1/*
2 *  linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 *  from
10 *
11 *  linux/fs/minix/inode.c
12 *
13 *  Copyright (C) 1991, 1992  Linus Torvalds
14 *
15 *  Goal-directed block allocation by Stephen Tweedie
16 *	(sct@redhat.com), 1993, 1998
17 *  Big-endian to little-endian byte-swapping/bitmaps by
18 *        David S. Miller (davem@caip.rutgers.edu), 1995
19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
20 *	(jj@sunsite.ms.mff.cuni.cz)
21 *
22 *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
39#include "xattr.h"
40#include "acl.h"
41
42static int ext3_writepage_trans_blocks(struct inode *inode);
43
44/*
45 * Test whether an inode is a fast symlink.
46 */
47static int ext3_inode_is_fast_symlink(struct inode *inode)
48{
49	int ea_blocks = EXT3_I(inode)->i_file_acl ?
50		(inode->i_sb->s_blocksize >> 9) : 0;
51
52	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
53}
54
55/*
56 * The ext3 forget function must perform a revoke if we are freeing data
57 * which has been journaled.  Metadata (eg. indirect blocks) must be
58 * revoked in all cases.
59 *
60 * "bh" may be NULL: a metadata block may have been freed from memory
61 * but there may still be a record of it in the journal, and that record
62 * still needs to be revoked.
63 */
64int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
65			struct buffer_head *bh, ext3_fsblk_t blocknr)
66{
67	int err;
68
69	might_sleep();
70
71	BUFFER_TRACE(bh, "enter");
72
73	jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
74		  "data mode %lx\n",
75		  bh, is_metadata, inode->i_mode,
76		  test_opt(inode->i_sb, DATA_FLAGS));
77
78	/* Never use the revoke function if we are doing full data
79	 * journaling: there is no need to, and a V1 superblock won't
80	 * support it.  Otherwise, only skip the revoke on un-journaled
81	 * data blocks. */
82
83	if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
84	    (!is_metadata && !ext3_should_journal_data(inode))) {
85		if (bh) {
86			BUFFER_TRACE(bh, "call journal_forget");
87			return ext3_journal_forget(handle, bh);
88		}
89		return 0;
90	}
91
92	/*
93	 * data!=journal && (is_metadata || should_journal_data(inode))
94	 */
95	BUFFER_TRACE(bh, "call ext3_journal_revoke");
96	err = ext3_journal_revoke(handle, blocknr, bh);
97	if (err)
98		ext3_abort(inode->i_sb, __FUNCTION__,
99			   "error %d when attempting revoke", err);
100	BUFFER_TRACE(bh, "exit");
101	return err;
102}
103
104/*
105 * Work out how many blocks we need to proceed with the next chunk of a
106 * truncate transaction.
107 */
108static unsigned long blocks_for_truncate(struct inode *inode)
109{
110	unsigned long needed;
111
112	needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
113
114	/* Give ourselves just enough room to cope with inodes in which
115	 * i_blocks is corrupt: we've seen disk corruptions in the past
116	 * which resulted in random data in an inode which looked enough
117	 * like a regular file for ext3 to try to delete it.  Things
118	 * will go a bit crazy if that happens, but at least we should
119	 * try not to panic the whole kernel. */
120	if (needed < 2)
121		needed = 2;
122
123	/* But we need to bound the transaction so we don't overflow the
124	 * journal. */
125	if (needed > EXT3_MAX_TRANS_DATA)
126		needed = EXT3_MAX_TRANS_DATA;
127
128	return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
129}
130
131/*
132 * Truncate transactions can be complex and absolutely huge.  So we need to
133 * be able to restart the transaction at a conventient checkpoint to make
134 * sure we don't overflow the journal.
135 *
136 * start_transaction gets us a new handle for a truncate transaction,
137 * and extend_transaction tries to extend the existing one a bit.  If
138 * extend fails, we need to propagate the failure up and restart the
139 * transaction in the top-level truncate loop. --sct
140 */
141static handle_t *start_transaction(struct inode *inode)
142{
143	handle_t *result;
144
145	result = ext3_journal_start(inode, blocks_for_truncate(inode));
146	if (!IS_ERR(result))
147		return result;
148
149	ext3_std_error(inode->i_sb, PTR_ERR(result));
150	return result;
151}
152
153/*
154 * Try to extend this transaction for the purposes of truncation.
155 *
156 * Returns 0 if we managed to create more room.  If we can't create more
157 * room, and the transaction must be restarted we return 1.
158 */
159static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
160{
161	if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
162		return 0;
163	if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
164		return 0;
165	return 1;
166}
167
168/*
169 * Restart the transaction associated with *handle.  This does a commit,
170 * so before we call here everything must be consistently dirtied against
171 * this transaction.
172 */
173static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
174{
175	jbd_debug(2, "restarting handle %p\n", handle);
176	return ext3_journal_restart(handle, blocks_for_truncate(inode));
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
182void ext3_delete_inode (struct inode * inode)
183{
184	handle_t *handle;
185
186	truncate_inode_pages(&inode->i_data, 0);
187
188	if (is_bad_inode(inode))
189		goto no_delete;
190
191	handle = start_transaction(inode);
192	if (IS_ERR(handle)) {
193		/*
194		 * If we're going to skip the normal cleanup, we still need to
195		 * make sure that the in-core orphan linked list is properly
196		 * cleaned up.
197		 */
198		ext3_orphan_del(NULL, inode);
199		goto no_delete;
200	}
201
202	if (IS_SYNC(inode))
203		handle->h_sync = 1;
204	inode->i_size = 0;
205	if (inode->i_blocks)
206		ext3_truncate(inode);
207	/*
208	 * Kill off the orphan record which ext3_truncate created.
209	 * AKPM: I think this can be inside the above `if'.
210	 * Note that ext3_orphan_del() has to be able to cope with the
211	 * deletion of a non-existent orphan - this is because we don't
212	 * know if ext3_truncate() actually created an orphan record.
213	 * (Well, we could do this if we need to, but heck - it works)
214	 */
215	ext3_orphan_del(handle, inode);
216	EXT3_I(inode)->i_dtime	= get_seconds();
217
218	/*
219	 * One subtle ordering requirement: if anything has gone wrong
220	 * (transaction abort, IO errors, whatever), then we can still
221	 * do these next steps (the fs will already have been marked as
222	 * having errors), but we can't free the inode if the mark_dirty
223	 * fails.
224	 */
225	if (ext3_mark_inode_dirty(handle, inode))
226		/* If that failed, just do the required in-core inode clear. */
227		clear_inode(inode);
228	else
229		ext3_free_inode(handle, inode);
230	ext3_journal_stop(handle);
231	return;
232no_delete:
233	clear_inode(inode);	/* We must guarantee clearing of inode... */
234}
235
236typedef struct {
237	__le32	*p;
238	__le32	key;
239	struct buffer_head *bh;
240} Indirect;
241
242static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
243{
244	p->key = *(p->p = v);
245	p->bh = bh;
246}
247
248static int verify_chain(Indirect *from, Indirect *to)
249{
250	while (from <= to && from->key == *from->p)
251		from++;
252	return (from > to);
253}
254
255/**
256 *	ext3_block_to_path - parse the block number into array of offsets
257 *	@inode: inode in question (we are only interested in its superblock)
258 *	@i_block: block number to be parsed
259 *	@offsets: array to store the offsets in
260 *      @boundary: set this non-zero if the referred-to block is likely to be
261 *             followed (on disk) by an indirect block.
262 *
263 *	To store the locations of file's data ext3 uses a data structure common
264 *	for UNIX filesystems - tree of pointers anchored in the inode, with
265 *	data blocks at leaves and indirect blocks in intermediate nodes.
266 *	This function translates the block number into path in that tree -
267 *	return value is the path length and @offsets[n] is the offset of
268 *	pointer to (n+1)th node in the nth one. If @block is out of range
269 *	(negative or too large) warning is printed and zero returned.
270 *
271 *	Note: function doesn't find node addresses, so no IO is needed. All
272 *	we need to know is the capacity of indirect blocks (taken from the
273 *	inode->i_sb).
274 */
275
276/*
277 * Portability note: the last comparison (check that we fit into triple
278 * indirect block) is spelled differently, because otherwise on an
279 * architecture with 32-bit longs and 8Kb pages we might get into trouble
280 * if our filesystem had 8Kb blocks. We might use long long, but that would
281 * kill us on x86. Oh, well, at least the sign propagation does not matter -
282 * i_block would have to be negative in the very beginning, so we would not
283 * get there at all.
284 */
285
286static int ext3_block_to_path(struct inode *inode,
287			long i_block, int offsets[4], int *boundary)
288{
289	int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
290	int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
291	const long direct_blocks = EXT3_NDIR_BLOCKS,
292		indirect_blocks = ptrs,
293		double_blocks = (1 << (ptrs_bits * 2));
294	int n = 0;
295	int final = 0;
296
297	if (i_block < 0) {
298		ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
299	} else if (i_block < direct_blocks) {
300		offsets[n++] = i_block;
301		final = direct_blocks;
302	} else if ( (i_block -= direct_blocks) < indirect_blocks) {
303		offsets[n++] = EXT3_IND_BLOCK;
304		offsets[n++] = i_block;
305		final = ptrs;
306	} else if ((i_block -= indirect_blocks) < double_blocks) {
307		offsets[n++] = EXT3_DIND_BLOCK;
308		offsets[n++] = i_block >> ptrs_bits;
309		offsets[n++] = i_block & (ptrs - 1);
310		final = ptrs;
311	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
312		offsets[n++] = EXT3_TIND_BLOCK;
313		offsets[n++] = i_block >> (ptrs_bits * 2);
314		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
315		offsets[n++] = i_block & (ptrs - 1);
316		final = ptrs;
317	} else {
318		ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
319	}
320	if (boundary)
321		*boundary = final - 1 - (i_block & (ptrs - 1));
322	return n;
323}
324
325/**
326 *	ext3_get_branch - read the chain of indirect blocks leading to data
327 *	@inode: inode in question
328 *	@depth: depth of the chain (1 - direct pointer, etc.)
329 *	@offsets: offsets of pointers in inode/indirect blocks
330 *	@chain: place to store the result
331 *	@err: here we store the error value
332 *
333 *	Function fills the array of triples <key, p, bh> and returns %NULL
334 *	if everything went OK or the pointer to the last filled triple
335 *	(incomplete one) otherwise. Upon the return chain[i].key contains
336 *	the number of (i+1)-th block in the chain (as it is stored in memory,
337 *	i.e. little-endian 32-bit), chain[i].p contains the address of that
338 *	number (it points into struct inode for i==0 and into the bh->b_data
339 *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect
340 *	block for i>0 and NULL for i==0. In other words, it holds the block
341 *	numbers of the chain, addresses they were taken from (and where we can
342 *	verify that chain did not change) and buffer_heads hosting these
343 *	numbers.
344 *
345 *	Function stops when it stumbles upon zero pointer (absent block)
346 *		(pointer to last triple returned, *@err == 0)
347 *	or when it gets an IO error reading an indirect block
348 *		(ditto, *@err == -EIO)
349 *	or when it notices that chain had been changed while it was reading
350 *		(ditto, *@err == -EAGAIN)
351 *	or when it reads all @depth-1 indirect blocks successfully and finds
352 *	the whole chain, all way to the data (returns %NULL, *err == 0).
353 */
354static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
355				 Indirect chain[4], int *err)
356{
357	struct super_block *sb = inode->i_sb;
358	Indirect *p = chain;
359	struct buffer_head *bh;
360
361	*err = 0;
362	/* i_data is not going away, no lock needed */
363	add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
364	if (!p->key)
365		goto no_block;
366	while (--depth) {
367		bh = sb_bread(sb, le32_to_cpu(p->key));
368		if (!bh)
369			goto failure;
370		/* Reader: pointers */
371		if (!verify_chain(chain, p))
372			goto changed;
373		add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
374		/* Reader: end */
375		if (!p->key)
376			goto no_block;
377	}
378	return NULL;
379
380changed:
381	brelse(bh);
382	*err = -EAGAIN;
383	goto no_block;
384failure:
385	*err = -EIO;
386no_block:
387	return p;
388}
389
390/**
391 *	ext3_find_near - find a place for allocation with sufficient locality
392 *	@inode: owner
393 *	@ind: descriptor of indirect block.
394 *
395 *	This function returns the prefered place for block allocation.
396 *	It is used when heuristic for sequential allocation fails.
397 *	Rules are:
398 *	  + if there is a block to the left of our position - allocate near it.
399 *	  + if pointer will live in indirect block - allocate near that block.
400 *	  + if pointer will live in inode - allocate in the same
401 *	    cylinder group.
402 *
403 * In the latter case we colour the starting block by the callers PID to
404 * prevent it from clashing with concurrent allocations for a different inode
405 * in the same block group.   The PID is used here so that functionally related
406 * files will be close-by on-disk.
407 *
408 *	Caller must make sure that @ind is valid and will stay that way.
