1/*
2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 *  SCSI queueing library.
5 *      Initial versions: Eric Youngdale (eric@andante.org).
6 *                        Based upon conversations with large numbers
7 *                        of people at Linux Expo.
8 */
9
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/completion.h>
13#include <linux/kernel.h>
14#include <linux/mempool.h>
15#include <linux/slab.h>
16#include <linux/init.h>
17#include <linux/pci.h>
18#include <linux/delay.h>
19#include <linux/hardirq.h>
20
21#include <scsi/scsi.h>
22#include <scsi/scsi_cmnd.h>
23#include <scsi/scsi_dbg.h>
24#include <scsi/scsi_device.h>
25#include <scsi/scsi_driver.h>
26#include <scsi/scsi_eh.h>
27#include <scsi/scsi_host.h>
28
29#include "scsi_priv.h"
30#include "scsi_logging.h"
31
32
33#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
34#define SG_MEMPOOL_SIZE		2
35
36struct scsi_host_sg_pool {
37	size_t		size;
38	char		*name;
39	struct kmem_cache	*slab;
40	mempool_t	*pool;
41};
42
43#if (SCSI_MAX_PHYS_SEGMENTS < 32)
44#error SCSI_MAX_PHYS_SEGMENTS is too small
45#endif
46
47#define SP(x) { x, "sgpool-" #x }
48static struct scsi_host_sg_pool scsi_sg_pools[] = {
49	SP(8),
50	SP(16),
51	SP(32),
52#if (SCSI_MAX_PHYS_SEGMENTS > 32)
53	SP(64),
54#if (SCSI_MAX_PHYS_SEGMENTS > 64)
55	SP(128),
56#if (SCSI_MAX_PHYS_SEGMENTS > 128)
57	SP(256),
58#if (SCSI_MAX_PHYS_SEGMENTS > 256)
59#error SCSI_MAX_PHYS_SEGMENTS is too large
60#endif
61#endif
62#endif
63#endif
64};
65#undef SP
66
67static void scsi_run_queue(struct request_queue *q);
68
69/*
70 * Function:	scsi_unprep_request()
71 *
72 * Purpose:	Remove all preparation done for a request, including its
73 *		associated scsi_cmnd, so that it can be requeued.
74 *
75 * Arguments:	req	- request to unprepare
76 *
77 * Lock status:	Assumed that no locks are held upon entry.
78 *
79 * Returns:	Nothing.
80 */
81static void scsi_unprep_request(struct request *req)
82{
83	struct scsi_cmnd *cmd = req->special;
84
85	req->cmd_flags &= ~REQ_DONTPREP;
86	req->special = NULL;
87
88	scsi_put_command(cmd);
89}
90
91/*
92 * Function:    scsi_queue_insert()
93 *
94 * Purpose:     Insert a command in the midlevel queue.
95 *
96 * Arguments:   cmd    - command that we are adding to queue.
97 *              reason - why we are inserting command to queue.
98 *
99 * Lock status: Assumed that lock is not held upon entry.
100 *
101 * Returns:     Nothing.
102 *
103 * Notes:       We do this for one of two cases.  Either the host is busy
104 *              and it cannot accept any more commands for the time being,
105 *              or the device returned QUEUE_FULL and can accept no more
106 *              commands.
107 * Notes:       This could be called either from an interrupt context or a
108 *              normal process context.
109 */
110int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111{
112	struct Scsi_Host *host = cmd->device->host;
113	struct scsi_device *device = cmd->device;
114	struct request_queue *q = device->request_queue;
115	unsigned long flags;
116
117	SCSI_LOG_MLQUEUE(1,
118		 printk("Inserting command %p into mlqueue\n", cmd));
119
120	/*
121	 * Set the appropriate busy bit for the device/host.
122	 *
123	 * If the host/device isn't busy, assume that something actually
124	 * completed, and that we should be able to queue a command now.
125	 *
126	 * Note that the prior mid-layer assumption that any host could
127	 * always queue at least one command is now broken.  The mid-layer
128	 * will implement a user specifiable stall (see
129	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130	 * if a command is requeued with no other commands outstanding
131	 * either for the device or for the host.
