (tb->blknum[h] == 0) {
614			/* node S[h] (root of the tree) is empty now */
615			struct buffer_head *new_root;
616
617			RFALSE(n
618			       || B_FREE_SPACE(tbSh) !=
619			       MAX_CHILD_SIZE(tbSh) - DC_SIZE,
620			       "buffer must have only 0 keys (%d)", n);
621			RFALSE(bi.bi_parent, "root has parent (%p)",
622			       bi.bi_parent);
623
624			/* choose a new root */
625			if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
626				new_root = tb->R[h - 1];
627			else
628				new_root = tb->L[h - 1];
629			/* switch super block's tree root block number to the new value */
630			PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
631			//REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
632			PUT_SB_TREE_HEIGHT(tb->tb_sb,
633					   SB_TREE_HEIGHT(tb->tb_sb) - 1);
634
635			do_balance_mark_sb_dirty(tb,
636						 REISERFS_SB(tb->tb_sb)->s_sbh,
637						 1);
638			/*&&&&&&&&&&&&&&&&&&&&&& */
639			if (h > 1)
640				/* use check_internal if new root is an internal node */
641				check_internal(new_root);
642			/*&&&&&&&&&&&&&&&&&&&&&& */
643
644			/* do what is needed for buffer thrown from tree */
645			reiserfs_invalidate_buffer(tb, tbSh);
646			return;
647		}
648		return;
649	}
650
651	if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {	/* join S[h] with L[h] */
652
653		RFALSE(tb->rnum[h] != 0,
654		       "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
655		       h, tb->rnum[h]);
656
657		internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
658		reiserfs_invalidate_buffer(tb, tbSh);
659
660		return;
661	}
662
663	if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {	/* join S[h] with R[h] */
664		RFALSE(tb->lnum[h] != 0,
665		       "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
666		       h, tb->lnum[h]);
667
668		internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
669
670		reiserfs_invalidate_buffer(tb, tbSh);
671		return;
672	}
673
674	if (tb->lnum[h] < 0) {	/* borrow from left neighbor L[h] */
675		RFALSE(tb->rnum[h] != 0,
676		       "wrong tb->rnum[%d]==%d when borrow from L[h]", h,
677		       tb->rnum[h]);
678		/*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */
679		internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
680				     -tb->lnum[h]);
681		return;
682	}
683
684	if (tb->rnum[h] < 0) {	/* borrow from right neighbor R[h] */
685		RFALSE(tb->lnum[h] != 0,
686		       "invalid tb->lnum[%d]==%d when borrow from R[h]",
687		       h, tb->lnum[h]);
688		internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);	/*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
689		return;
690	}
691
692	if (tb->lnum[h] > 0) {	/* split S[h] into two parts and put them into neighbors */
693		RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
694		       "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
695		       h, tb->lnum[h], h, tb->rnum[h], n);
696
697		internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);	/*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
698		internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
699				     tb->rnum[h]);
700
701		reiserfs_invalidate_buffer(tb, tbSh);
702
703		return;
704	}
705	reiserfs_panic(tb->tb_sb,
706		       "balance_internal_when_delete: unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
707		       h, tb->lnum[h], h, tb->rnum[h]);
708}
709
710/* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
711static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
712{
713	RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
714	       "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
715	       tb->L[h], tb->CFL[h]);
716
717	if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
718		return;
719
720	memcpy(B_N_PDELIM_KEY(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
721
722	do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
723}
724
725/* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
726static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
727{
728	RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
729	       "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
730	       tb->R[h], tb->CFR[h]);
731	RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
732	       "R[h] can not be empty if it exists (item number=%d)",
733	       B_NR_ITEMS(tb->R[h]));
734
735	memcpy(B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
736
737	do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
738}
739
740int balance_internal(struct tree_balance *tb,	/* tree_balance structure               */
741		     int h,	/* level of the tree                    */
742		     int child_pos, struct item_head *insert_key,	/* key for insertion on higher level    */
743		     struct buffer_head **insert_ptr	/* node for insertion on higher level */
744    )
745    /* if inserting/pasting
746       {
747       child_pos is the position of the node-pointer in S[h] that        *
748       pointed to S[h-1] before balancing of the h-1 level;              *
749       this means that new pointers and items must be inserted AFTER *
750       child_pos
751       }
752       else
753       {
754       it is the position of the leftmost pointer that must be deleted (together with
755       its corresponding key to the left of the pointer)
756       as a result of the previous level's balancing.