409 */
410static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
411{
412	struct ext3_inode_info *ei = EXT3_I(inode);
413	__le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
414	__le32 *p;
415	ext3_fsblk_t bg_start;
416	ext3_grpblk_t colour;
417
418	/* Try to find previous block */
419	for (p = ind->p - 1; p >= start; p--) {
420		if (*p)
421			return le32_to_cpu(*p);
422	}
423
424	/* No such thing, so let's try location of indirect block */
425	if (ind->bh)
426		return ind->bh->b_blocknr;
427
428	/*
429	 * It is going to be referred to from the inode itself? OK, just put it
430	 * into the same cylinder group then.
431	 */
432	bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
433	colour = (current->pid % 16) *
434			(EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
435	return bg_start + colour;
436}
437
438/**
439 *	ext3_find_goal - find a prefered place for allocation.
440 *	@inode: owner
441 *	@block:  block we want
442 *	@chain:  chain of indirect blocks
443 *	@partial: pointer to the last triple within a chain
444 *	@goal:	place to store the result.
445 *
446 *	Normally this function find the prefered place for block allocation,
447 *	stores it in *@goal and returns zero.
448 */
449
450static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
451		Indirect chain[4], Indirect *partial)
452{
453	struct ext3_block_alloc_info *block_i;
454
455	block_i =  EXT3_I(inode)->i_block_alloc_info;
456
457	/*
458	 * try the heuristic for sequential allocation,
459	 * failing that at least try to get decent locality.
460	 */
461	if (block_i && (block == block_i->last_alloc_logical_block + 1)
462		&& (block_i->last_alloc_physical_block != 0)) {
463		return block_i->last_alloc_physical_block + 1;
464	}
465
466	return ext3_find_near(inode, partial);
467}
468
469/**
470 *	ext3_blks_to_allocate: Look up the block map and count the number
471 *	of direct blocks need to be allocated for the given branch.
472 *
473 *	@branch: chain of indirect blocks
474 *	@k: number of blocks need for indirect blocks
475 *	@blks: number of data blocks to be mapped.
476 *	@blocks_to_boundary:  the offset in the indirect block
477 *
478 *	return the total number of blocks to be allocate, including the
479 *	direct and indirect blocks.
480 */
481static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
482		int blocks_to_boundary)
483{
484	unsigned long count = 0;
485
486	/*
487	 * Simple case, [t,d]Indirect block(s) has not allocated yet
488	 * then it's clear blocks on that path have not allocated
489	 */
490	if (k > 0) {
491		/* right now we don't handle cross boundary allocation */
492		if (blks < blocks_to_boundary + 1)
493			count += blks;
494		else
495			count += blocks_to_boundary + 1;
496		return count;
497	}
498
499	count++;
500	while (count < blks && count <= blocks_to_boundary &&
501		le32_to_cpu(*(branch[0].p + count)) == 0) {
502		count++;
503	}
504	return count;
505}
506
507/**
508 *	ext3_alloc_blocks: multiple allocate blocks needed for a branch
509 *	@indirect_blks: the number of blocks need to allocate for indirect
510 *			blocks
511 *
512 *	@new_blocks: on return it will store the new block numbers for
513 *	the indirect blocks(if needed) and the first direct block,
514 *	@blks:	on return it will store the total number of allocated
515 *		direct blocks
516 */
517static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
518			ext3_fsblk_t goal, int indirect_blks, int blks,
519			ext3_fsblk_t new_blocks[4], int *err)
520{
521	int target, i;
522	unsigned long count = 0;
523	int index = 0;
524	ext3_fsblk_t current_block = 0;
525	int ret = 0;
526
527	/*
528	 * Here we try to allocate the requested multiple blocks at once,
529	 * on a best-effort basis.
530	 * To build a branch, we should allocate blocks for
531	 * the indirect blocks(if not allocated yet), and at least
532	 * the first direct block of this branch.  That's the
533	 * minimum number of blocks need to allocate(required)
534	 */
535	target = blks + indirect_blks;
536
537	while (1) {
538		count = target;
539		/* allocating blocks for indirect blocks and direct blocks */
540		current_block = ext3_new_blocks(handle,inode,goal,&count,err);
541		if (*err)
542			goto failed_out;
543
544		target -= count;
545		/* allocate blocks for indirect blocks */
546		while (index < indirect_blks && count) {
547			new_blocks[index++] = current_block++;
548			count--;
549		}
550
551		if (count > 0)
552			break;
553	}
554
555	/* save the new block number for the first direct block */
556	new_blocks[index] = current_block;
557
558	/* total number of blocks allocated for direct blocks */
559	ret = count;
560	*err = 0;
561	return ret;
562failed_out:
563	for (i = 0; i <index; i++)
564		ext3_free_blocks(handle, inode, new_blocks[i], 1);
565	return ret;
566}
567
568/**
569 *	ext3_alloc_branch - allocate and set up a chain of blocks.
570 *	@inode: owner
571 *	@indirect_blks: number of allocated indirect blocks
572 *	@blks: number of allocated direct blocks
573 *	@offsets: offsets (in the blocks) to store the pointers to next.
574 *	@branch: place to store the chain in.
575 *
576 *	This function allocates blocks, zeroes out all but the last one,
577 *	links them into chain and (if we are synchronous) writes them to disk.
578 *	In other words, it prepares a branch that can be spliced onto the
579 *	inode. It stores the information about that chain in the branch[], in
580 *	the same format as ext3_get_branch() would do. We are calling it after
581 *	we had read the existing part of chain and partial points to the last
582 *	triple of that (one with zero ->key). Upon the exit we have the same
583 *	picture as after the successful ext3_get_block(), except that in one
584 *	place chain is disconnected - *branch->p is still zero (we did not
585 *	set the last link), but branch->key contains the number that should
586 *	be placed into *branch->p to fill that gap.
587 *
588 *	If allocation fails we free all blocks we've allocated (and forget
589 *	their buffer_heads) and return the error value the from failed
590 *	ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
591 *	as described above and return 0.
592 */
593static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
594			int indirect_blks, int *blks, ext3_fsblk_t goal,
595			int *offsets, Indirect *branch)
596{
597	int blocksize = inode->i_sb->s_blocksize;
598	int i, n = 0;
599	int err = 0;
600	struct buffer_head *bh;
601	int num;
602	ext3_fsblk_t new_blocks[4];
603	ext3_fsblk_t current_block;
604
605	num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
606				*blks, new_blocks, &err);
607	if (err)
608		return err;
609
610	branch[0].key = cpu_to_le32(new_blocks[0]);
611	/*
612	 * metadata blocks and data blocks are allocated.
613	 */
614	for (n = 1; n <= indirect_blks;  n++) {
615		/*
616		 * Get buffer_head for parent block, zero it out
617		 * and set the pointer to new one, then send
618		 * parent to disk.
619		 */
620		bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
621		branch[n].bh = bh;
622		lock_buffer(bh);
623		BUFFER_TRACE(bh, "call get_create_access");
624		err = ext3_journal_get_create_access(handle, bh);
625		if (err) {
626			unlock_buffer(bh);
627			brelse(bh);
628			goto failed;
629		}
630
631		memset(bh->b_data, 0, blocksize);
632		branch[n].p = (__le32 *) bh->b_data + offsets[n];
633		branch[n].key = cpu_to_le32(new_blocks[n]);
634		*branch[n].p = branch[n].key;
635		if ( n == indirect_blks) {
636			current_block = new_blocks[n];
637			/*
638			 * End of chain, update the last new metablock of
639			 * the chain to point to the new allocated
640			 * data blocks numbers
641			 */
642			for (i=1; i < num; i++)
643				*(branch[n].p + i) = cpu_to_le32(++current_block);
644		}
645		BUFFER_TRACE(bh, "marking uptodate");
646		set_buffer_uptodate(bh);
647		unlock_buffer(bh);
648
649		BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
650		err = ext3_journal_dirty_metadata(handle, bh);
651		if (err)
652			goto failed;
653	}
654	*blks = num;
655	return err;
656failed:
657	/* Allocation failed, free what we already allocated */
658	for (i = 1; i <= n ; i++) {
659		BUFFER_TRACE(branch[i].bh, "call journal_forget");
660		ext3_journal_forget(handle, branch[i].bh);
661	}
662	for (i = 0; i <indirect_blks; i++)
663		ext3_free_blocks(handle, inode, new_blocks[i], 1);
664
665	ext3_free_blocks(handle, inode, new_blocks[i], num);
666
667	return err;
668}
669
670/**
671 * ext3_splice_branch - splice the allocated branch onto inode.
672 * @inode: owner
673 * @block: (logical) number of block we are adding
674 * @chain: chain of indirect blocks (with a missing link - see
675 *	ext3_alloc_branch)
676 * @where: location of missing link
677 * @num:   number of indirect blocks we are adding
678 * @blks:  number of direct blocks we are adding
679 *
680 * This function fills the missing link and does all housekeeping needed in
681 * inode (->i_blocks, etc.). In case of success we end up with the full
682 * chain to new block and return 0.
683 */
684static int ext3_splice_branch(handle_t *handle, struct inode *inode,
685			long block, Indirect *where, int num, int blks)
686{
687	int i;
688	int err = 0;
689	struct ext3_block_alloc_info *block_i;
690	ext3_fsblk_t current_block;
691
692	block_i = EXT3_I(inode)->i_block_alloc_info;
693	/*
694	 * If we're splicing into a [td]indirect block (as opposed to the
695	 * inode) then we need to get write access to the [td]indirect block
696	 * before the splice.
697	 */
698	if (where->bh) {
699		BUFFER_TRACE(where->bh, "get_write_access");
700		err = ext3_journal_get_write_access(handle, where->bh);
701		if (err)
702			goto err_out;
703	}
704	/* That's it */
705
706	*where->p = where->key;
707
708	/*
709	 * Update the host buffer_head or inode to point to more just allocated
710	 * direct blocks blocks
711	 */
712	if (num == 0 && blks > 1) {
713		current_block = le32_to_cpu(where->key) + 1;
714		for (i = 1; i < blks; i++)
715			*(where->p + i ) = cpu_to_le32(current_block++);
716	}
717
718	/*
719	 * update the most recently allocated logical & physical block
720	 * in i_block_alloc_info, to assist find the proper goal block for next
721	 * allocation
722	 */
723	if (block_i) {
724		block_i->last_alloc_logical_block = block + blks - 1;
725		block_i->last_alloc_physical_block =
726				le32_to_cpu(where[num].key) + blks - 1;
727	}
728
729	/* We are done with atomic stuff, now do the rest of housekeeping */
730
731	inode->i_ctime = CURRENT_TIME_SEC;
732	ext3_mark_inode_dirty(handle, inode);
733
734	/* had we spliced it onto indirect block? */
735	if (where->bh) {
736		/*
737		 * If we spliced it onto an indirect block, we haven't
738		 * altered the inode.  Note however that if it is being spliced
739		 * onto an indirect block at the very end of the file (the
740		 * file is growing) then we *will* alter the inode to reflect
741		 * the new i_size.  But that is not done here - it is done in
742		 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
743		 */
744		jbd_debug(5, "splicing indirect only\n");
745		BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
746		err = ext3_journal_dirty_metadata(handle, where->bh);
747		if (err)
748			goto err_out;
749	} else {
750		/*
751		 * OK, we spliced it into the inode itself on a direct block.
752		 * Inode was dirtied above.
753		 */
754		jbd_debug(5, "splicing direct\n");
755	}
756	return err;
757
758err_out:
759	for (i = 1; i <= num; i++) {
760		BUFFER_TRACE(where[i].bh, "call journal_forget");
761		ext3_journal_forget(handle, where[i].bh);
762		ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
763	}
764	ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
765
766	return err;
767}
768
769/*
770 * Allocation strategy is simple: if we have to allocate something, we will
771 * have to go the whole way to leaf. So let's do it before attaching anything
772 * to tree, set linkage between the newborn blocks, write them if sync is
773 * required, recheck the path, free and repeat if check fails, otherwise
774 * set the last missing link (that will protect us from any truncate-generated
775 * removals - all blocks on the path are immune now) and possibly force the
776 * write on the parent block.
777 * That has a nice additional property: no special recovery from the failed
778 * allocations is needed - we simply release blocks and do not touch anything
779 * reachable from inode.
780 *
781 * `handle' can be NULL if create == 0.
782 *
783 * The BKL may not be held on entry here.  Be sure to take it early.
784 * return > 0, # of blocks mapped or allocated.
785 * return = 0, if plain lookup failed.
786 * return < 0, error case.
787 */
788int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
789		sector_t iblock, unsigned long maxblocks,
790		struct buffer_head *bh_result,
791		int create, int extend_disksize)
792{
793	int err = -EIO;
794	int offsets[4];
795	Indirect chain[4];
796	Indirect *partial;
797	ext3_fsblk_t goal;
798	int indirect_blks;
799	int blocks_to_boundary = 0;
800	int depth;
801	struct ext3_inode_info *ei = EXT3_I(inode);
802	int count = 0;
803	ext3_fsblk_t first_block = 0;
804
805
806	J_ASSERT(handle != NULL || create == 0);
807	depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
808
809	if (depth == 0)
810		goto out;
811
812	partial = ext3_get_branch(inode, depth, offsets, chain, &err);
813
814	/* Simplest case - block found, no allocation needed */
815	if (!partial) {
816		first_block = le32_to_cpu(chain[depth - 1].key);
817		clear_buffer_new(bh_result);
818		count++;
819		/*map more blocks*/
820		while (count < maxblocks && count <= blocks_to_boundary) {
821			ext3_fsblk_t blk;
822
823			if (!verify_chain(chain, partial)) {
824				/*
825				 * Indirect block might be removed by
826				 * truncate while we were reading it.
