1/*
2 *  linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 *	Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
16#include <linux/kernel.h>
17#include <linux/quotaops.h>
18#include <linux/acct.h>
19#include <linux/capability.h>
20#include <linux/module.h>
21#include <linux/sysfs.h>
22#include <linux/seq_file.h>
23#include <linux/mnt_namespace.h>
24#include <linux/namei.h>
25#include <linux/security.h>
26#include <linux/mount.h>
27#include <linux/ramfs.h>
28#include <asm/uaccess.h>
29#include <asm/unistd.h>
30#include "pnode.h"
31
32/* spinlock for vfsmount related operations, inplace of dcache_lock */
33__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
34
35static int event;
36
37static struct list_head *mount_hashtable __read_mostly;
38static int hash_mask __read_mostly, hash_bits __read_mostly;
39static struct kmem_cache *mnt_cache __read_mostly;
40static struct rw_semaphore namespace_sem;
41
42/* /sys/fs */
43decl_subsys(fs, NULL, NULL);
44EXPORT_SYMBOL_GPL(fs_subsys);
45
46static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
47{
48	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
49	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
50	tmp = tmp + (tmp >> hash_bits);
51	return tmp & hash_mask;
52}
53
54struct vfsmount *alloc_vfsmnt(const char *name)
55{
56	struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
57	if (mnt) {
58		atomic_set(&mnt->mnt_count, 1);
59		INIT_LIST_HEAD(&mnt->mnt_hash);
60		INIT_LIST_HEAD(&mnt->mnt_child);
61		INIT_LIST_HEAD(&mnt->mnt_mounts);
62		INIT_LIST_HEAD(&mnt->mnt_list);
63		INIT_LIST_HEAD(&mnt->mnt_expire);
64		INIT_LIST_HEAD(&mnt->mnt_share);
65		INIT_LIST_HEAD(&mnt->mnt_slave_list);
66		INIT_LIST_HEAD(&mnt->mnt_slave);
67		if (name) {
68			int size = strlen(name) + 1;
69			char *newname = kmalloc(size, GFP_KERNEL);
70			if (newname) {
71				memcpy(newname, name, size);
72				mnt->mnt_devname = newname;
73			}
74		}
75	}
76	return mnt;
77}
78
79int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
80{
81	mnt->mnt_sb = sb;
82	mnt->mnt_root = dget(sb->s_root);
83	return 0;
84}
85
86EXPORT_SYMBOL(simple_set_mnt);
87
88void free_vfsmnt(struct vfsmount *mnt)
89{
90	kfree(mnt->mnt_devname);
91	kmem_cache_free(mnt_cache, mnt);
92}
93
94/*
95 * find the first or last mount at @dentry on vfsmount @mnt depending on
96 * @dir. If @dir is set return the first mount else return the last mount.
97 */
98struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
99			      int dir)
100{
101	struct list_head *head = mount_hashtable + hash(mnt, dentry);
102	struct list_head *tmp = head;
103	struct vfsmount *p, *found = NULL;
104
105	for (;;) {
106		tmp = dir ? tmp->next : tmp->prev;
107		p = NULL;
108		if (tmp == head)
109			break;
110		p = list_entry(tmp, struct vfsmount, mnt_hash);
111		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
112			found = p;
113			break;
114		}
115	}
116	return found;
117}
118
119/*
120 * lookup_mnt increments the ref count before returning
121 * the vfsmount struct.
122 */
123struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
124{
125	struct vfsmount *child_mnt;
126	spin_lock(&vfsmount_lock);
127	if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
128		mntget(child_mnt);
129	spin_unlock(&vfsmount_lock);
130	return child_mnt;
131}
132
133static inline int check_mnt(struct vfsmount *mnt)
134{
135	return mnt->mnt_ns == current->nsproxy->mnt_ns;
136}
137
138static void touch_mnt_namespace(struct mnt_namespace *ns)
139{
140	if (ns) {
141		ns->event = ++event;
142		wake_up_interruptible(&ns->poll);
143	}
144}
145
146static void __touch_mnt_namespace(struct mnt_namespace *ns)
147{
148	if (ns && ns->event != event) {
149		ns->event = event;
150		wake_up_interruptible(&ns->poll);
151	}
152}
153
154static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
155{
156	old_nd->dentry = mnt->mnt_mountpoint;
157	old_nd->mnt = mnt->mnt_parent;
158	mnt->mnt_parent = mnt;
159	mnt->mnt_mountpoint = mnt->mnt_root;
160	list_del_init(&mnt->mnt_child);
161	list_del_init(&mnt->mnt_hash);
162	old_nd->dentry->d_mounted--;
163}
164
165void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
166			struct vfsmount *child_mnt)
167{
168	child_mnt->mnt_parent = mntget(mnt);
169	child_mnt->mnt_mountpoint = dget(dentry);
170	dentry->d_mounted++;
171}
172
173static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
174{
175	mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
176	list_add_tail(&mnt->mnt_hash, mount_hashtable +
177			hash(nd->mnt, nd->dentry));
178	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
179}
180
181/*
182 * the caller must hold vfsmount_lock
183 */
184static void commit_tree(struct vfsmount *mnt)
185{
186	struct vfsmount *parent = mnt->mnt_parent;
187	struct vfsmount *m;
188	LIST_HEAD(head);
189	struct mnt_namespace *n = parent->mnt_ns;
190
191	BUG_ON(parent == mnt);
192
193	list_add_tail(&head, &mnt->mnt_list);
194	list_for_each_entry(m, &head, mnt_list)
195		m->mnt_ns = n;
196	list_splice(&head, n->list.prev);
197
198	list_add_tail(&mnt->mnt_hash, mount_hashtable +
199				hash(parent, mnt->mnt_mountpoint));
200	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
201	touch_mnt_namespace(n);
202}
203
204static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
205{
206	struct list_head *next = p->mnt_mounts.next;
207	if (next == &p->mnt_mounts) {
208		while (1) {
209			if (p == root)
210				return NULL;
211			next = p->mnt_child.next;
212			if (next != &p->mnt_parent->mnt_mounts)
213				break;
214			p = p->mnt_parent;
215		}
216	}
217	return list_entry(next, struct vfsmount, mnt_child);
218}
219
220static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
221{
222	struct list_head *prev = p->mnt_mounts.prev;
223	while (prev != &p->mnt_mounts) {
224		p = list_entry(prev, struct vfsmount, mnt_child);
225		prev = p->mnt_mounts.prev;
226	}
227	return p;
228}
229
230static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
231					int flag)
232{
233	struct super_block *sb = old->mnt_sb;
234	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
235
236	if (mnt) {
237		mnt->mnt_flags = old->mnt_flags;
238		atomic_inc(&sb->s_active);
239		mnt->mnt_sb = sb;