757       }
758     */
759{
760	struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
761	struct buffer_info bi;
762	int order;		/* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
763	int insert_num, n, k;
764	struct buffer_head *S_new;
765	struct item_head new_insert_key;
766	struct buffer_head *new_insert_ptr = NULL;
767	struct item_head *new_insert_key_addr = insert_key;
768
769	RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
770
771	PROC_INFO_INC(tb->tb_sb, balance_at[h]);
772
773	order =
774	    (tbSh) ? PATH_H_POSITION(tb->tb_path,
775				     h + 1) /*tb->S[h]->b_item_order */ : 0;
776
777	/* Using insert_size[h] calculate the number insert_num of items
778	   that must be inserted to or deleted from S[h]. */
779	insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
780
781	/* Check whether insert_num is proper * */
782	RFALSE(insert_num < -2 || insert_num > 2,
783	       "incorrect number of items inserted to the internal node (%d)",
784	       insert_num);
785	RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
786	       "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
787	       insert_num, h);
788
789	/* Make balance in case insert_num < 0 */
790	if (insert_num < 0) {
791		balance_internal_when_delete(tb, h, child_pos);
792		return order;
793	}
794
795	k = 0;
796	if (tb->lnum[h] > 0) {
797		/* shift lnum[h] items from S[h] to the left neighbor L[h].
798		   check how many of new items fall into L[h] or CFL[h] after
799		   shifting */
800		n = B_NR_ITEMS(tb->L[h]);	/* number of items in L[h] */
801		if (tb->lnum[h] <= child_pos) {
802			/* new items don't fall into L[h] or CFL[h] */
803			internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
804					    tb->lnum[h]);
805			/*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */
806			child_pos -= tb->lnum[h];
807		} else if (tb->lnum[h] > child_pos + insert_num) {
808			/* all new items fall into L[h] */
809			internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
810					    tb->lnum[h] - insert_num);
811			/*                  internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
812			   tb->lnum[h]-insert_num);
813			 */
814			/* insert insert_num keys and node-pointers into L[h] */
815			bi.tb = tb;
816			bi.bi_bh = tb->L[h];
817			bi.bi_parent = tb->FL[h];
818			bi.bi_position = get_left_neighbor_position(tb, h);
819			internal_insert_childs(&bi,
820					       /*tb->L[h], tb->S[h-1]->b_next */
821					       n + child_pos + 1,
822					       insert_num, insert_key,
823					       insert_ptr);
824
825			insert_num = 0;
826		} else {
827			struct disk_child *dc;
828
829			/* some items fall into L[h] or CFL[h], but some don't fall */
830			internal_shift1_left(tb, h, child_pos + 1);
831			/* calculate number of new items that fall into L[h] */
832			k = tb->lnum[h] - child_pos - 1;
833			bi.tb = tb;
834			bi.bi_bh = tb->L[h];
835			bi.bi_parent = tb->FL[h];
836			bi.bi_position = get_left_neighbor_position(tb, h);
837			internal_insert_childs(&bi,
838					       /*tb->L[h], tb->S[h-1]->b_next, */
839					       n + child_pos + 1, k,
840					       insert_key, insert_ptr);
841
842			replace_lkey(tb, h, insert_key + k);
843
844			/* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
845			dc = B_N_CHILD(tbSh, 0);
846			put_dc_size(dc,
847				    MAX_CHILD_SIZE(insert_ptr[k]) -
848				    B_FREE_SPACE(insert_ptr[k]));
849			put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
850
851			do_balance_mark_internal_dirty(tb, tbSh, 0);
852
853			k++;
854			insert_key += k;
855			insert_ptr += k;
856			insert_num -= k;
857			child_pos = 0;
858		}
859	}
860	/* tb->lnum[h] > 0 */
861	if (tb->rnum[h] > 0) {
862		/*shift rnum[h] items from S[h] to the right neighbor R[h] */
863		/* check how many of new items fall into R or CFR after shifting */
864		n = B_NR_ITEMS(tbSh);	/* number of items in S[h] */
865		if (n - tb->rnum[h] >= child_pos)
866			/* new items fall into S[h] */