827				 * Handling of that case: forget what we've
828				 * got now. Flag the err as EAGAIN, so it
829				 * will reread.
830				 */
831				err = -EAGAIN;
832				count = 0;
833				break;
834			}
835			blk = le32_to_cpu(*(chain[depth-1].p + count));
836
837			if (blk == first_block + count)
838				count++;
839			else
840				break;
841		}
842		if (err != -EAGAIN)
843			goto got_it;
844	}
845
846	/* Next simple case - plain lookup or failed read of indirect block */
847	if (!create || err == -EIO)
848		goto cleanup;
849
850	mutex_lock(&ei->truncate_mutex);
851
852	/*
853	 * If the indirect block is missing while we are reading
854	 * the chain(ext3_get_branch() returns -EAGAIN err), or
855	 * if the chain has been changed after we grab the semaphore,
856	 * (either because another process truncated this branch, or
857	 * another get_block allocated this branch) re-grab the chain to see if
858	 * the request block has been allocated or not.
859	 *
860	 * Since we already block the truncate/other get_block
861	 * at this point, we will have the current copy of the chain when we
862	 * splice the branch into the tree.
863	 */
864	if (err == -EAGAIN || !verify_chain(chain, partial)) {
865		while (partial > chain) {
866			brelse(partial->bh);
867			partial--;
868		}
869		partial = ext3_get_branch(inode, depth, offsets, chain, &err);
870		if (!partial) {
871			count++;
872			mutex_unlock(&ei->truncate_mutex);
873			if (err)
874				goto cleanup;
875			clear_buffer_new(bh_result);
876			goto got_it;
877		}
878	}
879
880	/*
881	 * Okay, we need to do block allocation.  Lazily initialize the block
882	 * allocation info here if necessary
883	*/
884	if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
885		ext3_init_block_alloc_info(inode);
886
887	goal = ext3_find_goal(inode, iblock, chain, partial);
888
889	/* the number of blocks need to allocate for [d,t]indirect blocks */
890	indirect_blks = (chain + depth) - partial - 1;
891
892	/*
893	 * Next look up the indirect map to count the totoal number of
894	 * direct blocks to allocate for this branch.
895	 */
896	count = ext3_blks_to_allocate(partial, indirect_blks,
897					maxblocks, blocks_to_boundary);
898	/*
899	 * Block out ext3_truncate while we alter the tree
900	 */
901	err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
902				offsets + (partial - chain), partial);
903
904	/*
905	 * The ext3_splice_branch call will free and forget any buffers
906	 * on the new chain if there is a failure, but that risks using
907	 * up transaction credits, especially for bitmaps where the
908	 * credits cannot be returned.  Can we handle this somehow?  We
909	 * may need to return -EAGAIN upwards in the worst case.  --sct
910	 */
911	if (!err)
912		err = ext3_splice_branch(handle, inode, iblock,
913					partial, indirect_blks, count);
914	/*
915	 * i_disksize growing is protected by truncate_mutex.  Don't forget to
916	 * protect it if you're about to implement concurrent
917	 * ext3_get_block() -bzzz
918	*/
919	if (!err && extend_disksize && inode->i_size > ei->i_disksize)
920		ei->i_disksize = inode->i_size;
921	mutex_unlock(&ei->truncate_mutex);
922	if (err)
923		goto cleanup;
924
925	set_buffer_new(bh_result);
926got_it:
927	map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
928	if (count > blocks_to_boundary)
929		set_buffer_boundary(bh_result);
930	err = count;
931	/* Clean up and exit */
932	partial = chain + depth - 1;	/* the whole chain */
933cleanup:
934	while (partial > chain) {
935		BUFFER_TRACE(partial->bh, "call brelse");
936		brelse(partial->bh);
937		partial--;
938	}
939	BUFFER_TRACE(bh_result, "returned");
940out:
941	return err;
942}
943
944#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
945
946static int ext3_get_block(struct inode *inode, sector_t iblock,
947			struct buffer_head *bh_result, int create)
948{
949	handle_t *handle = ext3_journal_current_handle();
950	int ret = 0;
951	unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
952
953	if (!create)
954		goto get_block;		/* A read */
955
956	if (max_blocks == 1)
957		goto get_block;		/* A single block get */
958
959	if (handle->h_transaction->t_state == T_LOCKED) {
960		/*
961		 * Huge direct-io writes can hold off commits for long
962		 * periods of time.  Let this commit run.
963		 */
964		ext3_journal_stop(handle);
965		handle = ext3_journal_start(inode, DIO_CREDITS);
966		if (IS_ERR(handle))
967			ret = PTR_ERR(handle);
968		goto get_block;
969	}
970
971	if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
972		/*
973		 * Getting low on buffer credits...
974		 */
975		ret = ext3_journal_extend(handle, DIO_CREDITS);
976		if (ret > 0) {
977			/*
978			 * Couldn't extend the transaction.  Start a new one.
979			 */
980			ret = ext3_journal_restart(handle, DIO_CREDITS);
981		}
982	}
983
984get_block:
985	if (ret == 0) {
986		ret = ext3_get_blocks_handle(handle, inode, iblock,
987					max_blocks, bh_result, create, 0);
988		if (ret > 0) {
989			bh_result->b_size = (ret << inode->i_blkbits);
990			ret = 0;
991		}
992	}
993	return ret;
994}
995
996/*
997 * `handle' can be NULL if create is zero
998 */
999struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1000				long block, int create, int *errp)
1001{
1002	struct buffer_head dummy;
1003	int fatal = 0, err;
1004
1005	J_ASSERT(handle != NULL || create == 0);
1006
1007	dummy.b_state = 0;
1008	dummy.b_blocknr = -1000;
1009	buffer_trace_init(&dummy.b_history);
1010	err = ext3_get_blocks_handle(handle, inode, block, 1,
1011					&dummy, create, 1);
1012	/*
1013	 * ext3_get_blocks_handle() returns number of blocks
1014	 * mapped. 0 in case of a HOLE.
1015	 */
1016	if (err > 0) {
1017		if (err > 1)
1018			WARN_ON(1);
1019		err = 0;
1020	}
1021	*errp = err;
1022	if (!err && buffer_mapped(&dummy)) {
1023		struct buffer_head *bh;
1024		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1025		if (!bh) {
1026			*errp = -EIO;
1027			goto err;
1028		}
1029		if (buffer_new(&dummy)) {
1030			J_ASSERT(create != 0);
1031			J_ASSERT(handle != 0);
1032
1033			/*
1034			 * Now that we do not always journal data, we should
1035			 * keep in mind whether this should always journal the
1036			 * new buffer as metadata.  For now, regular file
1037			 * writes use ext3_get_block instead, so it's not a
1038			 * problem.
1039			 */
1040			lock_buffer(bh);
1041			BUFFER_TRACE(bh, "call get_create_access");
1042			fatal = ext3_journal_get_create_access(handle, bh);
1043			if (!fatal && !buffer_uptodate(bh)) {
1044				memset(bh->b_data,0,inode->i_sb->s_blocksize);
1045				set_buffer_uptodate(bh);
1046			}
1047			unlock_buffer(bh);
1048			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1049			err = ext3_journal_dirty_metadata(handle, bh);
1050			if (!fatal)
1051				fatal = err;
1052		} else {
1053			BUFFER_TRACE(bh, "not a new buffer");
1054		}
1055		if (fatal) {
1056			*errp = fatal;
1057			brelse(bh);
1058			bh = NULL;
1059		}
1060		return bh;
1061	}
1062err:
1063	return NULL;
1064}
1065
1066struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1067			       int block, int create, int *err)
1068{
1069	struct buffer_head * bh;
1070
1071	bh = ext3_getblk(handle, inode, block, create, err);
1072	if (!bh)
1073		return bh;
1074	if (buffer_uptodate(bh))
1075		return bh;
1076	ll_rw_block(READ_META, 1, &bh);
1077	wait_on_buffer(bh);
1078	if (buffer_uptodate(bh))
1079		return bh;
1080	put_bh(bh);
1081	*err = -EIO;
1082	return NULL;
1083}
1084
1085static int walk_page_buffers(	handle_t *handle,
1086				struct buffer_head *head,
1087				unsigned from,
1088				unsigned to,
1089				int *partial,
1090				int (*fn)(	handle_t *handle,
1091						struct buffer_head *bh))
1092{
1093	struct buffer_head *bh;
1094	unsigned block_start, block_end;
1095	unsigned blocksize = head->b_size;
1096	int err, ret = 0;
1097	struct buffer_head *next;
1098
1099	for (	bh = head, block_start = 0;
1100		ret == 0 && (bh != head || !block_start);
1101		block_start = block_end, bh = next)
1102	{
1103		next = bh->b_this_page;
1104		block_end = block_start + blocksize;
1105		if (block_end <= from || block_start >= to) {
1106			if (partial && !buffer_uptodate(bh))
1107				*partial = 1;
1108			continue;
1109		}
1110		err = (*fn)(handle, bh);
1111		if (!ret)
1112			ret = err;
1113	}
1114	return ret;
1115}
1116
1117/*
1118 * To preserve ordering, it is essential that the hole instantiation and
1119 * the data write be encapsulated in a single transaction.  We cannot
1120 * close off a transaction and start a new one between the ext3_get_block()
1121 * and the commit_write().  So doing the journal_start at the start of
1122 * prepare_write() is the right place.
1123 *
1124 * Also, this function can nest inside ext3_writepage() ->
1125 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1126 * has generated enough buffer credits to do the whole page.  So we won't
1127 * block on the journal in that case, which is good, because the caller may
1128 * be PF_MEMALLOC.
1129 *
1130 * By accident, ext3 can be reentered when a transaction is open via
1131 * quota file writes.  If we were to commit the transaction while thus
1132 * reentered, there can be a deadlock - we would be holding a quota
1133 * lock, and the commit would never complete if another thread had a
1134 * transaction open and was blocking on the quota lock - a ranking
1135 * violation.
1136 *
1137 * So what we do is to rely on the fact that journal_stop/journal_start
1138 * will _not_ run commit under these circumstances because handle->h_ref
1139 * is elevated.  We'll still have enough credits for the tiny quotafile
1140 * write.
1141 */
1142static int do_journal_get_write_access(handle_t *handle,
1143					struct buffer_head *bh)
1144{
1145	if (!buffer_mapped(bh) || buffer_freed(bh))
1146		return 0;
1147	return ext3_journal_get_write_access(handle, bh);
1148}
1149
1150static int ext3_prepare_write(struct file *file, struct page *page,
1151			      unsigned from, unsigned to)
1152{
1153	struct inode *inode = page->mapping->host;
1154	int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1155	handle_t *handle;
1156	int retries = 0;
1157
1158retry:
1159	handle = ext3_journal_start(inode, needed_blocks);
1160	if (IS_ERR(handle)) {
1161		ret = PTR_ERR(handle);
1162		goto out;
1163	}
1164	if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1165		ret = nobh_prepare_write(page, from, to, ext3_get_block);
1166	else
1167		ret = block_prepare_write(page, from, to, ext3_get_block);
1168	if (ret)
1169		goto prepare_write_failed;
1170
1171	if (ext3_should_journal_data(inode)) {
1172		ret = walk_page_buffers(handle, page_buffers(page),
1173				from, to, NULL, do_journal_get_write_access);
1174	}
1175prepare_write_failed:
1176	if (ret)
1177		ext3_journal_stop(handle);
1178	if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1179		goto retry;
1180out:
1181	return ret;
1182}
1183
1184int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1185{
1186	int err = journal_dirty_data(handle, bh);
1187	if (err)
1188		ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1189						bh, handle,err);
1190	return err;
1191}
1192
1193/* For commit_write() in data=journal mode */
1194static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
1195{
1196	if (!buffer_mapped(bh) || buffer_freed(bh))
1197		return 0;
1198	set_buffer_uptodate(bh);
1199	return ext3_journal_dirty_metadata(handle, bh);
1200}
1201
1202/*
1203 * We need to pick up the new inode size which generic_commit_write gave us
1204 * `file' can be NULL - eg, when called from page_symlink().
1205 *
1206 * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1207 * buffers are managed internally.
1208 */
1209static int ext3_ordered_commit_write(struct file *file, struct page *page,
1210			     unsigned from, unsigned to)
1211{
1212	handle_t *handle = ext3_journal_current_handle();
1213	struct inode *inode = page->mapping->host;
1214	int ret = 0, ret2;
1215
1216	ret = walk_page_buffers(handle, page_buffers(page),
1217		from, to, NULL, ext3_journal_dirty_data);
1218
1219	if (ret == 0) {
1220		/*
1221		 * generic_commit_write() will run mark_inode_dirty() if i_size
1222		 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1223		 * into that.