240		mnt->mnt_root = dget(root);
241		mnt->mnt_mountpoint = mnt->mnt_root;
242		mnt->mnt_parent = mnt;
243
244		if (flag & CL_SLAVE) {
245			list_add(&mnt->mnt_slave, &old->mnt_slave_list);
246			mnt->mnt_master = old;
247			CLEAR_MNT_SHARED(mnt);
248		} else {
249			if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
250				list_add(&mnt->mnt_share, &old->mnt_share);
251			if (IS_MNT_SLAVE(old))
252				list_add(&mnt->mnt_slave, &old->mnt_slave);
253			mnt->mnt_master = old->mnt_master;
254		}
255		if (flag & CL_MAKE_SHARED)
256			set_mnt_shared(mnt);
257
258		/* stick the duplicate mount on the same expiry list
259		 * as the original if that was on one */
260		if (flag & CL_EXPIRE) {
261			spin_lock(&vfsmount_lock);
262			if (!list_empty(&old->mnt_expire))
263				list_add(&mnt->mnt_expire, &old->mnt_expire);
264			spin_unlock(&vfsmount_lock);
265		}
266	}
267	return mnt;
268}
269
270static inline void __mntput(struct vfsmount *mnt)
271{
272	struct super_block *sb = mnt->mnt_sb;
273	dput(mnt->mnt_root);
274	free_vfsmnt(mnt);
275	deactivate_super(sb);
276}
277
278void mntput_no_expire(struct vfsmount *mnt)
279{
280repeat:
281	if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
282		if (likely(!mnt->mnt_pinned)) {
283			spin_unlock(&vfsmount_lock);
284			__mntput(mnt);
285			return;
286		}
287		atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
288		mnt->mnt_pinned = 0;
289		spin_unlock(&vfsmount_lock);
290		acct_auto_close_mnt(mnt);
291		security_sb_umount_close(mnt);
292		goto repeat;
293	}
294}
295
296EXPORT_SYMBOL(mntput_no_expire);
297
298void mnt_pin(struct vfsmount *mnt)
299{
300	spin_lock(&vfsmount_lock);
301	mnt->mnt_pinned++;
302	spin_unlock(&vfsmount_lock);
303}
304
305EXPORT_SYMBOL(mnt_pin);
306
307void mnt_unpin(struct vfsmount *mnt)
308{
309	spin_lock(&vfsmount_lock);
310	if (mnt->mnt_pinned) {
311		atomic_inc(&mnt->mnt_count);
312		mnt->mnt_pinned--;
313	}
314	spin_unlock(&vfsmount_lock);
315}
316
317EXPORT_SYMBOL(mnt_unpin);
318
319/* iterator */
320static void *m_start(struct seq_file *m, loff_t *pos)
321{
322	struct mnt_namespace *n = m->private;
323	struct list_head *p;
324	loff_t l = *pos;
325
326	down_read(&namespace_sem);
327	list_for_each(p, &n->list)
328		if (!l--)
329			return list_entry(p, struct vfsmount, mnt_list);
330	return NULL;
331}
332
333static void *m_next(struct seq_file *m, void *v, loff_t *pos)
334{
335	struct mnt_namespace *n = m->private;
336	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
337	(*pos)++;
338	return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
339}
340
341static void m_stop(struct seq_file *m, void *v)
342{
343	up_read(&namespace_sem);
344}
345
346static inline void mangle(struct seq_file *m, const char *s)
347{
348	seq_escape(m, s, " \t\n\\");
349}
350
351static int show_vfsmnt(struct seq_file *m, void *v)
352{
353	struct vfsmount *mnt = v;
354	int err = 0;
355	static struct proc_fs_info {
356		int flag;
357		char *str;
358	} fs_info[] = {
359		{ MS_SYNCHRONOUS, ",sync" },
360		{ MS_DIRSYNC, ",dirsync" },
361		{ MS_MANDLOCK, ",mand" },
362		{ 0, NULL }
363	};
364	static struct proc_fs_info mnt_info[] = {
365		{ MNT_NOSUID, ",nosuid" },
366		{ MNT_NODEV, ",nodev" },
367		{ MNT_NOEXEC, ",noexec" },
368		{ MNT_NOATIME, ",noatime" },
369		{ MNT_NODIRATIME, ",nodiratime" },
370		{ MNT_RELATIME, ",relatime" },
371		{ 0, NULL }
372	};
373	struct proc_fs_info *fs_infop;
374
375	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
376	seq_putc(m, ' ');
377	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
378	seq_putc(m, ' ');
379	mangle(m, mnt->mnt_sb->s_type->name);
380	if (mnt->mnt_sb->s_subtype && mnt->mnt_sb->s_subtype[0]) {
381		seq_putc(m, '.');
382		mangle(m, mnt->mnt_sb->s_subtype);
383	}
384	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
385	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
386		if (mnt->mnt_sb->s_flags & fs_infop->flag)
387			seq_puts(m, fs_infop->str);
388	}
389	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
390		if (mnt->mnt_flags & fs_infop->flag)
391			seq_puts(m, fs_infop->str);
392	}
393	if (mnt->mnt_sb->s_op->show_options)
394		err = mnt->mnt_sb->s_op->show_options(m, mnt);
395	seq_puts(m, " 0 0\n");
396	return err;
397}
398
399struct seq_operations mounts_op = {
400	.start	= m_start,
401	.next	= m_next,
402	.stop	= m_stop,
403	.show	= show_vfsmnt
404};
405
406static int show_vfsstat(struct seq_file *m, void *v)
407{
408	struct vfsmount *mnt = v;
409	int err = 0;
410
411	/* device */
412	if (mnt->mnt_devname) {
413		seq_puts(m, "device ");
414		mangle(m, mnt->mnt_devname);
415	} else
416		seq_puts(m, "no device");
417
418	/* mount point */
419	seq_puts(m, " mounted on ");
420	seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
421	seq_putc(m, ' ');
422
423	/* file system type */
424	seq_puts(m, "with fstype ");
425	mangle(m, mnt->mnt_sb->s_type->name);
426
427	/* optional statistics */
428	if (mnt->mnt_sb->s_op->show_stats) {
429		seq_putc(m, ' ');
430		err = mnt->mnt_sb->s_op->show_stats(m, mnt);
431	}
432
433	seq_putc(m, '\n');
434	return err;
435}
436
437struct seq_operations mountstats_op = {
438	.start	= m_start,
439	.next	= m_next,
440	.stop	= m_stop,
441	.show	= show_vfsstat,
442};
443
444/**
445 * may_umount_tree - check if a mount tree is busy
446 * @mnt: root of mount tree
447 *
448 * This is called to check if a tree of mounts has any
449 * open files, pwds, chroots or sub mounts that are
450 * busy.
451 */
452int may_umount_tree(struct vfsmount *mnt)
453{
454	int actual_refs = 0;
455	int minimum_refs = 0;
456	struct vfsmount *p;
457
458	spin_lock(&vfsmount_lock);
459	for (p = mnt; p; p = next_mnt(p, mnt)) {
460		actual_refs += atomic_read(&p->mnt_count);
461		minimum_refs += 2;
462	}
463	spin_unlock(&vfsmount_lock);
464
465	if (actual_refs > minimum_refs)
466		return 0;
467
468	return 1;
469}
470
471EXPORT_SYMBOL(may_umount_tree);
472
473/**
474 * may_umount - check if a mount point is busy
475 * @mnt: root of mount
476 *
477 * This is called to check if a mount point has any
478 * open files, pwds, chroots or sub mounts. If the
479 * mount has sub mounts this will return busy
480 * regardless of whether the sub mounts are busy.