132	 */
133	if (reason == SCSI_MLQUEUE_HOST_BUSY)
134		host->host_blocked = host->max_host_blocked;
135	else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136		device->device_blocked = device->max_device_blocked;
137
138	/*
139	 * Decrement the counters, since these commands are no longer
140	 * active on the host/device.
141	 */
142	scsi_device_unbusy(device);
143
144	/*
145	 * Requeue this command.  It will go before all other commands
146	 * that are already in the queue.
147	 *
148	 * NOTE: there is magic here about the way the queue is plugged if
149	 * we have no outstanding commands.
150	 *
151	 * Although we *don't* plug the queue, we call the request
152	 * function.  The SCSI request function detects the blocked condition
153	 * and plugs the queue appropriately.
154         */
155	spin_lock_irqsave(q->queue_lock, flags);
156	blk_requeue_request(q, cmd->request);
157	spin_unlock_irqrestore(q->queue_lock, flags);
158
159	scsi_run_queue(q);
160
161	return 0;
162}
163
164/**
165 * scsi_execute - insert request and wait for the result
166 * @sdev:	scsi device
167 * @cmd:	scsi command
168 * @data_direction: data direction
169 * @buffer:	data buffer
170 * @bufflen:	len of buffer
171 * @sense:	optional sense buffer
172 * @timeout:	request timeout in seconds
173 * @retries:	number of times to retry request
174 * @flags:	or into request flags;
175 *
176 * returns the req->errors value which is the scsi_cmnd result
177 * field.
178 **/
179int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180		 int data_direction, void *buffer, unsigned bufflen,
181		 unsigned char *sense, int timeout, int retries, int flags)
182{
183	struct request *req;
184	int write = (data_direction == DMA_TO_DEVICE);
185	int ret = DRIVER_ERROR << 24;
186
187	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
190					buffer, bufflen, __GFP_WAIT))
191		goto out;
192
193	req->cmd_len = COMMAND_SIZE(cmd[0]);
194	memcpy(req->cmd, cmd, req->cmd_len);
195	req->sense = sense;
196	req->sense_len = 0;
197	req->retries = retries;
198	req->timeout = timeout;
199	req->cmd_type = REQ_TYPE_BLOCK_PC;
200	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202	/*
203	 * head injection *required* here otherwise quiesce won't work
204	 */
205	blk_execute_rq(req->q, NULL, req, 1);
206
207	ret = req->errors;
208 out:
209	blk_put_request(req);
210
211	return ret;
212}
213EXPORT_SYMBOL(scsi_execute);
214
215
216int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217		     int data_direction, void *buffer, unsigned bufflen,
218		     struct scsi_sense_hdr *sshdr, int timeout, int retries)
219{
220	char *sense = NULL;
221	int result;
222
223	if (sshdr) {
224		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225		if (!sense)
226			return DRIVER_ERROR << 24;
227	}
228	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229			      sense, timeout, retries, 0);
230	if (sshdr)
231		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233	kfree(sense);
234	return result;
235}
236EXPORT_SYMBOL(scsi_execute_req);
237
238struct scsi_io_context {
239	void *data;
240	void (*done)(void *data, char *sense, int result, int resid);
241	char sense[SCSI_SENSE_BUFFERSIZE];
242};
243
244static struct kmem_cache *scsi_io_context_cache;
245
246static void scsi_end_async(struct request *req, int uptodate)
247{
248	struct scsi_io_context *sioc = req->end_io_data;
249
250	if (sioc->done)
251		sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253	kmem_cache_free(scsi_io_context_cache, sioc);
254	__blk_put_request(req->q, req);
255}
256
257static int scsi_merge_bio(struct request *rq, struct bio *bio)
258{
259	struct request_queue *q = rq->q;
260
261	bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262	if (rq_data_dir(rq) == WRITE)
263		bio->bi_rw |= (1 << BIO_RW);
264	blk_queue_bounce(q, &bio);
265
266	if (!rq->bio)
267		blk_rq_bio_prep(q, rq, bio);
268	else if (!ll_back_merge_fn(q, rq, bio))
269		return -EINVAL;
270	else {
271		rq->biotail->bi_next = bio;
272		rq->biotail = bio;
273	}
274
275	return 0;
276}
277
278static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
279{
280	if (bio->bi_size)
281		return 1;
282
283	bio_put(bio);
284	return 0;
285}
286
287/**
288 * scsi_req_map_sg - map a scatterlist into a request
289 * @rq:		request to fill
290 * @sg:		scatterlist
291 * @nsegs:	number of elements
292 * @bufflen:	len of buffer
293 * @gfp:	memory allocation flags
294 *
295 * scsi_req_map_sg maps a scatterlist into a request so that the
296 * request can be sent to the block layer. We do not trust the scatterlist
297 * sent to use, as some ULDs use that struct to only organize the pages.