1224		 */
1225		loff_t new_i_size;
1226
1227		new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1228		if (new_i_size > EXT3_I(inode)->i_disksize)
1229			EXT3_I(inode)->i_disksize = new_i_size;
1230		ret = generic_commit_write(file, page, from, to);
1231	}
1232	ret2 = ext3_journal_stop(handle);
1233	if (!ret)
1234		ret = ret2;
1235	return ret;
1236}
1237
1238static int ext3_writeback_commit_write(struct file *file, struct page *page,
1239			     unsigned from, unsigned to)
1240{
1241	handle_t *handle = ext3_journal_current_handle();
1242	struct inode *inode = page->mapping->host;
1243	int ret = 0, ret2;
1244	loff_t new_i_size;
1245
1246	new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1247	if (new_i_size > EXT3_I(inode)->i_disksize)
1248		EXT3_I(inode)->i_disksize = new_i_size;
1249
1250	if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1251		ret = nobh_commit_write(file, page, from, to);
1252	else
1253		ret = generic_commit_write(file, page, from, to);
1254
1255	ret2 = ext3_journal_stop(handle);
1256	if (!ret)
1257		ret = ret2;
1258	return ret;
1259}
1260
1261static int ext3_journalled_commit_write(struct file *file,
1262			struct page *page, unsigned from, unsigned to)
1263{
1264	handle_t *handle = ext3_journal_current_handle();
1265	struct inode *inode = page->mapping->host;
1266	int ret = 0, ret2;
1267	int partial = 0;
1268	loff_t pos;
1269
1270	/*
1271	 * Here we duplicate the generic_commit_write() functionality
1272	 */
1273	pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
1274
1275	ret = walk_page_buffers(handle, page_buffers(page), from,
1276				to, &partial, commit_write_fn);
1277	if (!partial)
1278		SetPageUptodate(page);
1279	if (pos > inode->i_size)
1280		i_size_write(inode, pos);
1281	EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1282	if (inode->i_size > EXT3_I(inode)->i_disksize) {
1283		EXT3_I(inode)->i_disksize = inode->i_size;
1284		ret2 = ext3_mark_inode_dirty(handle, inode);
1285		if (!ret)
1286			ret = ret2;
1287	}
1288	ret2 = ext3_journal_stop(handle);
1289	if (!ret)
1290		ret = ret2;
1291	return ret;
1292}
1293
1294/*
1295 * bmap() is special.  It gets used by applications such as lilo and by
1296 * the swapper to find the on-disk block of a specific piece of data.
1297 *
1298 * Naturally, this is dangerous if the block concerned is still in the
1299 * journal.  If somebody makes a swapfile on an ext3 data-journaling
1300 * filesystem and enables swap, then they may get a nasty shock when the
1301 * data getting swapped to that swapfile suddenly gets overwritten by
1302 * the original zero's written out previously to the journal and
1303 * awaiting writeback in the kernel's buffer cache.
1304 *
1305 * So, if we see any bmap calls here on a modified, data-journaled file,
1306 * take extra steps to flush any blocks which might be in the cache.
1307 */
1308static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1309{
1310	struct inode *inode = mapping->host;
1311	journal_t *journal;
1312	int err;
1313
1314	if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1315		/*
1316		 * This is a REALLY heavyweight approach, but the use of
1317		 * bmap on dirty files is expected to be extremely rare:
1318		 * only if we run lilo or swapon on a freshly made file
1319		 * do we expect this to happen.
1320		 *
1321		 * (bmap requires CAP_SYS_RAWIO so this does not
1322		 * represent an unprivileged user DOS attack --- we'd be
1323		 * in trouble if mortal users could trigger this path at
1324		 * will.)
1325		 *
1326		 * NB. EXT3_STATE_JDATA is not set on files other than
1327		 * regular files.  If somebody wants to bmap a directory
1328		 * or symlink and gets confused because the buffer
1329		 * hasn't yet been flushed to disk, they deserve
1330		 * everything they get.
1331		 */
1332
1333		EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1334		journal = EXT3_JOURNAL(inode);
1335		journal_lock_updates(journal);
1336		err = journal_flush(journal);
1337		journal_unlock_updates(journal);
1338
1339		if (err)
1340			return 0;
1341	}
1342
1343	return generic_block_bmap(mapping,block,ext3_get_block);
1344}
1345
1346static int bget_one(handle_t *handle, struct buffer_head *bh)
1347{
1348	get_bh(bh);
1349	return 0;
1350}
1351
1352static int bput_one(handle_t *handle, struct buffer_head *bh)
1353{
1354	put_bh(bh);
1355	return 0;
1356}
1357
1358static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1359{
1360	if (buffer_mapped(bh))
1361		return ext3_journal_dirty_data(handle, bh);
1362	return 0;
1363}
1364
1365static int ext3_ordered_writepage(struct page *page,
1366				struct writeback_control *wbc)
1367{
1368	struct inode *inode = page->mapping->host;
1369	struct buffer_head *page_bufs;
1370	handle_t *handle = NULL;
1371	int ret = 0;
1372	int err;
1373
1374	J_ASSERT(PageLocked(page));
1375
1376	/*
1377	 * We give up here if we're reentered, because it might be for a
1378	 * different filesystem.
1379	 */
1380	if (ext3_journal_current_handle())
1381		goto out_fail;
1382
1383	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1384
1385	if (IS_ERR(handle)) {
1386		ret = PTR_ERR(handle);
1387		goto out_fail;
1388	}
1389
1390	if (!page_has_buffers(page)) {
1391		create_empty_buffers(page, inode->i_sb->s_blocksize,
1392				(1 << BH_Dirty)|(1 << BH_Uptodate));
1393	}
1394	page_bufs = page_buffers(page);
1395	walk_page_buffers(handle, page_bufs, 0,
1396			PAGE_CACHE_SIZE, NULL, bget_one);
1397
1398	ret = block_write_full_page(page, ext3_get_block, wbc);
1399
1400	/*
1401	 * The page can become unlocked at any point now, and
1402	 * truncate can then come in and change things.  So we
1403	 * can't touch *page from now on.  But *page_bufs is
1404	 * safe due to elevated refcount.
1405	 */
1406
1407	/*
1408	 * And attach them to the current transaction.  But only if
1409	 * block_write_full_page() succeeded.  Otherwise they are unmapped,
1410	 * and generally junk.
1411	 */
1412	if (ret == 0) {
1413		err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1414					NULL, journal_dirty_data_fn);
1415		if (!ret)
1416			ret = err;
1417	}
1418	walk_page_buffers(handle, page_bufs, 0,
1419			PAGE_CACHE_SIZE, NULL, bput_one);
1420	err = ext3_journal_stop(handle);
1421	if (!ret)
1422		ret = err;
1423	return ret;
1424
1425out_fail:
1426	redirty_page_for_writepage(wbc, page);
1427	unlock_page(page);
1428	return ret;
1429}
1430
1431static int ext3_writeback_writepage(struct page *page,
1432				struct writeback_control *wbc)
1433{
1434	struct inode *inode = page->mapping->host;
1435	handle_t *handle = NULL;
1436	int ret = 0;
1437	int err;
1438
1439	if (ext3_journal_current_handle())
1440		goto out_fail;
1441
1442	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1443	if (IS_ERR(handle)) {
1444		ret = PTR_ERR(handle);
1445		goto out_fail;
1446	}
1447
1448	if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1449		ret = nobh_writepage(page, ext3_get_block, wbc);
1450	else
1451		ret = block_write_full_page(page, ext3_get_block, wbc);
1452
1453	err = ext3_journal_stop(handle);
1454	if (!ret)
1455		ret = err;
1456	return ret;
1457
1458out_fail:
1459	redirty_page_for_writepage(wbc, page);
1460	unlock_page(page);
1461	return ret;
1462}
1463
1464static int ext3_journalled_writepage(struct page *page,
1465				struct writeback_control *wbc)
1466{
1467	struct inode *inode = page->mapping->host;
1468	handle_t *handle = NULL;
1469	int ret = 0;
1470	int err;
1471
1472	if (ext3_journal_current_handle())
1473		goto no_write;
1474
1475	handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1476	if (IS_ERR(handle)) {
1477		ret = PTR_ERR(handle);
1478		goto no_write;
1479	}
1480
1481	if (!page_has_buffers(page) || PageChecked(page)) {
1482		/*
1483		 * It's mmapped pagecache.  Add buffers and journal it.  There
1484		 * doesn't seem much point in redirtying the page here.
1485		 */
1486		ClearPageChecked(page);
1487		ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1488					ext3_get_block);
1489		if (ret != 0) {
1490			ext3_journal_stop(handle);
1491			goto out_unlock;
1492		}
1493		ret = walk_page_buffers(handle, page_buffers(page), 0,
1494			PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1495
1496		err = walk_page_buffers(handle, page_buffers(page), 0,
1497				PAGE_CACHE_SIZE, NULL, commit_write_fn);
1498		if (ret == 0)
1499			ret = err;
1500		EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1501		unlock_page(page);
1502	} else {
1503		/*
1504		 * It may be a page full of checkpoint-mode buffers.  We don't
1505		 * really know unless we go poke around in the buffer_heads.
1506		 * But block_write_full_page will do the right thing.
1507		 */
1508		ret = block_write_full_page(page, ext3_get_block, wbc);
1509	}
1510	err = ext3_journal_stop(handle);
1511	if (!ret)
1512		ret = err;
1513out:
1514	return ret;
1515
1516no_write:
1517	redirty_page_for_writepage(wbc, page);
1518out_unlock:
1519	unlock_page(page);
1520	goto out;
1521}
1522
1523static int ext3_readpage(struct file *file, struct page *page)
1524{
1525	return mpage_readpage(page, ext3_get_block);
1526}
1527
1528static int
1529ext3_readpages(struct file *file, struct address_space *mapping,
1530		struct list_head *pages, unsigned nr_pages)
1531{
1532	return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1533}
1534
1535static void ext3_invalidatepage(struct page *page, unsigned long offset)
1536{
1537	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1538
1539	/*
1540	 * If it's a full truncate we just forget about the pending dirtying
1541	 */
1542	if (offset == 0)
1543		ClearPageChecked(page);
1544
1545	journal_invalidatepage(journal, page, offset);
1546}
1547
1548static int ext3_releasepage(struct page *page, gfp_t wait)
1549{
1550	journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1551
1552	WARN_ON(PageChecked(page));
1553	if (!page_has_buffers(page))
1554		return 0;
1555	return journal_try_to_free_buffers(journal, page, wait);
1556}
1557
1558/*
1559 * If the O_DIRECT write will extend the file then add this inode to the
1560 * orphan list.  So recovery will truncate it back to the original size
1561 * if the machine crashes during the write.
1562 *
1563 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1564 * crashes then stale disk data _may_ be exposed inside the file.
1565 */
1566static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1567			const struct iovec *iov, loff_t offset,
1568			unsigned long nr_segs)
1569{
1570	struct file *file = iocb->ki_filp;
1571	struct inode *inode = file->f_mapping->host;
1572	struct ext3_inode_info *ei = EXT3_I(inode);
1573	handle_t *handle = NULL;
1574	ssize_t ret;
1575	int orphan = 0;
1576	size_t count = iov_length(iov, nr_segs);
1577
1578	if (rw == WRITE) {
1579		loff_t final_size = offset + count;
1580
1581		handle = ext3_journal_start(inode, DIO_CREDITS);
1582		if (IS_ERR(handle)) {
1583			ret = PTR_ERR(handle);
1584			goto out;
1585		}
1586		if (final_size > inode->i_size) {
1587			ret = ext3_orphan_add(handle, inode);
1588			if (ret)
1589				goto out_stop;
1590			orphan = 1;
1591			ei->i_disksize = inode->i_size;
1592		}
1593	}
1594
1595	ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1596				 offset, nr_segs,
1597				 ext3_get_block, NULL);
1598
1599	/*
1600	 * Reacquire the handle: ext3_get_block() can restart the transaction
1601	 */
1602	handle = ext3_journal_current_handle();
1603
1604out_stop:
1605	if (handle) {
1606		int err;
1607
1608		if (orphan && inode->i_nlink)
1609			ext3_orphan_del(handle, inode);
1610		if (orphan && ret > 0) {
1611			loff_t end = offset + ret;
1612			if (end > inode->i_size) {
1613				ei->i_disksize = end;
1614				i_size_write(inode, end);
1615				/*
1616				 * We're going to return a positive `ret'
1617				 * here due to non-zero-length I/O, so there's
1618				 * no way of reporting error returns from
1619				 * ext3_mark_inode_dirty() to userspace.  So
1620				 * ignore it.
1621				 */
1622				ext3_mark_inode_dirty(handle, inode);
1623			}
1624		}
1625		err = ext3_journal_stop(handle);
1626		if (ret == 0)
1627			ret = err;
1628	}
1629out:
1630	return ret;
1631}
1632
1633/*
1634 * Pages can be marked dirty completely asynchronously from ext3's journalling
1635 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1636 * much here because ->set_page_dirty is called under VFS locks.  The page is
1637 * not necessarily locked.
1638 *
1639 * We cannot just dirty the page and leave attached buffers clean, because the
1640 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1641 * or jbddirty because all the journalling code will explode.
1642 *
1643 * So what we do is to mark the page "pending dirty" and next time writepage
1644 * is called, propagate that into the buffers appropriately.