481 *
482 * Doesn't take quota and stuff into account. IOW, in some cases it will
483 * give false negatives. The main reason why it's here is that we need
484 * a non-destructive way to look for easily umountable filesystems.
485 */
486int may_umount(struct vfsmount *mnt)
487{
488	int ret = 1;
489	spin_lock(&vfsmount_lock);
490	if (propagate_mount_busy(mnt, 2))
491		ret = 0;
492	spin_unlock(&vfsmount_lock);
493	return ret;
494}
495
496EXPORT_SYMBOL(may_umount);
497
498void release_mounts(struct list_head *head)
499{
500	struct vfsmount *mnt;
501	while (!list_empty(head)) {
502		mnt = list_first_entry(head, struct vfsmount, mnt_hash);
503		list_del_init(&mnt->mnt_hash);
504		if (mnt->mnt_parent != mnt) {
505			struct dentry *dentry;
506			struct vfsmount *m;
507			spin_lock(&vfsmount_lock);
508			dentry = mnt->mnt_mountpoint;
509			m = mnt->mnt_parent;
510			mnt->mnt_mountpoint = mnt->mnt_root;
511			mnt->mnt_parent = mnt;
512			spin_unlock(&vfsmount_lock);
513			dput(dentry);
514			mntput(m);
515		}
516		mntput(mnt);
517	}
518}
519
520void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
521{
522	struct vfsmount *p;
523
524	for (p = mnt; p; p = next_mnt(p, mnt))
525		list_move(&p->mnt_hash, kill);
526
527	if (propagate)
528		propagate_umount(kill);
529
530	list_for_each_entry(p, kill, mnt_hash) {
531		list_del_init(&p->mnt_expire);
532		list_del_init(&p->mnt_list);
533		__touch_mnt_namespace(p->mnt_ns);
534		p->mnt_ns = NULL;
535		list_del_init(&p->mnt_child);
536		if (p->mnt_parent != p)
537			p->mnt_mountpoint->d_mounted--;
538		change_mnt_propagation(p, MS_PRIVATE);
539	}
540}
541
542static int do_umount(struct vfsmount *mnt, int flags)
543{
544	struct super_block *sb = mnt->mnt_sb;
545	int retval;
546	LIST_HEAD(umount_list);
547
548	retval = security_sb_umount(mnt, flags);
549	if (retval)
550		return retval;
551
552	/*
553	 * Allow userspace to request a mountpoint be expired rather than
554	 * unmounting unconditionally. Unmount only happens if:
555	 *  (1) the mark is already set (the mark is cleared by mntput())
556	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
557	 */
558	if (flags & MNT_EXPIRE) {
559		if (mnt == current->fs->rootmnt ||
560		    flags & (MNT_FORCE | MNT_DETACH))
561			return -EINVAL;
562
563		if (atomic_read(&mnt->mnt_count) != 2)
564			return -EBUSY;
565
566		if (!xchg(&mnt->mnt_expiry_mark, 1))
567			return -EAGAIN;
568	}
569
570	/*
571	 * If we may have to abort operations to get out of this
572	 * mount, and they will themselves hold resources we must
573	 * allow the fs to do things. In the Unix tradition of
574	 * 'Gee thats tricky lets do it in userspace' the umount_begin
575	 * might fail to complete on the first run through as other tasks
576	 * must return, and the like. Thats for the mount program to worry
577	 * about for the moment.
578	 */
579
580	lock_kernel();
581	if (sb->s_op->umount_begin)
582		sb->s_op->umount_begin(mnt, flags);
583	unlock_kernel();
584
585	/*
586	 * No sense to grab the lock for this test, but test itself looks
587	 * somewhat bogus. Suggestions for better replacement?
588	 * Ho-hum... In principle, we might treat that as umount + switch
589	 * to rootfs. GC would eventually take care of the old vfsmount.
590	 * Actually it makes sense, especially if rootfs would contain a
591	 * /reboot - static binary that would close all descriptors and
592	 * call reboot(9). Then init(8) could umount root and exec /reboot.
593	 */
594	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
595		/*
596		 * Special case for "unmounting" root ...
597		 * we just try to remount it readonly.
598		 */
599		down_write(&sb->s_umount);
600		if (!(sb->s_flags & MS_RDONLY)) {
601			lock_kernel();
602			DQUOT_OFF(sb);
603			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
604			unlock_kernel();
605		}
606		up_write(&sb->s_umount);
607		return retval;
608	}
609
610	down_write(&namespace_sem);
611	spin_lock(&vfsmount_lock);
612	event++;
613
614	retval = -EBUSY;
615	if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
616		if (!list_empty(&mnt->mnt_list))
617			umount_tree(mnt, 1, &umount_list);
618		retval = 0;
619	}
620	spin_unlock(&vfsmount_lock);
621	if (retval)
622		security_sb_umount_busy(mnt);
623	up_write(&namespace_sem);
624	release_mounts(&umount_list);
625	return retval;
626}
627
628/*
629 * Now umount can handle mount points as well as block devices.
630 * This is important for filesystems which use unnamed block devices.
631 *
632 * We now support a flag for forced unmount like the other 'big iron'
633 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
634 */
635
636asmlinkage long sys_umount(char __user * name, int flags)
637{
638	struct nameidata nd;
639	int retval;
640
641	retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
642	if (retval)
643		goto out;
644	retval = -EINVAL;
645	if (nd.dentry != nd.mnt->mnt_root)
646		goto dput_and_out;
647	if (!check_mnt(nd.mnt))
648		goto dput_and_out;
649
650	retval = -EPERM;
651	if (!capable(CAP_SYS_ADMIN))
652		goto dput_and_out;
653
654	retval = do_umount(nd.mnt, flags);
655dput_and_out:
656	path_release_on_umount(&nd);
657out:
658	return retval;
659}
660
661#ifdef __ARCH_WANT_SYS_OLDUMOUNT
662
663/*
664 *	The 2.0 compatible umount. No flags.