298 */
299static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
300			   int nsegs, unsigned bufflen, gfp_t gfp)
301{
302	struct request_queue *q = rq->q;
303	int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
304	unsigned int data_len = 0, len, bytes, off;
305	struct page *page;
306	struct bio *bio = NULL;
307	int i, err, nr_vecs = 0;
308
309	for (i = 0; i < nsegs; i++) {
310		page = sgl[i].page;
311		off = sgl[i].offset;
312		len = sgl[i].length;
313		data_len += len;
314
315		while (len > 0) {
316			bytes = min_t(unsigned int, len, PAGE_SIZE - off);
317
318			if (!bio) {
319				nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
320				nr_pages -= nr_vecs;
321
322				bio = bio_alloc(gfp, nr_vecs);
323				if (!bio) {
324					err = -ENOMEM;
325					goto free_bios;
326				}
327				bio->bi_end_io = scsi_bi_endio;
328			}
329
330			if (bio_add_pc_page(q, bio, page, bytes, off) !=
331			    bytes) {
332				bio_put(bio);
333				err = -EINVAL;
334				goto free_bios;
335			}
336
337			if (bio->bi_vcnt >= nr_vecs) {
338				err = scsi_merge_bio(rq, bio);
339				if (err) {
340					bio_endio(bio, bio->bi_size, 0);
341					goto free_bios;
342				}
343				bio = NULL;
344			}
345
346			page++;
347			len -= bytes;
348			off = 0;
349		}
350	}
351
352	rq->buffer = rq->data = NULL;
353	rq->data_len = data_len;
354	return 0;
355
356free_bios:
357	while ((bio = rq->bio) != NULL) {
358		rq->bio = bio->bi_next;
359		/*
360		 * call endio instead of bio_put incase it was bounced
361		 */
362		bio_endio(bio, bio->bi_size, 0);
363	}
364
365	return err;
366}
367
368/**
369 * scsi_execute_async - insert request
370 * @sdev:	scsi device
371 * @cmd:	scsi command
372 * @cmd_len:	length of scsi cdb
373 * @data_direction: data direction
374 * @buffer:	data buffer (this can be a kernel buffer or scatterlist)
375 * @bufflen:	len of buffer
376 * @use_sg:	if buffer is a scatterlist this is the number of elements
377 * @timeout:	request timeout in seconds
378 * @retries:	number of times to retry request
379 * @flags:	or into request flags
380 **/
381int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
382		       int cmd_len, int data_direction, void *buffer, unsigned bufflen,
383		       int use_sg, int timeout, int retries, void *privdata,
384		       void (*done)(void *, char *, int, int), gfp_t gfp)
385{
386	struct request *req;
387	struct scsi_io_context *sioc;
388	int err = 0;
389	int write = (data_direction == DMA_TO_DEVICE);
390
391	sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
392	if (!sioc)
393		return DRIVER_ERROR << 24;
394
395	req = blk_get_request(sdev->request_queue, write, gfp);
396	if (!req)
397		goto free_sense;
398	req->cmd_type = REQ_TYPE_BLOCK_PC;
399	req->cmd_flags |= REQ_QUIET;
400
401	if (use_sg)
402		err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
403	else if (bufflen)
404		err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
405
406	if (err)
407		goto free_req;
408
409	req->cmd_len = cmd_len;
410	memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
411	memcpy(req->cmd, cmd, req->cmd_len);
412	req->sense = sioc->sense;
413	req->sense_len = 0;
414	req->timeout = timeout;
415	req->retries = retries;
416	req->end_io_data = sioc;
417
418	sioc->data = privdata;
419	sioc->done = done;
420
421	blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
422	return 0;
423
424free_req:
425	blk_put_request(req);
426free_sense:
427	kmem_cache_free(scsi_io_context_cache, sioc);
428	return DRIVER_ERROR << 24;
429}
430EXPORT_SYMBOL_GPL(scsi_execute_async);
431
432/*
433 * Function:    scsi_init_cmd_errh()
434 *
435 * Purpose:     Initialize cmd fields related to error handling.