1645 */
1646static int ext3_journalled_set_page_dirty(struct page *page)
1647{
1648	SetPageChecked(page);
1649	return __set_page_dirty_nobuffers(page);
1650}
1651
1652static const struct address_space_operations ext3_ordered_aops = {
1653	.readpage	= ext3_readpage,
1654	.readpages	= ext3_readpages,
1655	.writepage	= ext3_ordered_writepage,
1656	.sync_page	= block_sync_page,
1657	.prepare_write	= ext3_prepare_write,
1658	.commit_write	= ext3_ordered_commit_write,
1659	.bmap		= ext3_bmap,
1660	.invalidatepage	= ext3_invalidatepage,
1661	.releasepage	= ext3_releasepage,
1662	.direct_IO	= ext3_direct_IO,
1663	.migratepage	= buffer_migrate_page,
1664};
1665
1666static const struct address_space_operations ext3_writeback_aops = {
1667	.readpage	= ext3_readpage,
1668	.readpages	= ext3_readpages,
1669	.writepage	= ext3_writeback_writepage,
1670	.sync_page	= block_sync_page,
1671	.prepare_write	= ext3_prepare_write,
1672	.commit_write	= ext3_writeback_commit_write,
1673	.bmap		= ext3_bmap,
1674	.invalidatepage	= ext3_invalidatepage,
1675	.releasepage	= ext3_releasepage,
1676	.direct_IO	= ext3_direct_IO,
1677	.migratepage	= buffer_migrate_page,
1678};
1679
1680static const struct address_space_operations ext3_journalled_aops = {
1681	.readpage	= ext3_readpage,
1682	.readpages	= ext3_readpages,
1683	.writepage	= ext3_journalled_writepage,
1684	.sync_page	= block_sync_page,
1685	.prepare_write	= ext3_prepare_write,
1686	.commit_write	= ext3_journalled_commit_write,
1687	.set_page_dirty	= ext3_journalled_set_page_dirty,
1688	.bmap		= ext3_bmap,
1689	.invalidatepage	= ext3_invalidatepage,
1690	.releasepage	= ext3_releasepage,
1691};
1692
1693void ext3_set_aops(struct inode *inode)
1694{
1695	if (ext3_should_order_data(inode))
1696		inode->i_mapping->a_ops = &ext3_ordered_aops;
1697	else if (ext3_should_writeback_data(inode))
1698		inode->i_mapping->a_ops = &ext3_writeback_aops;
1699	else
1700		inode->i_mapping->a_ops = &ext3_journalled_aops;
1701}
1702
1703/*
1704 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1705 * up to the end of the block which corresponds to `from'.
1706 * This required during truncate. We need to physically zero the tail end
1707 * of that block so it doesn't yield old data if the file is later grown.
1708 */
1709static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1710		struct address_space *mapping, loff_t from)
1711{
1712	ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1713	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1714	unsigned blocksize, iblock, length, pos;
1715	struct inode *inode = mapping->host;
1716	struct buffer_head *bh;
1717	int err = 0;
1718
1719	blocksize = inode->i_sb->s_blocksize;
1720	length = blocksize - (offset & (blocksize - 1));
1721	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1722
1723	/*
1724	 * For "nobh" option,  we can only work if we don't need to
1725	 * read-in the page - otherwise we create buffers to do the IO.
1726	 */
1727	if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1728	     ext3_should_writeback_data(inode) && PageUptodate(page)) {
1729		zero_user_page(page, offset, length, KM_USER0);
1730		set_page_dirty(page);
1731		goto unlock;
1732	}
1733
1734	if (!page_has_buffers(page))
1735		create_empty_buffers(page, blocksize, 0);
1736
1737	/* Find the buffer that contains "offset" */
1738	bh = page_buffers(page);
1739	pos = blocksize;
1740	while (offset >= pos) {
1741		bh = bh->b_this_page;
1742		iblock++;
1743		pos += blocksize;
1744	}
1745
1746	err = 0;
1747	if (buffer_freed(bh)) {
1748		BUFFER_TRACE(bh, "freed: skip");
1749		goto unlock;
1750	}
1751
1752	if (!buffer_mapped(bh)) {
1753		BUFFER_TRACE(bh, "unmapped");
1754		ext3_get_block(inode, iblock, bh, 0);
1755		/* unmapped? It's a hole - nothing to do */
1756		if (!buffer_mapped(bh)) {
1757			BUFFER_TRACE(bh, "still unmapped");
1758			goto unlock;
1759		}
1760	}
1761
1762	/* Ok, it's mapped. Make sure it's up-to-date */
1763	if (PageUptodate(page))
1764		set_buffer_uptodate(bh);
1765
1766	if (!buffer_uptodate(bh)) {
1767		err = -EIO;
1768		ll_rw_block(READ, 1, &bh);
1769		wait_on_buffer(bh);
1770		/* Uhhuh. Read error. Complain and punt. */
1771		if (!buffer_uptodate(bh))
1772			goto unlock;
1773	}
1774
1775	if (ext3_should_journal_data(inode)) {
1776		BUFFER_TRACE(bh, "get write access");
1777		err = ext3_journal_get_write_access(handle, bh);
1778		if (err)
1779			goto unlock;
1780	}
1781
1782	zero_user_page(page, offset, length, KM_USER0);
1783	BUFFER_TRACE(bh, "zeroed end of block");
1784
1785	err = 0;
1786	if (ext3_should_journal_data(inode)) {
1787		err = ext3_journal_dirty_metadata(handle, bh);
1788	} else {
1789		if (ext3_should_order_data(inode))
1790			err = ext3_journal_dirty_data(handle, bh);
1791		mark_buffer_dirty(bh);
1792	}
1793
1794unlock:
1795	unlock_page(page);
1796	page_cache_release(page);
1797	return err;
1798}
1799
1800/*
1801 * Probably it should be a library function... search for first non-zero word
1802 * or memcmp with zero_page, whatever is better for particular architecture.
1803 * Linus?
1804 */
1805static inline int all_zeroes(__le32 *p, __le32 *q)
1806{
1807	while (p < q)
1808		if (*p++)
1809			return 0;
1810	return 1;
1811}
1812
1813/**
1814 *	ext3_find_shared - find the indirect blocks for partial truncation.
1815 *	@inode:	  inode in question
1816 *	@depth:	  depth of the affected branch
1817 *	@offsets: offsets of pointers in that branch (see ext3_block_to_path)
1818 *	@chain:	  place to store the pointers to partial indirect blocks
1819 *	@top:	  place to the (detached) top of branch
1820 *
1821 *	This is a helper function used by ext3_truncate().
1822 *
1823 *	When we do truncate() we may have to clean the ends of several
1824 *	indirect blocks but leave the blocks themselves alive. Block is
1825 *	partially truncated if some data below the new i_size is refered
1826 *	from it (and it is on the path to the first completely truncated
1827 *	data block, indeed).  We have to free the top of that path along
1828 *	with everything to the right of the path. Since no allocation
1829 *	past the truncation point is possible until ext3_truncate()
1830 *	finishes, we may safely do the latter, but top of branch may
1831 *	require special attention - pageout below the truncation point
1832 *	might try to populate it.
1833 *
1834 *	We atomically detach the top of branch from the tree, store the
1835 *	block number of its root in *@top, pointers to buffer_heads of
1836 *	partially truncated blocks - in @chain[].bh and pointers to
1837 *	their last elements that should not be removed - in
1838 *	@chain[].p. Return value is the pointer to last filled element
1839 *	of @chain.
1840 *
1841 *	The work left to caller to do the actual freeing of subtrees:
1842 *		a) free the subtree starting from *@top
1843 *		b) free the subtrees whose roots are stored in
1844 *			(@chain[i].p+1 .. end of @chain[i].bh->b_data)
1845 *		c) free the subtrees growing from the inode past the @chain[0].
1846 *			(no partially truncated stuff there).  */
1847
1848static Indirect *ext3_find_shared(struct inode *inode, int depth,
1849			int offsets[4], Indirect chain[4], __le32 *top)
1850{
1851	Indirect *partial, *p;
1852	int k, err;
1853
1854	*top = 0;
1855	/* Make k index the deepest non-null offest + 1 */
1856	for (k = depth; k > 1 && !offsets[k-1]; k--)
1857		;
1858	partial = ext3_get_branch(inode, k, offsets, chain, &err);
1859	/* Writer: pointers */
1860	if (!partial)
1861		partial = chain + k-1;
1862	/*
1863	 * If the branch acquired continuation since we've looked at it -
1864	 * fine, it should all survive and (new) top doesn't belong to us.
1865	 */
1866	if (!partial->key && *partial->p)
1867		/* Writer: end */
1868		goto no_top;
1869	for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1870		;
1871	/*
1872	 * OK, we've found the last block that must survive. The rest of our
1873	 * branch should be detached before unlocking. However, if that rest
1874	 * of branch is all ours and does not grow immediately from the inode
1875	 * it's easier to cheat and just decrement partial->p.
1876	 */
1877	if (p == chain + k - 1 && p > chain) {
1878		p->p--;
1879	} else {
1880		*top = *p->p;
1881		/* Nope, don't do this in ext3.  Must leave the tree intact */
1882	}
1883	/* Writer: end */
1884
1885	while(partial > p) {
1886		brelse(partial->bh);
1887		partial--;
1888	}
1889no_top:
1890	return partial;
1891}
1892
1893/*
1894 * Zero a number of block pointers in either an inode or an indirect block.
1895 * If we restart the transaction we must again get write access to the
1896 * indirect block for further modification.
1897 *
1898 * We release `count' blocks on disk, but (last - first) may be greater
1899 * than `count' because there can be holes in there.
1900 */
1901static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
1902		struct buffer_head *bh, ext3_fsblk_t block_to_free,
1903		unsigned long count, __le32 *first, __le32 *last)
1904{
1905	__le32 *p;
1906	if (try_to_extend_transaction(handle, inode)) {
1907		if (bh) {
1908			BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1909			ext3_journal_dirty_metadata(handle, bh);
1910		}
1911		ext3_mark_inode_dirty(handle, inode);
1912		ext3_journal_test_restart(handle, inode);
1913		if (bh) {
1914			BUFFER_TRACE(bh, "retaking write access");
1915			ext3_journal_get_write_access(handle, bh);
1916		}
1917	}
1918
1919	/*
1920	 * Any buffers which are on the journal will be in memory. We find
1921	 * them on the hash table so journal_revoke() will run journal_forget()
1922	 * on them.  We've already detached each block from the file, so
1923	 * bforget() in journal_forget() should be safe.
1924	 *
1925	 * AKPM: turn on bforget in journal_forget()!!!
1926	 */
1927	for (p = first; p < last; p++) {
1928		u32 nr = le32_to_cpu(*p);
1929		if (nr) {
1930			struct buffer_head *bh;
1931
1932			*p = 0;
1933			bh = sb_find_get_block(inode->i_sb, nr);
1934			ext3_forget(handle, 0, inode, bh, nr);
1935		}
1936	}
1937
1938	ext3_free_blocks(handle, inode, block_to_free, count);
1939}
1940
1941/**
1942 * ext3_free_data - free a list of data blocks
1943 * @handle:	handle for this transaction
1944 * @inode:	inode we are dealing with
1945 * @this_bh:	indirect buffer_head which contains *@first and *@last
1946 * @first:	array of block numbers
1947 * @last:	points immediately past the end of array
1948 *
1949 * We are freeing all blocks refered from that array (numbers are stored as
1950 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
1951 *
1952 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
1953 * blocks are contiguous then releasing them at one time will only affect one
1954 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1955 * actually use a lot of journal space.
1956 *
1957 * @this_bh will be %NULL if @first and @last point into the inode's direct
1958 * block pointers.
1959 */
1960static void ext3_free_data(handle_t *handle, struct inode *inode,
1961			   struct buffer_head *this_bh,
1962			   __le32 *first, __le32 *last)
1963{
1964	ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
1965	unsigned long count = 0;	    /* Number of blocks in the run */
1966	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind
1967					       corresponding to
1968					       block_to_free */
1969	ext3_fsblk_t nr;		    /* Current block # */
1970	__le32 *p;			    /* Pointer into inode/ind
1971					       for current block */
1972	int err;
1973
1974	if (this_bh) {				/* For indirect block */
1975		BUFFER_TRACE(this_bh, "get_write_access");
1976		err = ext3_journal_get_write_access(handle, this_bh);
1977		/* Important: if we can't update the indirect pointers
1978		 * to the blocks, we can't free them. */
1979		if (err)
1980			return;
1981	}
1982
1983	for (p = first; p < last; p++) {
1984		nr = le32_to_cpu(*p);
1985		if (nr) {
1986			/* accumulate blocks to free if they're contiguous */
1987			if (count == 0) {
1988				block_to_free = nr;
1989				block_to_free_p = p;
1990				count = 1;
1991			} else if (nr == block_to_free + count) {
1992				count++;
1993			} else {
1994				ext3_clear_blocks(handle, inode, this_bh,
1995						  block_to_free,
1996						  count, block_to_free_p, p);
1997				block_to_free = nr;
1998				block_to_free_p = p;
1999				count = 1;
2000			}
2001		}
2002	}
2003
2004	if (count > 0)
2005		ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2006				  count, block_to_free_p, p);
2007
2008	if (this_bh) {
2009		BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2010		ext3_journal_dirty_metadata(handle, this_bh);
2011	}
2012}
2013
2014/**
2015 *	ext3_free_branches - free an array of branches
2016 *	@handle: JBD handle for this transaction
2017 *	@inode:	inode we are dealing with
2018 *	@parent_bh: the buffer_head which contains *@first and *@last
2019 *	@first:	array of block numbers
2020 *	@last:	pointer immediately past the end of array
2021 *	@depth:	depth of the branches to free
2022 *
2023 *	We are freeing all blocks refered from these branches (numbers are
2024 *	stored as little-endian 32-bit) and updating @inode->i_blocks
2025 *	appropriately.