665 */
666asmlinkage long sys_oldumount(char __user * name)
667{
668	return sys_umount(name, 0);
669}
670
671#endif
672
673static int mount_is_safe(struct nameidata *nd)
674{
675	if (capable(CAP_SYS_ADMIN))
676		return 0;
677	return -EPERM;
678#ifdef notyet
679	if (S_ISLNK(nd->dentry->d_inode->i_mode))
680		return -EPERM;
681	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
682		if (current->uid != nd->dentry->d_inode->i_uid)
683			return -EPERM;
684	}
685	if (vfs_permission(nd, MAY_WRITE))
686		return -EPERM;
687	return 0;
688#endif
689}
690
691static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
692{
693	while (1) {
694		if (d == dentry)
695			return 1;
696		if (d == NULL || d == d->d_parent)
697			return 0;
698		d = d->d_parent;
699	}
700}
701
702struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
703					int flag)
704{
705	struct vfsmount *res, *p, *q, *r, *s;
706	struct nameidata nd;
707
708	if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
709		return NULL;
710
711	res = q = clone_mnt(mnt, dentry, flag);
712	if (!q)
713		goto Enomem;
714	q->mnt_mountpoint = mnt->mnt_mountpoint;
715
716	p = mnt;
717	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
718		if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
719			continue;
720
721		for (s = r; s; s = next_mnt(s, r)) {
722			if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
723				s = skip_mnt_tree(s);
724				continue;
725			}
726			while (p != s->mnt_parent) {
727				p = p->mnt_parent;
728				q = q->mnt_parent;
729			}
730			p = s;
731			nd.mnt = q;
732			nd.dentry = p->mnt_mountpoint;
733			q = clone_mnt(p, p->mnt_root, flag);
734			if (!q)
735				goto Enomem;
736			spin_lock(&vfsmount_lock);
737			list_add_tail(&q->mnt_list, &res->mnt_list);
738			attach_mnt(q, &nd);
739			spin_unlock(&vfsmount_lock);
740		}
741	}
742	return res;
743Enomem:
744	if (res) {
745		LIST_HEAD(umount_list);
746		spin_lock(&vfsmount_lock);
747		umount_tree(res, 0, &umount_list);
748		spin_unlock(&vfsmount_lock);
749		release_mounts(&umount_list);
750	}
751	return NULL;
752}
753
754/*
755 *  @source_mnt : mount tree to be attached
756 *  @nd         : place the mount tree @source_mnt is attached
757 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
758 *  		   store the parent mount and mountpoint dentry.
759 *  		   (done when source_mnt is moved)
760 *
761 *  NOTE: in the table below explains the semantics when a source mount
762 *  of a given type is attached to a destination mount of a given type.
763 * ---------------------------------------------------------------------------
764 * |         BIND MOUNT OPERATION                                            |
765 * |**************************************************************************
766 * | source-->| shared        |       private  |       slave    | unbindable |
767 * | dest     |               |                |                |            |
768 * |   |      |               |                |                |            |
769 * |   v      |               |                |                |            |
770 * |**************************************************************************
771 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
772 * |          |               |                |                |            |
773 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
774 * ***************************************************************************
775 * A bind operation clones the source mount and mounts the clone on the
776 * destination mount.
777 *
778 * (++)  the cloned mount is propagated to all the mounts in the propagation
779 * 	 tree of the destination mount and the cloned mount is added to
780 * 	 the peer group of the source mount.
781 * (+)   the cloned mount is created under the destination mount and is marked
782 *       as shared. The cloned mount is added to the peer group of the source
783 *       mount.
784 * (+++) the mount is propagated to all the mounts in the propagation tree
785 *       of the destination mount and the cloned mount is made slave
786 *       of the same master as that of the source mount. The cloned mount
787 *       is marked as 'shared and slave'.
788 * (*)   the cloned mount is made a slave of the same master as that of the
789 * 	 source mount.
790 *
791 * ---------------------------------------------------------------------------
792 * |         		MOVE MOUNT OPERATION                                 |
793 * |**************************************************************************
794 * | source-->| shared        |       private  |       slave    | unbindable |
795 * | dest     |               |                |                |            |
796 * |   |      |               |                |                |            |
797 * |   v      |               |                |                |            |
798 * |**************************************************************************
799 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
800 * |          |               |                |                |            |
801 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
802 * ***************************************************************************
803 *
804 * (+)  the mount is moved to the destination. And is then propagated to
805 * 	all the mounts in the propagation tree of the destination mount.
806 * (+*)  the mount is moved to the destination.
807 * (+++)  the mount is moved to the destination and is then propagated to
808 * 	all the mounts belonging to the destination mount's propagation tree.
809 * 	the mount is marked as 'shared and slave'.
810 * (*)	the mount continues to be a slave at the new location.
811 *
812 * if the source mount is a tree, the operations explained above is
813 * applied to each mount in the tree.
814 * Must be called without spinlocks held, since this function can sleep
815 * in allocations.
816 */
817static int attach_recursive_mnt(struct vfsmount *source_mnt,
818			struct nameidata *nd, struct nameidata *parent_nd)
819{
820	LIST_HEAD(tree_list);
821	struct vfsmount *dest_mnt = nd->mnt;
822	struct dentry *dest_dentry = nd->dentry;
823	struct vfsmount *child, *p;
824
825	if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
826		return -EINVAL;
827
828	if (IS_MNT_SHARED(dest_mnt)) {
829		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
830			set_mnt_shared(p);
831	}
832
833	spin_lock(&vfsmount_lock);
834	if (parent_nd) {
835		detach_mnt(source_mnt, parent_nd);
836		attach_mnt(source_mnt, nd);
837		touch_mnt_namespace(current->nsproxy->mnt_ns);
838	} else {
839		mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
840		commit_tree(source_mnt);
841	}
842
843	list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
844		list_del_init(&child->mnt_hash);
845		commit_tree(child);
846	}
847	spin_unlock(&vfsmount_lock);
848	return 0;
849}
850
851static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
852{
853	int err;
854	if (mnt->mnt_sb->s_flags & MS_NOUSER)
855		return -EINVAL;
856
857	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
858	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
859		return -ENOTDIR;
860
861	err = -ENOENT;
862	mutex_lock(&nd->dentry->d_inode->i_mutex);
863	if (IS_DEADDIR(nd->dentry->d_inode))
864		goto out_unlock;
865
866	err = security_sb_check_sb(mnt, nd);
867	if (err)
868		goto out_unlock;
869
870	err = -ENOENT;
871	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
872		err = attach_recursive_mnt(mnt, nd, NULL);
873out_unlock:
874	mutex_unlock(&nd->dentry->d_inode->i_mutex);
875	if (!err)
876		security_sb_post_addmount(mnt, nd);
877	return err;
878}
879
880/*
881 * recursively change the type of the mountpoint.
882 */
883static int do_change_type(struct nameidata *nd, int flag)
884{
885	struct vfsmount *m, *mnt = nd->mnt;
886	int recurse = flag & MS_REC;
887	int type = flag & ~MS_REC;
888
889	if (!capable(CAP_SYS_ADMIN))
890		return -EPERM;
891
892	if (nd->dentry != nd->mnt->mnt_root)
893		return -EINVAL;
894
895	down_write(&namespace_sem);
896	spin_lock(&vfsmount_lock);
897	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
898		change_mnt_propagation(m, type);
899	spin_unlock(&vfsmount_lock);
900	up_write(&namespace_sem);
901	return 0;
902}
903
904/*
905 * do loopback mount.
906 */
907static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
908{
909	struct nameidata old_nd;
910	struct vfsmount *mnt = NULL;
911	int err = mount_is_safe(nd);
912	if (err)
913		return err;
914	if (!old_name || !*old_name)
915		return -EINVAL;
916	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
917	if (err)
918		return err;
919
920	down_write(&namespace_sem);
921	err = -EINVAL;
922	if (IS_MNT_UNBINDABLE(old_nd.mnt))
923 		goto out;
924
925	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
926		goto out;
927
928	err = -ENOMEM;
929	if (recurse)
930		mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
931	else
932		mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
933
934	if (!mnt)
935		goto out;
936
937	err = graft_tree(mnt, nd);
938	if (err) {
939		LIST_HEAD(umount_list);
940		spin_lock(&vfsmount_lock);
941		umount_tree(mnt, 0, &umount_list);
942		spin_unlock(&vfsmount_lock);
943		release_mounts(&umount_list);
944	}
945
946out:
947	up_write(&namespace_sem);
948	path_release(&old_nd);
949	return err;
950}
951
952/*
953 * change filesystem flags. dir should be a physical root of filesystem.