436 *
437 * Arguments:   cmd	- command that is ready to be queued.
438 *
439 * Notes:       This function has the job of initializing a number of
440 *              fields related to error handling.   Typically this will
441 *              be called once for each command, as required.
442 */
443static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
444{
445	cmd->serial_number = 0;
446	memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
447	if (cmd->cmd_len == 0)
448		cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
449}
450
451void scsi_device_unbusy(struct scsi_device *sdev)
452{
453	struct Scsi_Host *shost = sdev->host;
454	unsigned long flags;
455
456	spin_lock_irqsave(shost->host_lock, flags);
457	shost->host_busy--;
458	if (unlikely(scsi_host_in_recovery(shost) &&
459		     (shost->host_failed || shost->host_eh_scheduled)))
460		scsi_eh_wakeup(shost);
461	spin_unlock(shost->host_lock);
462	spin_lock(sdev->request_queue->queue_lock);
463	sdev->device_busy--;
464	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465}
466
467/*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474static void scsi_single_lun_run(struct scsi_device *current_sdev)
475{
476	struct Scsi_Host *shost = current_sdev->host;
477	struct scsi_device *sdev, *tmp;
478	struct scsi_target *starget = scsi_target(current_sdev);
479	unsigned long flags;
480
481	spin_lock_irqsave(shost->host_lock, flags);
482	starget->starget_sdev_user = NULL;
483	spin_unlock_irqrestore(shost->host_lock, flags);
484
485	/*
486	 * Call blk_run_queue for all LUNs on the target, starting with
487	 * current_sdev. We race with others (to set starget_sdev_user),
488	 * but in most cases, we will be first. Ideally, each LU on the
489	 * target would get some limited time or requests on the target.
490	 */
491	blk_run_queue(current_sdev->request_queue);
492
493	spin_lock_irqsave(shost->host_lock, flags);
494	if (starget->starget_sdev_user)
495		goto out;
496	list_for_each_entry_safe(sdev, tmp, &starget->devices,
497			same_target_siblings) {
498		if (sdev == current_sdev)
499			continue;
500		if (scsi_device_get(sdev))
501			continue;
502
503		spin_unlock_irqrestore(shost->host_lock, flags);
504		blk_run_queue(sdev->request_queue);
505		spin_lock_irqsave(shost->host_lock, flags);
506
507		scsi_device_put(sdev);
508	}
509 out:
510	spin_unlock_irqrestore(shost->host_lock, flags);
511}
512
513/*
514 * Function:	scsi_run_queue()
515 *
516 * Purpose:	Select a proper request queue to serve next
517 *
518 * Arguments:	q	- last request's queue
519 *
520 * Returns:     Nothing
521 *
522 * Notes:	The previous command was completely finished, start
523 *		a new one if possible.
524 */
525static void scsi_run_queue(struct request_queue *q)
526{
527	struct scsi_device *sdev = q->queuedata;
528	struct Scsi_Host *shost = sdev->host;
529	unsigned long flags;
530
531	if (sdev->single_lun)
532		scsi_single_lun_run(sdev);
533
534	spin_lock_irqsave(shost->host_lock, flags);
535	while (!list_empty(&shost->starved_list) &&
536	       !shost->host_blocked && !shost->host_self_blocked &&
537		!((shost->can_queue > 0) &&
538		  (shost->host_busy >= shost->can_queue))) {
539		/*
540		 * As long as shost is accepting commands and we have
541		 * starved queues, call blk_run_queue. scsi_request_fn
542		 * drops the queue_lock and can add us back to the
543		 * starved_list.