2026 */
2027static void ext3_free_branches(handle_t *handle, struct inode *inode,
2028			       struct buffer_head *parent_bh,
2029			       __le32 *first, __le32 *last, int depth)
2030{
2031	ext3_fsblk_t nr;
2032	__le32 *p;
2033
2034	if (is_handle_aborted(handle))
2035		return;
2036
2037	if (depth--) {
2038		struct buffer_head *bh;
2039		int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2040		p = last;
2041		while (--p >= first) {
2042			nr = le32_to_cpu(*p);
2043			if (!nr)
2044				continue;		/* A hole */
2045
2046			/* Go read the buffer for the next level down */
2047			bh = sb_bread(inode->i_sb, nr);
2048
2049			/*
2050			 * A read failure? Report error and clear slot
2051			 * (should be rare).
2052			 */
2053			if (!bh) {
2054				ext3_error(inode->i_sb, "ext3_free_branches",
2055					   "Read failure, inode=%lu, block="E3FSBLK,
2056					   inode->i_ino, nr);
2057				continue;
2058			}
2059
2060			/* This zaps the entire block.  Bottom up. */
2061			BUFFER_TRACE(bh, "free child branches");
2062			ext3_free_branches(handle, inode, bh,
2063					   (__le32*)bh->b_data,
2064					   (__le32*)bh->b_data + addr_per_block,
2065					   depth);
2066
2067			/*
2068			 * We've probably journalled the indirect block several
2069			 * times during the truncate.  But it's no longer
2070			 * needed and we now drop it from the transaction via
2071			 * journal_revoke().
2072			 *
2073			 * That's easy if it's exclusively part of this
2074			 * transaction.  But if it's part of the committing
2075			 * transaction then journal_forget() will simply
2076			 * brelse() it.  That means that if the underlying
2077			 * block is reallocated in ext3_get_block(),
2078			 * unmap_underlying_metadata() will find this block
2079			 * and will try to get rid of it.  damn, damn.
2080			 *
2081			 * If this block has already been committed to the
2082			 * journal, a revoke record will be written.  And
2083			 * revoke records must be emitted *before* clearing
2084			 * this block's bit in the bitmaps.
2085			 */
2086			ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2087
2088			/*
2089			 * Everything below this this pointer has been
2090			 * released.  Now let this top-of-subtree go.
2091			 *
2092			 * We want the freeing of this indirect block to be
2093			 * atomic in the journal with the updating of the
2094			 * bitmap block which owns it.  So make some room in
2095			 * the journal.
2096			 *
2097			 * We zero the parent pointer *after* freeing its
2098			 * pointee in the bitmaps, so if extend_transaction()
2099			 * for some reason fails to put the bitmap changes and
2100			 * the release into the same transaction, recovery
2101			 * will merely complain about releasing a free block,
2102			 * rather than leaking blocks.
2103			 */
2104			if (is_handle_aborted(handle))
2105				return;
2106			if (try_to_extend_transaction(handle, inode)) {
2107				ext3_mark_inode_dirty(handle, inode);
2108				ext3_journal_test_restart(handle, inode);
2109			}
2110
2111			ext3_free_blocks(handle, inode, nr, 1);
2112
2113			if (parent_bh) {
2114				/*
2115				 * The block which we have just freed is
2116				 * pointed to by an indirect block: journal it
2117				 */
2118				BUFFER_TRACE(parent_bh, "get_write_access");
2119				if (!ext3_journal_get_write_access(handle,
2120								   parent_bh)){
2121					*p = 0;
2122					BUFFER_TRACE(parent_bh,
2123					"call ext3_journal_dirty_metadata");
2124					ext3_journal_dirty_metadata(handle,
2125								    parent_bh);
2126				}
2127			}
2128		}
2129	} else {
2130		/* We have reached the bottom of the tree. */
2131		BUFFER_TRACE(parent_bh, "free data blocks");
2132		ext3_free_data(handle, inode, parent_bh, first, last);
2133	}
2134}
2135
2136/*
2137 * ext3_truncate()
2138 *
2139 * We block out ext3_get_block() block instantiations across the entire
2140 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2141 * simultaneously on behalf of the same inode.
2142 *
2143 * As we work through the truncate and commmit bits of it to the journal there
2144 * is one core, guiding principle: the file's tree must always be consistent on
2145 * disk.  We must be able to restart the truncate after a crash.
2146 *
2147 * The file's tree may be transiently inconsistent in memory (although it
2148 * probably isn't), but whenever we close off and commit a journal transaction,
2149 * the contents of (the filesystem + the journal) must be consistent and
2150 * restartable.  It's pretty simple, really: bottom up, right to left (although
2151 * left-to-right works OK too).
2152 *
2153 * Note that at recovery time, journal replay occurs *before* the restart of
2154 * truncate against the orphan inode list.
2155 *
2156 * The committed inode has the new, desired i_size (which is the same as
2157 * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2158 * that this inode's truncate did not complete and it will again call
2159 * ext3_truncate() to have another go.  So there will be instantiated blocks
2160 * to the right of the truncation point in a crashed ext3 filesystem.  But
2161 * that's fine - as long as they are linked from the inode, the post-crash
2162 * ext3_truncate() run will find them and release them.
2163 */
2164void ext3_truncate(struct inode *inode)
2165{
2166	handle_t *handle;
2167	struct ext3_inode_info *ei = EXT3_I(inode);
2168	__le32 *i_data = ei->i_data;
2169	int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2170	struct address_space *mapping = inode->i_mapping;
2171	int offsets[4];
2172	Indirect chain[4];
2173	Indirect *partial;
2174	__le32 nr = 0;
2175	int n;
2176	long last_block;
2177	unsigned blocksize = inode->i_sb->s_blocksize;
2178	struct page *page;
2179
2180	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2181	    S_ISLNK(inode->i_mode)))
2182		return;
2183	if (ext3_inode_is_fast_symlink(inode))
2184		return;
2185	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2186		return;
2187
2188	/*
2189	 * We have to lock the EOF page here, because lock_page() nests
2190	 * outside journal_start().
2191	 */
2192	if ((inode->i_size & (blocksize - 1)) == 0) {
2193		/* Block boundary? Nothing to do */
2194		page = NULL;
2195	} else {
2196		page = grab_cache_page(mapping,
2197				inode->i_size >> PAGE_CACHE_SHIFT);
2198		if (!page)
2199			return;
2200	}
2201
2202	handle = start_transaction(inode);
2203	if (IS_ERR(handle)) {
2204		if (page) {
2205			clear_highpage(page);
2206			flush_dcache_page(page);
2207			unlock_page(page);
2208			page_cache_release(page);
2209		}
2210		return;		/* AKPM: return what? */
2211	}
2212
2213	last_block = (inode->i_size + blocksize-1)
2214					>> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2215
2216	if (page)
2217		ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2218
2219	n = ext3_block_to_path(inode, last_block, offsets, NULL);
2220	if (n == 0)
2221		goto out_stop;	/* error */
2222
2223	/*
2224	 * OK.  This truncate is going to happen.  We add the inode to the
2225	 * orphan list, so that if this truncate spans multiple transactions,
2226	 * and we crash, we will resume the truncate when the filesystem
2227	 * recovers.  It also marks the inode dirty, to catch the new size.
2228	 *
2229	 * Implication: the file must always be in a sane, consistent
2230	 * truncatable state while each transaction commits.
2231	 */
2232	if (ext3_orphan_add(handle, inode))
2233		goto out_stop;
2234
2235	/*
2236	 * The orphan list entry will now protect us from any crash which
2237	 * occurs before the truncate completes, so it is now safe to propagate
2238	 * the new, shorter inode size (held for now in i_size) into the
2239	 * on-disk inode. We do this via i_disksize, which is the value which
2240	 * ext3 *really* writes onto the disk inode.
2241	 */
2242	ei->i_disksize = inode->i_size;
2243
2244	/*
2245	 * From here we block out all ext3_get_block() callers who want to
2246	 * modify the block allocation tree.
2247	 */
2248	mutex_lock(&ei->truncate_mutex);
2249
2250	if (n == 1) {		/* direct blocks */
2251		ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2252			       i_data + EXT3_NDIR_BLOCKS);
2253		goto do_indirects;
2254	}
2255
2256	partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2257	/* Kill the top of shared branch (not detached) */
2258	if (nr) {
2259		if (partial == chain) {
2260			/* Shared branch grows from the inode */
2261			ext3_free_branches(handle, inode, NULL,
2262					   &nr, &nr+1, (chain+n-1) - partial);
2263			*partial->p = 0;
2264			/*
2265			 * We mark the inode dirty prior to restart,
2266			 * and prior to stop.  No need for it here.
2267			 */
2268		} else {
2269			/* Shared branch grows from an indirect block */
2270			BUFFER_TRACE(partial->bh, "get_write_access");
2271			ext3_free_branches(handle, inode, partial->bh,
2272					partial->p,
2273					partial->p+1, (chain+n-1) - partial);
2274		}
2275	}
2276	/* Clear the ends of indirect blocks on the shared branch */
2277	while (partial > chain) {
2278		ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2279				   (__le32*)partial->bh->b_data+addr_per_block,
2280				   (chain+n-1) - partial);
2281		BUFFER_TRACE(partial->bh, "call brelse");
2282		brelse (partial->bh);
2283		partial--;
2284	}
2285do_indirects:
2286	/* Kill the remaining (whole) subtrees */
2287	switch (offsets[0]) {
2288	default:
2289		nr = i_data[EXT3_IND_BLOCK];
2290		if (nr) {
2291			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2292			i_data[EXT3_IND_BLOCK] = 0;
2293		}
2294	case EXT3_IND_BLOCK:
2295		nr = i_data[EXT3_DIND_BLOCK];
2296		if (nr) {
2297			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2298			i_data[EXT3_DIND_BLOCK] = 0;
2299		}
2300	case EXT3_DIND_BLOCK:
2301		nr = i_data[EXT3_TIND_BLOCK];
2302		if (nr) {
2303			ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2304			i_data[EXT3_TIND_BLOCK] = 0;
2305		}
2306	case EXT3_TIND_BLOCK:
2307		;
2308	}
2309
2310	ext3_discard_reservation(inode);
2311
2312	mutex_unlock(&ei->truncate_mutex);
2313	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2314	ext3_mark_inode_dirty(handle, inode);
2315
2316	/*
2317	 * In a multi-transaction truncate, we only make the final transaction
2318	 * synchronous
2319	 */
2320	if (IS_SYNC(inode))
2321		handle->h_sync = 1;
2322out_stop:
2323	/*
2324	 * If this was a simple ftruncate(), and the file will remain alive
2325	 * then we need to clear up the orphan record which we created above.
2326	 * However, if this was a real unlink then we were called by
2327	 * ext3_delete_inode(), and we allow that function to clean up the
2328	 * orphan info for us.
2329	 */
2330	if (inode->i_nlink)
2331		ext3_orphan_del(handle, inode);
2332
2333	ext3_journal_stop(handle);
2334}
2335
2336static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2337		unsigned long ino, struct ext3_iloc *iloc)
2338{
2339	unsigned long desc, group_desc, block_group;
2340	unsigned long offset;
2341	ext3_fsblk_t block;
2342	struct buffer_head *bh;
2343	struct ext3_group_desc * gdp;
2344
2345	if (!ext3_valid_inum(sb, ino)) {
2346		/*
2347		 * This error is already checked for in namei.c unless we are
2348		 * looking at an NFS filehandle, in which case no error
2349		 * report is needed
2350		 */
2351		return 0;
2352	}
2353
2354	block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2355	if (block_group >= EXT3_SB(sb)->s_groups_count) {
2356		ext3_error(sb,"ext3_get_inode_block","group >= groups count");
2357		return 0;
2358	}
2359	smp_rmb();
2360	group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2361	desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2362	bh = EXT3_SB(sb)->s_group_desc[group_desc];
2363	if (!bh) {
2364		ext3_error (sb, "ext3_get_inode_block",
2365			    "Descriptor not loaded");
2366		return 0;
2367	}
2368
2369	gdp = (struct ext3_group_desc *)bh->b_data;
2370	/*
2371	 * Figure out the offset within the block group inode table
2372	 */
2373	offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2374		EXT3_INODE_SIZE(sb);
2375	block = le32_to_cpu(gdp[desc].bg_inode_table) +
2376		(offset >> EXT3_BLOCK_SIZE_BITS(sb));
2377
2378	iloc->block_group = block_group;
2379	iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2380	return block;
2381}
2382
2383/*
2384 * ext3_get_inode_loc returns with an extra refcount against the inode's
2385 * underlying buffer_head on success. If 'in_mem' is true, we have all
2386 * data in memory that is needed to recreate the on-disk version of this
2387 * inode.