954 * If you've mounted a non-root directory somewhere and want to do remount
955 * on it - tough luck.
956 */
957static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
958		      void *data)
959{
960	int err;
961	struct super_block *sb = nd->mnt->mnt_sb;
962
963	if (!capable(CAP_SYS_ADMIN))
964		return -EPERM;
965
966	if (!check_mnt(nd->mnt))
967		return -EINVAL;
968
969	if (nd->dentry != nd->mnt->mnt_root)
970		return -EINVAL;
971
972	down_write(&sb->s_umount);
973	err = do_remount_sb(sb, flags, data, 0);
974	if (!err)
975		nd->mnt->mnt_flags = mnt_flags;
976	up_write(&sb->s_umount);
977	if (!err)
978		security_sb_post_remount(nd->mnt, flags, data);
979	return err;
980}
981
982static inline int tree_contains_unbindable(struct vfsmount *mnt)
983{
984	struct vfsmount *p;
985	for (p = mnt; p; p = next_mnt(p, mnt)) {
986		if (IS_MNT_UNBINDABLE(p))
987			return 1;
988	}
989	return 0;
990}
991
992static int do_move_mount(struct nameidata *nd, char *old_name)
993{
994	struct nameidata old_nd, parent_nd;
995	struct vfsmount *p;
996	int err = 0;
997	if (!capable(CAP_SYS_ADMIN))
998		return -EPERM;
999	if (!old_name || !*old_name)
1000		return -EINVAL;
1001	err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1002	if (err)
1003		return err;
1004
1005	down_write(&namespace_sem);
1006	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1007		;
1008	err = -EINVAL;
1009	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
1010		goto out;
1011
1012	err = -ENOENT;
1013	mutex_lock(&nd->dentry->d_inode->i_mutex);
1014	if (IS_DEADDIR(nd->dentry->d_inode))
1015		goto out1;
1016
1017	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
1018		goto out1;
1019
1020	err = -EINVAL;
1021	if (old_nd.dentry != old_nd.mnt->mnt_root)
1022		goto out1;
1023
1024	if (old_nd.mnt == old_nd.mnt->mnt_parent)
1025		goto out1;
1026
1027	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
1028	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
1029		goto out1;
1030	/*
1031	 * Don't move a mount residing in a shared parent.
1032	 */
1033	if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
1034		goto out1;
1035	/*
1036	 * Don't move a mount tree containing unbindable mounts to a destination
1037	 * mount which is shared.
1038	 */
1039	if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
1040		goto out1;
1041	err = -ELOOP;
1042	for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
1043		if (p == old_nd.mnt)
1044			goto out1;
1045
1046	if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
1047		goto out1;
1048
1049	spin_lock(&vfsmount_lock);
1050	/* if the mount is moved, it should no longer be expire
1051	 * automatically */
1052	list_del_init(&old_nd.mnt->mnt_expire);
1053	spin_unlock(&vfsmount_lock);
1054out1:
1055	mutex_unlock(&nd->dentry->d_inode->i_mutex);
1056out:
1057	up_write(&namespace_sem);
1058	if (!err)
1059		path_release(&parent_nd);
1060	path_release(&old_nd);
1061	return err;
1062}
1063
1064/*
1065 * create a new mount for userspace and request it to be added into the
1066 * namespace's tree
1067 */
1068static int do_new_mount(struct nameidata *nd, char *type, int flags,
1069			int mnt_flags, char *name, void *data)
1070{
1071	struct vfsmount *mnt;
1072
1073	if (!type || !memchr(type, 0, PAGE_SIZE))
1074		return -EINVAL;
1075
1076	/* we need capabilities... */
1077	if (!capable(CAP_SYS_ADMIN))
1078		return -EPERM;
1079
1080	mnt = do_kern_mount(type, flags, name, data);
1081	if (IS_ERR(mnt))
1082		return PTR_ERR(mnt);
1083
1084	return do_add_mount(mnt, nd, mnt_flags, NULL);
1085}
1086
1087/*
1088 * add a mount into a namespace's mount tree
1089 * - provide the option of adding the new mount to an expiration list
1090 */
1091int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1092		 int mnt_flags, struct list_head *fslist)
1093{
1094	int err;
1095
1096	down_write(&namespace_sem);
1097	/* Something was mounted here while we slept */
1098	while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
1099		;
1100	err = -EINVAL;
1101	if (!check_mnt(nd->mnt))
1102		goto unlock;
1103
1104	/* Refuse the same filesystem on the same mount point */
1105	err = -EBUSY;
1106	if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
1107	    nd->mnt->mnt_root == nd->dentry)
1108		goto unlock;
1109
1110	err = -EINVAL;
1111	if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1112		goto unlock;
1113
1114	newmnt->mnt_flags = mnt_flags;
1115	if ((err = graft_tree(newmnt, nd)))
1116		goto unlock;
1117
1118	if (fslist) {
1119		/* add to the specified expiration list */
1120		spin_lock(&vfsmount_lock);
1121		list_add_tail(&newmnt->mnt_expire, fslist);
1122		spin_unlock(&vfsmount_lock);
1123	}
1124	up_write(&namespace_sem);
1125	return 0;
1126
1127unlock:
1128	up_write(&namespace_sem);
1129	mntput(newmnt);
1130	return err;
1131}
1132
1133EXPORT_SYMBOL_GPL(do_add_mount);
1134
1135static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
1136				struct list_head *umounts)
1137{
1138	spin_lock(&vfsmount_lock);
1139
1140	/*
1141	 * Check if mount is still attached, if not, let whoever holds it deal
1142	 * with the sucker
1143	 */
1144	if (mnt->mnt_parent == mnt) {
1145		spin_unlock(&vfsmount_lock);
1146		return;
1147	}
1148
1149	/*
1150	 * Check that it is still dead: the count should now be 2 - as
1151	 * contributed by the vfsmount parent and the mntget above
1152	 */
1153	if (!propagate_mount_busy(mnt, 2)) {
1154		/* delete from the namespace */
1155		touch_mnt_namespace(mnt->mnt_ns);
1156		list_del_init(&mnt->mnt_list);
1157		mnt->mnt_ns = NULL;
1158		umount_tree(mnt, 1, umounts);
1159		spin_unlock(&vfsmount_lock);
1160	} else {
1161		/*
1162		 * Someone brought it back to life whilst we didn't have any
1163		 * locks held so return it to the expiration list
1164		 */
1165		list_add_tail(&mnt->mnt_expire, mounts);
1166		spin_unlock(&vfsmount_lock);
1167	}
1168}
1169
1170/*
1171 * go through the vfsmounts we've just consigned to the graveyard to
1172 * - check that they're still dead
1173 * - delete the vfsmount from the appropriate namespace under lock
1174 * - dispose of the corpse
1175 */
1176static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
1177{
1178	struct mnt_namespace *ns;
1179	struct vfsmount *mnt;
1180
1181	while (!list_empty(graveyard)) {
1182		LIST_HEAD(umounts);
1183		mnt = list_first_entry(graveyard, struct vfsmount, mnt_expire);
1184		list_del_init(&mnt->mnt_expire);
1185
1186		/* don't do anything if the namespace is dead - all the
1187		 * vfsmounts from it are going away anyway */
1188		ns = mnt->mnt_ns;
1189		if (!ns || !ns->root)
1190			continue;
1191		get_mnt_ns(ns);
1192
1193		spin_unlock(&vfsmount_lock);
1194		down_write(&namespace_sem);
1195		expire_mount(mnt, mounts, &umounts);
1196		up_write(&namespace_sem);
1197		release_mounts(&umounts);
1198		mntput(mnt);
1199		put_mnt_ns(ns);
1200		spin_lock(&vfsmount_lock);
1201	}
1202}
1203
1204/*
1205 * process a list of expirable mountpoints with the intent of discarding any
1206 * mountpoints that aren't in use and haven't been touched since last we came
1207 * here
1208 */
1209void mark_mounts_for_expiry(struct list_head *mounts)
1210{
1211	struct vfsmount *mnt, *next;
1212	LIST_HEAD(graveyard);
1213
1214	if (list_empty(mounts))
1215		return;
1216
1217	spin_lock(&vfsmount_lock);
1218
1219	/* extract from the expiration list every vfsmount that matches the
1220	 * following criteria:
1221	 * - only referenced by its parent vfsmount
1222	 * - still marked for expiry (marked on the last call here; marks are
1223	 *   cleared by mntput())
1224	 */
1225	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1226		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1227		    atomic_read(&mnt->mnt_count) != 1)
1228			continue;
1229
1230		mntget(mnt);
1231		list_move(&mnt->mnt_expire, &graveyard);
1232	}
1233
1234	expire_mount_list(&graveyard, mounts);
1235
1236	spin_unlock(&vfsmount_lock);
1237}
1238
1239EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1240
1241/*
1242 * Ripoff of 'select_parent()'
1243 *
1244 * search the list of submounts for a given mountpoint, and move any
1245 * shrinkable submounts to the 'graveyard' list.