867			/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */
868			internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
869					     tb->rnum[h]);
870		else if (n + insert_num - tb->rnum[h] < child_pos) {
871			/* all new items fall into R[h] */
872			/*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
873			   tb->rnum[h] - insert_num); */
874			internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
875					     tb->rnum[h] - insert_num);
876
877			/* insert insert_num keys and node-pointers into R[h] */
878			bi.tb = tb;
879			bi.bi_bh = tb->R[h];
880			bi.bi_parent = tb->FR[h];
881			bi.bi_position = get_right_neighbor_position(tb, h);
882			internal_insert_childs(&bi,
883					       /*tb->R[h],tb->S[h-1]->b_next */
884					       child_pos - n - insert_num +
885					       tb->rnum[h] - 1,
886					       insert_num, insert_key,
887					       insert_ptr);
888			insert_num = 0;
889		} else {
890			struct disk_child *dc;
891
892			/* one of the items falls into CFR[h] */
893			internal_shift1_right(tb, h, n - child_pos + 1);
894			/* calculate number of new items that fall into R[h] */
895			k = tb->rnum[h] - n + child_pos - 1;
896			bi.tb = tb;
897			bi.bi_bh = tb->R[h];
898			bi.bi_parent = tb->FR[h];
899			bi.bi_position = get_right_neighbor_position(tb, h);
900			internal_insert_childs(&bi,
901					       /*tb->R[h], tb->R[h]->b_child, */
902					       0, k, insert_key + 1,
903					       insert_ptr + 1);
904
905			replace_rkey(tb, h, insert_key + insert_num - k - 1);
906
907			/* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */
908			dc = B_N_CHILD(tb->R[h], 0);
909			put_dc_size(dc,
910				    MAX_CHILD_SIZE(insert_ptr
911						   [insert_num - k - 1]) -
912				    B_FREE_SPACE(insert_ptr
913						 [insert_num - k - 1]));
914			put_dc_block_number(dc,
915					    insert_ptr[insert_num - k -
916						       1]->b_blocknr);
917
918			do_balance_mark_internal_dirty(tb, tb->R[h], 0);
919
920			insert_num -= (k + 1);
921		}
922	}
923
924    /** Fill new node that appears instead of S[h] **/
925	RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
926	RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
927
928	if (!tb->blknum[h]) {	/* node S[h] is empty now */
929		RFALSE(!tbSh, "S[h] is equal NULL");
930
931		/* do what is needed for buffer thrown from tree */
932		reiserfs_invalidate_buffer(tb, tbSh);
933		return order;
934	}
935
936	if (!tbSh) {
937		/* create new root */
938		struct disk_child *dc;
939		struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
940		struct block_head *blkh;
941
942		if (tb->blknum[h] != 1)
943			reiserfs_panic(NULL,
944				       "balance_internal: One new node required for creating the new root");
945		/* S[h] = empty buffer from the list FEB. */
946		tbSh = get_FEB(tb);
947		blkh = B_BLK_HEAD(tbSh);
948		set_blkh_level(blkh, h + 1);
949
950		/* Put the unique node-pointer to S[h] that points to S[h-1]. */
951
952		dc = B_N_CHILD(tbSh, 0);
953		put_dc_block_number(dc, tbSh_1->b_blocknr);
954		put_dc_size(dc,
955			    (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
956
957		tb->insert_size[h] -= DC_SIZE;
958		set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE);
959
960		do_balance_mark_internal_dirty(tb, tbSh, 0);
961
962		/*&&&&&&&&&&&&&&&&&&&&&&&& */
963		check_internal(tbSh);
964		/*&&&&&&&&&&&&&&&&&&&&&&&& */
965
966		/* put new root into path structure */
967		PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) =
968		    tbSh;
969
970		/* Change root in structure super block. */
971		PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
972		PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1);
973		do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
974	}
975
976	if (tb->blknum[h] == 2) {
977		int snum;
978		struct buffer_info dest_bi, src_bi;
979
980		/* S_new = free buffer from list FEB */
981		S_new = get_FEB(tb);
982
983		set_blkh_level(B_BLK_HEAD(S_new), h + 1);