2388 */
2389static int __ext3_get_inode_loc(struct inode *inode,
2390				struct ext3_iloc *iloc, int in_mem)
2391{
2392	ext3_fsblk_t block;
2393	struct buffer_head *bh;
2394
2395	block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2396	if (!block)
2397		return -EIO;
2398
2399	bh = sb_getblk(inode->i_sb, block);
2400	if (!bh) {
2401		ext3_error (inode->i_sb, "ext3_get_inode_loc",
2402				"unable to read inode block - "
2403				"inode=%lu, block="E3FSBLK,
2404				 inode->i_ino, block);
2405		return -EIO;
2406	}
2407	if (!buffer_uptodate(bh)) {
2408		lock_buffer(bh);
2409		if (buffer_uptodate(bh)) {
2410			/* someone brought it uptodate while we waited */
2411			unlock_buffer(bh);
2412			goto has_buffer;
2413		}
2414
2415		/*
2416		 * If we have all information of the inode in memory and this
2417		 * is the only valid inode in the block, we need not read the
2418		 * block.
2419		 */
2420		if (in_mem) {
2421			struct buffer_head *bitmap_bh;
2422			struct ext3_group_desc *desc;
2423			int inodes_per_buffer;
2424			int inode_offset, i;
2425			int block_group;
2426			int start;
2427
2428			block_group = (inode->i_ino - 1) /
2429					EXT3_INODES_PER_GROUP(inode->i_sb);
2430			inodes_per_buffer = bh->b_size /
2431				EXT3_INODE_SIZE(inode->i_sb);
2432			inode_offset = ((inode->i_ino - 1) %
2433					EXT3_INODES_PER_GROUP(inode->i_sb));
2434			start = inode_offset & ~(inodes_per_buffer - 1);
2435
2436			/* Is the inode bitmap in cache? */
2437			desc = ext3_get_group_desc(inode->i_sb,
2438						block_group, NULL);
2439			if (!desc)
2440				goto make_io;
2441
2442			bitmap_bh = sb_getblk(inode->i_sb,
2443					le32_to_cpu(desc->bg_inode_bitmap));
2444			if (!bitmap_bh)
2445				goto make_io;
2446
2447			/*
2448			 * If the inode bitmap isn't in cache then the
2449			 * optimisation may end up performing two reads instead
2450			 * of one, so skip it.
2451			 */
2452			if (!buffer_uptodate(bitmap_bh)) {
2453				brelse(bitmap_bh);
2454				goto make_io;
2455			}
2456			for (i = start; i < start + inodes_per_buffer; i++) {
2457				if (i == inode_offset)
2458					continue;
2459				if (ext3_test_bit(i, bitmap_bh->b_data))
2460					break;
2461			}
2462			brelse(bitmap_bh);
2463			if (i == start + inodes_per_buffer) {
2464				/* all other inodes are free, so skip I/O */
2465				memset(bh->b_data, 0, bh->b_size);
2466				set_buffer_uptodate(bh);
2467				unlock_buffer(bh);
2468				goto has_buffer;
2469			}
2470		}
2471
2472make_io:
2473		/*
2474		 * There are other valid inodes in the buffer, this inode
2475		 * has in-inode xattrs, or we don't have this inode in memory.
2476		 * Read the block from disk.
2477		 */
2478		get_bh(bh);
2479		bh->b_end_io = end_buffer_read_sync;
2480		submit_bh(READ_META, bh);
2481		wait_on_buffer(bh);
2482		if (!buffer_uptodate(bh)) {
2483			ext3_error(inode->i_sb, "ext3_get_inode_loc",
2484					"unable to read inode block - "
2485					"inode=%lu, block="E3FSBLK,
2486					inode->i_ino, block);
2487			brelse(bh);
2488			return -EIO;
2489		}
2490	}
2491has_buffer:
2492	iloc->bh = bh;
2493	return 0;
2494}
2495
2496int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2497{
2498	/* We have all inode data except xattrs in memory here. */
2499	return __ext3_get_inode_loc(inode, iloc,
2500		!(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2501}
2502
2503void ext3_set_inode_flags(struct inode *inode)
2504{
2505	unsigned int flags = EXT3_I(inode)->i_flags;
2506
2507	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2508	if (flags & EXT3_SYNC_FL)
2509		inode->i_flags |= S_SYNC;
2510	if (flags & EXT3_APPEND_FL)
2511		inode->i_flags |= S_APPEND;
2512	if (flags & EXT3_IMMUTABLE_FL)
2513		inode->i_flags |= S_IMMUTABLE;
2514	if (flags & EXT3_NOATIME_FL)
2515		inode->i_flags |= S_NOATIME;
2516	if (flags & EXT3_DIRSYNC_FL)
2517		inode->i_flags |= S_DIRSYNC;
2518}
2519
2520/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2521void ext3_get_inode_flags(struct ext3_inode_info *ei)
2522{
2523	unsigned int flags = ei->vfs_inode.i_flags;
2524
2525	ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2526			EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2527	if (flags & S_SYNC)
2528		ei->i_flags |= EXT3_SYNC_FL;
2529	if (flags & S_APPEND)
2530		ei->i_flags |= EXT3_APPEND_FL;
2531	if (flags & S_IMMUTABLE)
2532		ei->i_flags |= EXT3_IMMUTABLE_FL;
2533	if (flags & S_NOATIME)
2534		ei->i_flags |= EXT3_NOATIME_FL;
2535	if (flags & S_DIRSYNC)
2536		ei->i_flags |= EXT3_DIRSYNC_FL;
2537}
2538
2539void ext3_read_inode(struct inode * inode)
2540{
2541	struct ext3_iloc iloc;
2542	struct ext3_inode *raw_inode;
2543	struct ext3_inode_info *ei = EXT3_I(inode);
2544	struct buffer_head *bh;
2545	int block;
2546
2547#ifdef CONFIG_EXT3_FS_POSIX_ACL
2548	ei->i_acl = EXT3_ACL_NOT_CACHED;
2549	ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2550#endif
2551	ei->i_block_alloc_info = NULL;
2552
2553	if (__ext3_get_inode_loc(inode, &iloc, 0))
2554		goto bad_inode;
2555	bh = iloc.bh;
2556	raw_inode = ext3_raw_inode(&iloc);
2557	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2558	inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2559	inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2560	if(!(test_opt (inode->i_sb, NO_UID32))) {
2561		inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2562		inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2563	}
2564	inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2565	inode->i_size = le32_to_cpu(raw_inode->i_size);
2566	inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2567	inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2568	inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2569	inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2570
2571	ei->i_state = 0;
2572	ei->i_dir_start_lookup = 0;
2573	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2574	/* We now have enough fields to check if the inode was active or not.
2575	 * This is needed because nfsd might try to access dead inodes
2576	 * the test is that same one that e2fsck uses
2577	 * NeilBrown 1999oct15
2578	 */
2579	if (inode->i_nlink == 0) {
2580		if (inode->i_mode == 0 ||
2581		    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2582			/* this inode is deleted */
2583			brelse (bh);
2584			goto bad_inode;
2585		}
2586		/* The only unlinked inodes we let through here have
2587		 * valid i_mode and are being read by the orphan
2588		 * recovery code: that's fine, we're about to complete
2589		 * the process of deleting those. */
2590	}
2591	inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2592	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2593#ifdef EXT3_FRAGMENTS
2594	ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2595	ei->i_frag_no = raw_inode->i_frag;
2596	ei->i_frag_size = raw_inode->i_fsize;
2597#endif
2598	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2599	if (!S_ISREG(inode->i_mode)) {
2600		ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2601	} else {
2602		inode->i_size |=
2603			((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2604	}
2605	ei->i_disksize = inode->i_size;
2606	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2607	ei->i_block_group = iloc.block_group;
2608	/*
2609	 * NOTE! The in-memory inode i_data array is in little-endian order
2610	 * even on big-endian machines: we do NOT byteswap the block numbers!
2611	 */
2612	for (block = 0; block < EXT3_N_BLOCKS; block++)
2613		ei->i_data[block] = raw_inode->i_block[block];
2614	INIT_LIST_HEAD(&ei->i_orphan);
2615
2616	if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2617	    EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2618		/*
2619		 * When mke2fs creates big inodes it does not zero out
2620		 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2621		 * so ignore those first few inodes.
2622		 */
2623		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2624		if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2625		    EXT3_INODE_SIZE(inode->i_sb)) {
2626			brelse (bh);
2627			goto bad_inode;
2628		}
2629		if (ei->i_extra_isize == 0) {
2630			/* The extra space is currently unused. Use it. */
2631			ei->i_extra_isize = sizeof(struct ext3_inode) -
2632					    EXT3_GOOD_OLD_INODE_SIZE;
2633		} else {
2634			__le32 *magic = (void *)raw_inode +
2635					EXT3_GOOD_OLD_INODE_SIZE +
2636					ei->i_extra_isize;
2637			if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2638				 ei->i_state |= EXT3_STATE_XATTR;
2639		}
2640	} else
2641		ei->i_extra_isize = 0;
2642
2643	if (S_ISREG(inode->i_mode)) {
2644		inode->i_op = &ext3_file_inode_operations;
2645		inode->i_fop = &ext3_file_operations;
2646		ext3_set_aops(inode);
2647	} else if (S_ISDIR(inode->i_mode)) {
2648		inode->i_op = &ext3_dir_inode_operations;
2649		inode->i_fop = &ext3_dir_operations;
2650	} else if (S_ISLNK(inode->i_mode)) {
2651		if (ext3_inode_is_fast_symlink(inode))
2652			inode->i_op = &ext3_fast_symlink_inode_operations;
2653		else {
2654			inode->i_op = &ext3_symlink_inode_operations;
2655			ext3_set_aops(inode);
2656		}
2657	} else {
2658		inode->i_op = &ext3_special_inode_operations;
2659		if (raw_inode->i_block[0])
2660			init_special_inode(inode, inode->i_mode,
2661			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2662		else
2663			init_special_inode(inode, inode->i_mode,
2664			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2665	}
2666	brelse (iloc.bh);
2667	ext3_set_inode_flags(inode);
2668	return;
2669
2670bad_inode:
2671	make_bad_inode(inode);
2672	return;
2673}
2674
2675/*
2676 * Post the struct inode info into an on-disk inode location in the
2677 * buffer-cache.  This gobbles the caller's reference to the
2678 * buffer_head in the inode location struct.
2679 *
2680 * The caller must have write access to iloc->bh.
2681 */
2682static int ext3_do_update_inode(handle_t *handle,
2683				struct inode *inode,
2684				struct ext3_iloc *iloc)
2685{
2686	struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2687	struct ext3_inode_info *ei = EXT3_I(inode);
2688	struct buffer_head *bh = iloc->bh;
2689	int err = 0, rc, block;
2690
2691	/* For fields not not tracking in the in-memory inode,
2692	 * initialise them to zero for new inodes. */
2693	if (ei->i_state & EXT3_STATE_NEW)
2694		memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2695
2696	ext3_get_inode_flags(ei);
2697	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2698	if(!(test_opt(inode->i_sb, NO_UID32))) {
2699		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2700		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2701/*
2702 * Fix up interoperability with old kernels. Otherwise, old inodes get
2703 * re-used with the upper 16 bits of the uid/gid intact
2704 */
2705		if(!ei->i_dtime) {
2706			raw_inode->i_uid_high =
2707				cpu_to_le16(high_16_bits(inode->i_uid));
2708			raw_inode->i_gid_high =
2709				cpu_to_le16(high_16_bits(inode->i_gid));
2710		} else {
2711			raw_inode->i_uid_high = 0;
2712			raw_inode->i_gid_high = 0;
2713		}
2714	} else {
2715		raw_inode->i_uid_low =
2716			cpu_to_le16(fs_high2lowuid(inode->i_uid));
2717		raw_inode->i_gid_low =
2718			cpu_to_le16(fs_high2lowgid(inode->i_gid));
2719		raw_inode->i_uid_high = 0;
2720		raw_inode->i_gid_high = 0;
2721	}
2722	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2723	raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2724	raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2725	raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2726	raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2727	raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2728	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2729	raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2730#ifdef EXT3_FRAGMENTS
2731	raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2732	raw_inode->i_frag = ei->i_frag_no;
2733	raw_inode->i_fsize = ei->i_frag_size;
2734#endif
2735	raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2736	if (!S_ISREG(inode->i_mode)) {
2737		raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2738	} else {
2739		raw_inode->i_size_high =
2740			cpu_to_le32(ei->i_disksize >> 32);
2741		if (ei->i_disksize > 0x7fffffffULL) {
2742			struct super_block *sb = inode->i_sb;
2743			if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2744					EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2745			    EXT3_SB(sb)->s_es->s_rev_level ==
2746					cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2747			       /* If this is the first large file
2748				* created, add a flag to the superblock.