1246 */
1247static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1248{
1249	struct vfsmount *this_parent = parent;
1250	struct list_head *next;
1251	int found = 0;
1252
1253repeat:
1254	next = this_parent->mnt_mounts.next;
1255resume:
1256	while (next != &this_parent->mnt_mounts) {
1257		struct list_head *tmp = next;
1258		struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1259
1260		next = tmp->next;
1261		if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1262			continue;
1263		/*
1264		 * Descend a level if the d_mounts list is non-empty.
1265		 */
1266		if (!list_empty(&mnt->mnt_mounts)) {
1267			this_parent = mnt;
1268			goto repeat;
1269		}
1270
1271		if (!propagate_mount_busy(mnt, 1)) {
1272			mntget(mnt);
1273			list_move_tail(&mnt->mnt_expire, graveyard);
1274			found++;
1275		}
1276	}
1277	/*
1278	 * All done at this level ... ascend and resume the search
1279	 */
1280	if (this_parent != parent) {
1281		next = this_parent->mnt_child.next;
1282		this_parent = this_parent->mnt_parent;
1283		goto resume;
1284	}
1285	return found;
1286}
1287
1288/*
1289 * process a list of expirable mountpoints with the intent of discarding any
1290 * submounts of a specific parent mountpoint
1291 */
1292void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
1293{
1294	LIST_HEAD(graveyard);
1295	int found;
1296
1297	spin_lock(&vfsmount_lock);
1298
1299	/* extract submounts of 'mountpoint' from the expiration list */
1300	while ((found = select_submounts(mountpoint, &graveyard)) != 0)
1301		expire_mount_list(&graveyard, mounts);
1302
1303	spin_unlock(&vfsmount_lock);
1304}
1305
1306EXPORT_SYMBOL_GPL(shrink_submounts);
1307
1308/*
1309 * Some copy_from_user() implementations do not return the exact number of
1310 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
1311 * Note that this function differs from copy_from_user() in that it will oops
1312 * on bad values of `to', rather than returning a short copy.
1313 */
1314static long exact_copy_from_user(void *to, const void __user * from,
1315				 unsigned long n)
1316{
1317	char *t = to;
1318	const char __user *f = from;
1319	char c;
1320
1321	if (!access_ok(VERIFY_READ, from, n))
1322		return n;
1323
1324	while (n) {
1325		if (__get_user(c, f)) {
1326			memset(t, 0, n);
1327			break;
1328		}
1329		*t++ = c;
1330		f++;
1331		n--;
1332	}
1333	return n;
1334}
1335
1336int copy_mount_options(const void __user * data, unsigned long *where)
1337{
1338	int i;
1339	unsigned long page;
1340	unsigned long size;
1341
1342	*where = 0;
1343	if (!data)
1344		return 0;
1345
1346	if (!(page = __get_free_page(GFP_KERNEL)))
1347		return -ENOMEM;
1348
1349	/* We only care that *some* data at the address the user
1350	 * gave us is valid.  Just in case, we'll zero
1351	 * the remainder of the page.
1352	 */
1353	/* copy_from_user cannot cross TASK_SIZE ! */
1354	size = TASK_SIZE - (unsigned long)data;
1355	if (size > PAGE_SIZE)
1356		size = PAGE_SIZE;
1357
1358	i = size - exact_copy_from_user((void *)page, data, size);
1359	if (!i) {
1360		free_page(page);
1361		return -EFAULT;
1362	}
1363	if (i != PAGE_SIZE)
1364		memset((char *)page + i, 0, PAGE_SIZE - i);
1365	*where = page;
1366	return 0;
1367}
1368
1369/*
1370 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1371 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1372 *
1373 * data is a (void *) that can point to any structure up to
1374 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1375 * information (or be NULL).
1376 *
1377 * Pre-0.97 versions of mount() didn't have a flags word.
1378 * When the flags word was introduced its top half was required
1379 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1380 * Therefore, if this magic number is present, it carries no information
1381 * and must be discarded.
1382 */
1383long do_mount(char *dev_name, char *dir_name, char *type_page,
1384		  unsigned long flags, void *data_page)
1385{
1386	struct nameidata nd;
1387	int retval = 0;
1388	int mnt_flags = 0;
1389
1390	/* Discard magic */
1391	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1392		flags &= ~MS_MGC_MSK;
1393
1394	/* Basic sanity checks */
1395
1396	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1397		return -EINVAL;
1398	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1399		return -EINVAL;
1400
1401	if (data_page)
1402		((char *)data_page)[PAGE_SIZE - 1] = 0;
1403
1404	/* Separate the per-mountpoint flags */
1405	if (flags & MS_NOSUID)
1406		mnt_flags |= MNT_NOSUID;
1407	if (flags & MS_NODEV)
1408		mnt_flags |= MNT_NODEV;
1409	if (flags & MS_NOEXEC)
1410		mnt_flags |= MNT_NOEXEC;
1411	if (flags & MS_NOATIME)
1412		mnt_flags |= MNT_NOATIME;
1413	if (flags & MS_NODIRATIME)
1414		mnt_flags |= MNT_NODIRATIME;
1415	if (flags & MS_RELATIME)
1416		mnt_flags |= MNT_RELATIME;
1417
1418	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
1419		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME);
1420
1421	/* ... and get the mountpoint */
1422	retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1423	if (retval)
1424		return retval;
1425
1426	retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
1427	if (retval)
1428		goto dput_out;
1429
1430	if (flags & MS_REMOUNT)
1431		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1432				    data_page);
1433	else if (flags & MS_BIND)
1434		retval = do_loopback(&nd, dev_name, flags & MS_REC);
1435	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1436		retval = do_change_type(&nd, flags);
1437	else if (flags & MS_MOVE)
1438		retval = do_move_mount(&nd, dev_name);
1439	else
1440		retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1441				      dev_name, data_page);
1442dput_out:
1443	path_release(&nd);
1444	return retval;
1445}
1446
1447/*
1448 * Allocate a new namespace structure and populate it with contents
1449 * copied from the namespace of the passed in task structure.