984
985		dest_bi.tb = tb;
986		dest_bi.bi_bh = S_new;
987		dest_bi.bi_parent = NULL;
988		dest_bi.bi_position = 0;
989		src_bi.tb = tb;
990		src_bi.bi_bh = tbSh;
991		src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
992		src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
993
994		n = B_NR_ITEMS(tbSh);	/* number of items in S[h] */
995		snum = (insert_num + n + 1) / 2;
996		if (n - snum >= child_pos) {
997			/* new items don't fall into S_new */
998			/*  store the delimiting key for the next level */
999			/* new_insert_key = (n - snum)'th key in S[h] */
1000			memcpy(&new_insert_key, B_N_PDELIM_KEY(tbSh, n - snum),
1001			       KEY_SIZE);
1002			/* last parameter is del_par */
1003			internal_move_pointers_items(&dest_bi, &src_bi,
1004						     LAST_TO_FIRST, snum, 0);
1005			/*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */
1006		} else if (n + insert_num - snum < child_pos) {
1007			/* all new items fall into S_new */
1008			/*  store the delimiting key for the next level */
1009			/* new_insert_key = (n + insert_item - snum)'th key in S[h] */
1010			memcpy(&new_insert_key,
1011			       B_N_PDELIM_KEY(tbSh, n + insert_num - snum),
1012			       KEY_SIZE);
1013			/* last parameter is del_par */
1014			internal_move_pointers_items(&dest_bi, &src_bi,
1015						     LAST_TO_FIRST,
1016						     snum - insert_num, 0);
1017			/*                  internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */
1018
1019			/* insert insert_num keys and node-pointers into S_new */
1020			internal_insert_childs(&dest_bi,
1021					       /*S_new,tb->S[h-1]->b_next, */
1022					       child_pos - n - insert_num +
1023					       snum - 1,
1024					       insert_num, insert_key,
1025					       insert_ptr);
1026
1027			insert_num = 0;
1028		} else {
1029			struct disk_child *dc;
1030
1031			/* some items fall into S_new, but some don't fall */
1032			/* last parameter is del_par */
1033			internal_move_pointers_items(&dest_bi, &src_bi,
1034						     LAST_TO_FIRST,
1035						     n - child_pos + 1, 1);
1036			/*                  internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */
1037			/* calculate number of new items that fall into S_new */
1038			k = snum - n + child_pos - 1;
1039
1040			internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
1041					       insert_key + 1, insert_ptr + 1);
1042
1043			/* new_insert_key = insert_key[insert_num - k - 1] */
1044			memcpy(&new_insert_key, insert_key + insert_num - k - 1,
1045			       KEY_SIZE);
1046			/* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1047
1048			dc = B_N_CHILD(S_new, 0);
1049			put_dc_size(dc,
1050				    (MAX_CHILD_SIZE
1051				     (insert_ptr[insert_num - k - 1]) -
1052				     B_FREE_SPACE(insert_ptr
1053						  [insert_num - k - 1])));
1054			put_dc_block_number(dc,
1055					    insert_ptr[insert_num - k -
1056						       1]->b_blocknr);
1057
1058			do_balance_mark_internal_dirty(tb, S_new, 0);
1059
1060			insert_num -= (k + 1);
1061		}
1062		/* new_insert_ptr = node_pointer to S_new */
1063		new_insert_ptr = S_new;
1064
1065		RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
1066		       || buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
1067		       S_new);
1068
1069		// S_new is released in unfix_nodes
1070	}
1071
1072	n = B_NR_ITEMS(tbSh);	/*number of items in S[h] */
1073
1074	if (0 <= child_pos && child_pos <= n && insert_num > 0) {
1075		bi.tb = tb;
1076		bi.bi_bh = tbSh;
1077		bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
1078		bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
1079		internal_insert_childs(&bi,	/*tbSh, */
1080				       /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next, */
1081				       child_pos, insert_num, insert_key,
1082				       insert_ptr);
1083	}
1084
1085	memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
1086	insert_ptr[0] = new_insert_ptr;
1087
1088	return order;
1089}
1090