2749				*/
2750				err = ext3_journal_get_write_access(handle,
2751						EXT3_SB(sb)->s_sbh);
2752				if (err)
2753					goto out_brelse;
2754				ext3_update_dynamic_rev(sb);
2755				EXT3_SET_RO_COMPAT_FEATURE(sb,
2756					EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2757				sb->s_dirt = 1;
2758				handle->h_sync = 1;
2759				err = ext3_journal_dirty_metadata(handle,
2760						EXT3_SB(sb)->s_sbh);
2761			}
2762		}
2763	}
2764	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2765	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2766		if (old_valid_dev(inode->i_rdev)) {
2767			raw_inode->i_block[0] =
2768				cpu_to_le32(old_encode_dev(inode->i_rdev));
2769			raw_inode->i_block[1] = 0;
2770		} else {
2771			raw_inode->i_block[0] = 0;
2772			raw_inode->i_block[1] =
2773				cpu_to_le32(new_encode_dev(inode->i_rdev));
2774			raw_inode->i_block[2] = 0;
2775		}
2776	} else for (block = 0; block < EXT3_N_BLOCKS; block++)
2777		raw_inode->i_block[block] = ei->i_data[block];
2778
2779	if (ei->i_extra_isize)
2780		raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2781
2782	BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2783	rc = ext3_journal_dirty_metadata(handle, bh);
2784	if (!err)
2785		err = rc;
2786	ei->i_state &= ~EXT3_STATE_NEW;
2787
2788out_brelse:
2789	brelse (bh);
2790	ext3_std_error(inode->i_sb, err);
2791	return err;
2792}
2793
2794/*
2795 * ext3_write_inode()
2796 *
2797 * We are called from a few places:
2798 *
2799 * - Within generic_file_write() for O_SYNC files.
2800 *   Here, there will be no transaction running. We wait for any running
2801 *   trasnaction to commit.
2802 *
2803 * - Within sys_sync(), kupdate and such.
2804 *   We wait on commit, if tol to.
2805 *
2806 * - Within prune_icache() (PF_MEMALLOC == true)
2807 *   Here we simply return.  We can't afford to block kswapd on the
2808 *   journal commit.
2809 *
2810 * In all cases it is actually safe for us to return without doing anything,
2811 * because the inode has been copied into a raw inode buffer in
2812 * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2813 * knfsd.
2814 *
2815 * Note that we are absolutely dependent upon all inode dirtiers doing the
2816 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2817 * which we are interested.
2818 *
2819 * It would be a bug for them to not do this.  The code:
2820 *
2821 *	mark_inode_dirty(inode)
2822 *	stuff();
2823 *	inode->i_size = expr;
2824 *
2825 * is in error because a kswapd-driven write_inode() could occur while
2826 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2827 * will no longer be on the superblock's dirty inode list.
2828 */
2829int ext3_write_inode(struct inode *inode, int wait)
2830{
2831	if (current->flags & PF_MEMALLOC)
2832		return 0;
2833
2834	if (ext3_journal_current_handle()) {
2835		jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
2836		dump_stack();
2837		return -EIO;
2838	}
2839
2840	if (!wait)
2841		return 0;
2842
2843	return ext3_force_commit(inode->i_sb);
2844}
2845
2846/*
2847 * ext3_setattr()
2848 *
2849 * Called from notify_change.
2850 *
2851 * We want to trap VFS attempts to truncate the file as soon as
2852 * possible.  In particular, we want to make sure that when the VFS
2853 * shrinks i_size, we put the inode on the orphan list and modify
2854 * i_disksize immediately, so that during the subsequent flushing of
2855 * dirty pages and freeing of disk blocks, we can guarantee that any
2856 * commit will leave the blocks being flushed in an unused state on
2857 * disk.  (On recovery, the inode will get truncated and the blocks will
2858 * be freed, so we have a strong guarantee that no future commit will
2859 * leave these blocks visible to the user.)
2860 *
2861 * Called with inode->sem down.
2862 */
2863int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2864{
2865	struct inode *inode = dentry->d_inode;
2866	int error, rc = 0;
2867	const unsigned int ia_valid = attr->ia_valid;
2868
2869	error = inode_change_ok(inode, attr);
2870	if (error)
2871		return error;
2872
2873	if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2874		(ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2875		handle_t *handle;
2876
2877		/* (user+group)*(old+new) structure, inode write (sb,
2878		 * inode block, ? - but truncate inode update has it) */
2879		handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
2880					EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
2881		if (IS_ERR(handle)) {
2882			error = PTR_ERR(handle);
2883			goto err_out;
2884		}
2885		error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
2886		if (error) {
2887			ext3_journal_stop(handle);
2888			return error;
2889		}
2890		/* Update corresponding info in inode so that everything is in
2891		 * one transaction */
2892		if (attr->ia_valid & ATTR_UID)
2893			inode->i_uid = attr->ia_uid;
2894		if (attr->ia_valid & ATTR_GID)
2895			inode->i_gid = attr->ia_gid;
2896		error = ext3_mark_inode_dirty(handle, inode);
2897		ext3_journal_stop(handle);
2898	}
2899
2900	if (S_ISREG(inode->i_mode) &&
2901	    attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
2902		handle_t *handle;
2903
2904		handle = ext3_journal_start(inode, 3);
2905		if (IS_ERR(handle)) {
2906			error = PTR_ERR(handle);
2907			goto err_out;
2908		}
2909
2910		error = ext3_orphan_add(handle, inode);
2911		EXT3_I(inode)->i_disksize = attr->ia_size;
2912		rc = ext3_mark_inode_dirty(handle, inode);
2913		if (!error)
2914			error = rc;
2915		ext3_journal_stop(handle);
2916	}
2917
2918	rc = inode_setattr(inode, attr);
2919
2920	/* If inode_setattr's call to ext3_truncate failed to get a
2921	 * transaction handle at all, we need to clean up the in-core
2922	 * orphan list manually. */
2923	if (inode->i_nlink)
2924		ext3_orphan_del(NULL, inode);
2925
2926	if (!rc && (ia_valid & ATTR_MODE))
2927		rc = ext3_acl_chmod(inode);
2928
2929err_out:
2930	ext3_std_error(inode->i_sb, error);
2931	if (!error)
2932		error = rc;
2933	return error;
2934}
2935
2936
2937/*
2938 * How many blocks doth make a writepage()?
2939 *
2940 * With N blocks per page, it may be:
2941 * N data blocks
2942 * 2 indirect block
2943 * 2 dindirect
2944 * 1 tindirect
2945 * N+5 bitmap blocks (from the above)
2946 * N+5 group descriptor summary blocks
2947 * 1 inode block
2948 * 1 superblock.
2949 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
2950 *
2951 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
2952 *
2953 * With ordered or writeback data it's the same, less the N data blocks.
2954 *
2955 * If the inode's direct blocks can hold an integral number of pages then a
2956 * page cannot straddle two indirect blocks, and we can only touch one indirect
2957 * and dindirect block, and the "5" above becomes "3".
2958 *
2959 * This still overestimates under most circumstances.  If we were to pass the
2960 * start and end offsets in here as well we could do block_to_path() on each
2961 * block and work out the exact number of indirects which are touched.  Pah.
2962 */
2963
2964static int ext3_writepage_trans_blocks(struct inode *inode)
2965{
2966	int bpp = ext3_journal_blocks_per_page(inode);
2967	int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
2968	int ret;
2969
2970	if (ext3_should_journal_data(inode))
2971		ret = 3 * (bpp + indirects) + 2;
2972	else
2973		ret = 2 * (bpp + indirects) + 2;
2974
2975#ifdef CONFIG_QUOTA
2976	/* We know that structure was already allocated during DQUOT_INIT so
2977	 * we will be updating only the data blocks + inodes */
2978	ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
2979#endif
2980
2981	return ret;
2982}
2983
2984/*
2985 * The caller must have previously called ext3_reserve_inode_write().
2986 * Give this, we know that the caller already has write access to iloc->bh.
2987 */
2988int ext3_mark_iloc_dirty(handle_t *handle,
2989		struct inode *inode, struct ext3_iloc *iloc)
2990{
2991	int err = 0;
2992
2993	/* the do_update_inode consumes one bh->b_count */
2994	get_bh(iloc->bh);
2995
2996	/* ext3_do_update_inode() does journal_dirty_metadata */
2997	err = ext3_do_update_inode(handle, inode, iloc);
2998	put_bh(iloc->bh);
2999	return err;
3000}
3001
3002/*
3003 * On success, We end up with an outstanding reference count against
3004 * iloc->bh.  This _must_ be cleaned up later.
3005 */
3006
3007int
3008ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3009			 struct ext3_iloc *iloc)
3010{
3011	int err = 0;
3012	if (handle) {
3013		err = ext3_get_inode_loc(inode, iloc);
3014		if (!err) {
3015			BUFFER_TRACE(iloc->bh, "get_write_access");
3016			err = ext3_journal_get_write_access(handle, iloc->bh);
3017			if (err) {
3018				brelse(iloc->bh);
3019				iloc->bh = NULL;
3020			}
3021		}
3022	}
3023	ext3_std_error(inode->i_sb, err);
3024	return err;
3025}
3026
3027/*
3028 * What we do here is to mark the in-core inode as clean with respect to inode
3029 * dirtiness (it may still be data-dirty).
3030 * This means that the in-core inode may be reaped by prune_icache
3031 * without having to perform any I/O.  This is a very good thing,
3032 * because *any* task may call prune_icache - even ones which
3033 * have a transaction open against a different journal.
3034 *
3035 * Is this cheating?  Not really.  Sure, we haven't written the
3036 * inode out, but prune_icache isn't a user-visible syncing function.
3037 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3038 * we start and wait on commits.
3039 *
3040 * Is this efficient/effective?  Well, we're being nice to the system
3041 * by cleaning up our inodes proactively so they can be reaped
3042 * without I/O.  But we are potentially leaving up to five seconds'
3043 * worth of inodes floating about which prune_icache wants us to
3044 * write out.  One way to fix that would be to get prune_icache()
3045 * to do a write_super() to free up some memory.  It has the desired
3046 * effect.
3047 */
3048int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3049{
3050	struct ext3_iloc iloc;
3051	int err;
3052
3053	might_sleep();
3054	err = ext3_reserve_inode_write(handle, inode, &iloc);
3055	if (!err)
3056		err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3057	return err;
3058}
3059
3060/*
3061 * ext3_dirty_inode() is called from __mark_inode_dirty()
3062 *
3063 * We're really interested in the case where a file is being extended.
3064 * i_size has been changed by generic_commit_write() and we thus need
3065 * to include the updated inode in the current transaction.
3066 *
3067 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3068 * are allocated to the file.
3069 *
3070 * If the inode is marked synchronous, we don't honour that here - doing
3071 * so would cause a commit on atime updates, which we don't bother doing.
3072 * We handle synchronous inodes at the highest possible level.
3073 */
3074void ext3_dirty_inode(struct inode *inode)
3075{
3076	handle_t *current_handle = ext3_journal_current_handle();
3077	handle_t *handle;
3078
3079	handle = ext3_journal_start(inode, 2);
3080	if (IS_ERR(handle))
3081		goto out;
3082	if (current_handle &&
3083		current_handle->h_transaction != handle->h_transaction) {
3084		/* This task has a transaction open against a different fs */
3085		printk(KERN_EMERG "%s: transactions do not match!\n",
3086		       __FUNCTION__);
3087	} else {
3088		jbd_debug(5, "marking dirty.  outer handle=%p\n",
3089				current_handle);
3090		ext3_mark_inode_dirty(handle, inode);
3091	}
3092	ext3_journal_stop(handle);
3093out:
3094	return;
3095}
3096
3097
3098int ext3_change_inode_journal_flag(struct inode *inode, int val)
3099{
3100	journal_t *journal;
3101	handle_t *handle;
3102	int err;
3103
3104	/*
3105	 * We have to be very careful here: changing a data block's
3106	 * journaling status dynamically is dangerous.  If we write a
3107	 * data block to the journal, change the status and then delete
3108	 * that block, we risk forgetting to revoke the old log record
3109	 * from the journal and so a subsequent replay can corrupt data.
3110	 * So, first we make sure that the journal is empty and that
3111	 * nobody is changing anything.
3112	 */
3113
3114	journal = EXT3_JOURNAL(inode);
3115	if (is_journal_aborted(journal) || IS_RDONLY(inode))
3116		return -EROFS;
3117
3118	journal_lock_updates(journal);
3119	journal_flush(journal);
3120
3121	/*
3122	 * OK, there are no updates running now, and all cached data is
3123	 * synced to disk.  We are now in a completely consistent state
3124	 * which doesn't have anything in the journal, and we know that
3125	 * no filesystem updates are running, so it is safe to modify
3126	 * the inode's in-core data-journaling state flag now.
3127	 */
3128
3129	if (val)
3130		EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3131	else
3132		EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3133	ext3_set_aops(inode);
3134
3135	journal_unlock_updates(journal);
3136
3137	/* Finally we can mark the inode as dirty. */
3138
3139	handle = ext3_journal_start(inode, 1);
3140	if (IS_ERR(handle))
3141		return PTR_ERR(handle);
3142
3143	err = ext3_mark_inode_dirty(handle, inode);
3144	handle->h_sync = 1;
3145	ext3_journal_stop(handle);
3146	ext3_std_error(inode->i_sb, err);
3147
3148	return err;
3149}
3150