1450 */
1451static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
1452		struct fs_struct *fs)
1453{
1454	struct mnt_namespace *new_ns;
1455	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1456	struct vfsmount *p, *q;
1457
1458	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1459	if (!new_ns)
1460		return NULL;
1461
1462	atomic_set(&new_ns->count, 1);
1463	INIT_LIST_HEAD(&new_ns->list);
1464	init_waitqueue_head(&new_ns->poll);
1465	new_ns->event = 0;
1466
1467	down_write(&namespace_sem);
1468	/* First pass: copy the tree topology */
1469	new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
1470					CL_COPY_ALL | CL_EXPIRE);
1471	if (!new_ns->root) {
1472		up_write(&namespace_sem);
1473		kfree(new_ns);
1474		return NULL;
1475	}
1476	spin_lock(&vfsmount_lock);
1477	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1478	spin_unlock(&vfsmount_lock);
1479
1480	/*
1481	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
1482	 * as belonging to new namespace.  We have already acquired a private
1483	 * fs_struct, so tsk->fs->lock is not needed.
1484	 */
1485	p = mnt_ns->root;
1486	q = new_ns->root;
1487	while (p) {
1488		q->mnt_ns = new_ns;
1489		if (fs) {
1490			if (p == fs->rootmnt) {
1491				rootmnt = p;
1492				fs->rootmnt = mntget(q);
1493			}
1494			if (p == fs->pwdmnt) {
1495				pwdmnt = p;
1496				fs->pwdmnt = mntget(q);
1497			}
1498			if (p == fs->altrootmnt) {
1499				altrootmnt = p;
1500				fs->altrootmnt = mntget(q);
1501			}
1502		}
1503		p = next_mnt(p, mnt_ns->root);
1504		q = next_mnt(q, new_ns->root);
1505	}
1506	up_write(&namespace_sem);
1507
1508	if (rootmnt)
1509		mntput(rootmnt);
1510	if (pwdmnt)
1511		mntput(pwdmnt);
1512	if (altrootmnt)
1513		mntput(altrootmnt);
1514
1515	return new_ns;
1516}
1517
1518struct mnt_namespace *copy_mnt_ns(int flags, struct mnt_namespace *ns,
1519		struct fs_struct *new_fs)
1520{
1521	struct mnt_namespace *new_ns;
1522
1523	BUG_ON(!ns);
1524	get_mnt_ns(ns);
1525
1526	if (!(flags & CLONE_NEWNS))
1527		return ns;
1528
1529	new_ns = dup_mnt_ns(ns, new_fs);
1530
1531	put_mnt_ns(ns);
1532	return new_ns;
1533}
1534
1535asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
1536			  char __user * type, unsigned long flags,
1537			  void __user * data)
1538{
1539	int retval;
1540	unsigned long data_page;
1541	unsigned long type_page;
1542	unsigned long dev_page;
1543	char *dir_page;
1544
1545	retval = copy_mount_options(type, &type_page);
1546	if (retval < 0)
1547		return retval;
1548
1549	dir_page = getname(dir_name);
1550	retval = PTR_ERR(dir_page);
1551	if (IS_ERR(dir_page))
1552		goto out1;
1553
1554	retval = copy_mount_options(dev_name, &dev_page);
1555	if (retval < 0)
1556		goto out2;
1557
1558	retval = copy_mount_options(data, &data_page);
1559	if (retval < 0)
1560		goto out3;
1561
1562	lock_kernel();
1563	retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
1564			  flags, (void *)data_page);
1565	unlock_kernel();
1566	free_page(data_page);
1567
1568out3:
1569	free_page(dev_page);
1570out2:
1571	putname(dir_page);
1572out1:
1573	free_page(type_page);
1574	return retval;
1575}
1576
1577/*
1578 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
1579 * It can block. Requires the big lock held.
1580 */
1581void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
1582		 struct dentry *dentry)
1583{
1584	struct dentry *old_root;
1585	struct vfsmount *old_rootmnt;
1586	write_lock(&fs->lock);
1587	old_root = fs->root;
1588	old_rootmnt = fs->rootmnt;
1589	fs->rootmnt = mntget(mnt);
1590	fs->root = dget(dentry);
1591	write_unlock(&fs->lock);
1592	if (old_root) {
1593		dput(old_root);
1594		mntput(old_rootmnt);
1595	}
1596}
1597
1598/*
1599 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
1600 * It can block. Requires the big lock held.
1601 */
1602void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
1603		struct dentry *dentry)
1604{
1605	struct dentry *old_pwd;
1606	struct vfsmount *old_pwdmnt;
1607
1608	write_lock(&fs->lock);
1609	old_pwd = fs->pwd;
1610	old_pwdmnt = fs->pwdmnt;
1611	fs->pwdmnt = mntget(mnt);
1612	fs->pwd = dget(dentry);
1613	write_unlock(&fs->lock);
1614
1615	if (old_pwd) {
1616		dput(old_pwd);
1617		mntput(old_pwdmnt);
1618	}
1619}
1620
1621static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
1622{
1623	struct task_struct *g, *p;
1624	struct fs_struct *fs;
1625
1626	read_lock(&tasklist_lock);
1627	do_each_thread(g, p) {
1628		task_lock(p);
1629		fs = p->fs;
1630		if (fs) {
1631			atomic_inc(&fs->count);
1632			task_unlock(p);
1633			if (fs->root == old_nd->dentry
1634			    && fs->rootmnt == old_nd->mnt)
1635				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
1636			if (fs->pwd == old_nd->dentry
1637			    && fs->pwdmnt == old_nd->mnt)
1638				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
1639			put_fs_struct(fs);
1640		} else
1641			task_unlock(p);
1642	} while_each_thread(g, p);
1643	read_unlock(&tasklist_lock);
1644}
1645
1646/*
1647 * pivot_root Semantics:
1648 * Moves the root file system of the current process to the directory put_old,
1649 * makes new_root as the new root file system of the current process, and sets
1650 * root/cwd of all processes which had them on the current root to new_root.
1651 *
1652 * Restrictions:
1653 * The new_root and put_old must be directories, and  must not be on the
1654 * same file  system as the current process root. The put_old  must  be
1655 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
1656 * pointed to by put_old must yield the same directory as new_root. No other
1657 * file system may be mounted on put_old. After all, new_root is a mountpoint.
1658 *
1659 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
1660 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
1661 * in this situation.
1662 *
1663 * Notes:
1664 *  - we don't move root/cwd if they are not at the root (reason: if something
1665 *    cared enough to change them, it's probably wrong to force them elsewhere)
1666 *  - it's okay to pick a root that isn't the root of a file system, e.g.
1667 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
1668 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
1669 *    first.
1670 */
1671asmlinkage long sys_pivot_root(const char __user * new_root,
1672			       const char __user * put_old)
1673{
1674	struct vfsmount *tmp;
1675	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
1676	int error;
1677
1678	if (!capable(CAP_SYS_ADMIN))
1679		return -EPERM;
1680
1681	lock_kernel();
1682
1683	error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
1684			    &new_nd);
1685	if (error)
1686		goto out0;
1687	error = -EINVAL;
1688	if (!check_mnt(new_nd.mnt))
1689		goto out1;
1690
1691	error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1692	if (error)
1693		goto out1;
1694
1695	error = security_sb_pivotroot(&old_nd, &new_nd);
1696	if (error) {
1697		path_release(&old_nd);
1698		goto out1;
1699	}
1700
1701	read_lock(&current->fs->lock);
1702	user_nd.mnt = mntget(current->fs->rootmnt);
1703	user_nd.dentry = dget(current->fs->root);
1704	read_unlock(&current->fs->lock);
1705	down_write(&namespace_sem);
1706	mutex_lock(&old_nd.dentry->d_inode->i_mutex);
1707	error = -EINVAL;
1708	if (IS_MNT_SHARED(old_nd.mnt) ||
1709		IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
1710		IS_MNT_SHARED(user_nd.mnt->mnt_parent))
1711		goto out2;
1712	if (!check_mnt(user_nd.mnt))
1713		goto out2;
1714	error = -ENOENT;
1715	if (IS_DEADDIR(new_nd.dentry->d_inode))
1716		goto out2;
1717	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
1718		goto out2;
1719	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
1720		goto out2;
1721	error = -EBUSY;
1722	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
1723		goto out2; /* loop, on the same file system  */
1724	error = -EINVAL;
1725	if (user_nd.mnt->mnt_root != user_nd.dentry)
1726		goto out2; /* not a mountpoint */
1727	if (user_nd.mnt->mnt_parent == user_nd.mnt)
1728		goto out2; /* not attached */
1729	if (new_nd.mnt->mnt_root != new_nd.dentry)
1730		goto out2; /* not a mountpoint */
1731	if (new_nd.mnt->mnt_parent == new_nd.mnt)
1732		goto out2; /* not attached */
1733	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
1734	spin_lock(&vfsmount_lock);
1735	if (tmp != new_nd.mnt) {
1736		for (;;) {
1737			if (tmp->mnt_parent == tmp)
1738				goto out3; /* already mounted on put_old */
1739			if (tmp->mnt_parent == new_nd.mnt)
1740				break;
1741			tmp = tmp->mnt_parent;
1742		}
1743		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
1744			goto out3;
1745	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
1746		goto out3;
1747	detach_mnt(new_nd.mnt, &parent_nd);
1748	detach_mnt(user_nd.mnt, &root_parent);
1749	attach_mnt(user_nd.mnt, &old_nd);     /* mount old root on put_old */
1750	attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
1751	touch_mnt_namespace(current->nsproxy->mnt_ns);
1752	spin_unlock(&vfsmount_lock);
1753	chroot_fs_refs(&user_nd, &new_nd);
1754	security_sb_post_pivotroot(&user_nd, &new_nd);
1755	error = 0;
1756	path_release(&root_parent);
1757	path_release(&parent_nd);
1758out2:
1759	mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
1760	up_write(&namespace_sem);
1761	path_release(&user_nd);
1762	path_release(&old_nd);
1763out1:
1764	path_release(&new_nd);
1765out0:
1766	unlock_kernel();
1767	return error;
1768out3:
1769	spin_unlock(&vfsmount_lock);
1770	goto out2;
1771}
1772
1773static void __init init_mount_tree(void)
1774{
1775	struct vfsmount *mnt;
1776	struct mnt_namespace *ns;
1777
1778	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1779	if (IS_ERR(mnt))
1780		panic("Can't create rootfs");
1781	ns = kmalloc(sizeof(*ns), GFP_KERNEL);
1782	if (!ns)
1783		panic("Can't allocate initial namespace");
1784	atomic_set(&ns->count, 1);
1785	INIT_LIST_HEAD(&ns->list);
1786	init_waitqueue_head(&ns->poll);
1787	ns->event = 0;
1788	list_add(&mnt->mnt_list, &ns->list);
1789	ns->root = mnt;
1790	mnt->mnt_ns = ns;
1791
1792	init_task.nsproxy->mnt_ns = ns;
1793	get_mnt_ns(ns);
1794
1795	set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
1796	set_fs_root(current->fs, ns->root, ns->root->mnt_root);
1797}
1798
1799void __init mnt_init(unsigned long mempages)
1800{
1801	struct list_head *d;
1802	unsigned int nr_hash;
1803	int i;
1804	int err;
1805
1806	init_rwsem(&namespace_sem);
1807
1808	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1809			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
1810
1811	mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1812
1813	if (!mount_hashtable)
1814		panic("Failed to allocate mount hash table\n");
1815
1816	/*
1817	 * Find the power-of-two list-heads that can fit into the allocation..
1818	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1819	 * a power-of-two.
1820	 */
1821	nr_hash = PAGE_SIZE / sizeof(struct list_head);
1822	hash_bits = 0;
1823	do {
1824		hash_bits++;
1825	} while ((nr_hash >> hash_bits) != 0);
1826	hash_bits--;
1827
1828	/*
1829	 * Re-calculate the actual number of entries and the mask
1830	 * from the number of bits we can fit.
1831	 */
1832	nr_hash = 1UL << hash_bits;
1833	hash_mask = nr_hash - 1;
1834
1835	printk("Mount-cache hash table entries: %d\n", nr_hash);
1836
1837	/* And initialize the newly allocated array */
1838	d = mount_hashtable;
1839	i = nr_hash;
1840	do {
1841		INIT_LIST_HEAD(d);
1842		d++;
1843		i--;
1844	} while (i);
1845	err = sysfs_init();
1846	if (err)
1847		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
1848			__FUNCTION__, err);
1849	err = subsystem_register(&fs_subsys);
1850	if (err)
1851		printk(KERN_WARNING "%s: subsystem_register error: %d\n",
1852			__FUNCTION__, err);
1853	init_rootfs();
1854	init_mount_tree();
1855}
1856
1857void __put_mnt_ns(struct mnt_namespace *ns)
1858{
1859	struct vfsmount *root = ns->root;
1860	LIST_HEAD(umount_list);
1861	ns->root = NULL;
1862	spin_unlock(&vfsmount_lock);
1863	down_write(&namespace_sem);
1864	spin_lock(&vfsmount_lock);
1865	umount_tree(root, 0, &umount_list);
1866	spin_unlock(&vfsmount_lock);
1867	up_write(&namespace_sem);
1868	release_mounts(&umount_list);
1869	kfree(ns);
1870}
1871