544		 *
545		 * host_lock protects the starved_list and starved_entry.
546		 * scsi_request_fn must get the host_lock before checking
547		 * or modifying starved_list or starved_entry.
548		 */
549		sdev = list_entry(shost->starved_list.next,
550					  struct scsi_device, starved_entry);
551		list_del_init(&sdev->starved_entry);
552		spin_unlock_irqrestore(shost->host_lock, flags);
553
554
555		if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
556		    !test_and_set_bit(QUEUE_FLAG_REENTER,
557				      &sdev->request_queue->queue_flags)) {
558			blk_run_queue(sdev->request_queue);
559			clear_bit(QUEUE_FLAG_REENTER,
560				  &sdev->request_queue->queue_flags);
561		} else
562			blk_run_queue(sdev->request_queue);
563
564		spin_lock_irqsave(shost->host_lock, flags);
565		if (unlikely(!list_empty(&sdev->starved_entry)))
566			/*
567			 * sdev lost a race, and was put back on the
568			 * starved list. This is unlikely but without this
569			 * in theory we could loop forever.
570			 */
571			break;
572	}
573	spin_unlock_irqrestore(shost->host_lock, flags);
574
575	blk_run_queue(q);
576}
577
578/*
579 * Function:	scsi_requeue_command()
580 *
581 * Purpose:	Handle post-processing of completed commands.
582 *
583 * Arguments:	q	- queue to operate on
584 *		cmd	- command that may need to be requeued.
585 *
586 * Returns:	Nothing
587 *
588 * Notes:	After command completion, there may be blocks left
589 *		over which weren't finished by the previous command
590 *		this can be for a number of reasons - the main one is
591 *		I/O errors in the middle of the request, in which case
592 *		we need to request the blocks that come after the bad
593 *		sector.
594 * Notes:	Upon return, cmd is a stale pointer.
595 */
596static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
597{
598	struct request *req = cmd->request;
599	unsigned long flags;
600
601	scsi_unprep_request(req);
602	spin_lock_irqsave(q->queue_lock, flags);
603	blk_requeue_request(q, req);
604	spin_unlock_irqrestore(q->queue_lock, flags);
605
606	scsi_run_queue(q);
607}
608
609void scsi_next_command(struct scsi_cmnd *cmd)
610{
611	struct scsi_device *sdev = cmd->device;
612	struct request_queue *q = sdev->request_queue;
613
614	/* need to hold a reference on the device before we let go of the cmd */
615	get_device(&sdev->sdev_gendev);
616
617	scsi_put_command(cmd);
618	scsi_run_queue(q);
619
620	/* ok to remove device now */
621	put_device(&sdev->sdev_gendev);
622}
623
624void scsi_run_host_queues(struct Scsi_Host *shost)
625{
626	struct scsi_device *sdev;
627
628	shost_for_each_device(sdev, shost)
629		scsi_run_queue(sdev->request_queue);
630}
631
632/*
633 * Function:    scsi_end_request()
634 *
635 * Purpose:     Post-processing of completed commands (usually invoked at end
636 *		of upper level post-processing and scsi_io_completion).
637 *
638 * Arguments:   cmd	 - command that is complete.
639 *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
640 *              bytes    - number of bytes of completed I/O
641 *		requeue  - indicates whether we should requeue leftovers.
642 *
643 * Lock status: Assumed that lock is not held upon entry.
644 *
645 * Returns:     cmd if requeue required, NULL otherwise.
646 *
647 * Notes:       This is called for block device requests in order to
648 *              mark some number of sectors as complete.
649 *
650 *		We are guaranteeing that the request queue will be goosed
651 *		at some point during this call.
652 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
653 */
654static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
655					  int bytes, int requeue)
656{
657	request_queue_t *q = cmd->device->request_queue;
658	struct request *req = cmd->request;
659	unsigned long flags;
660
661	/*
662	 * If there are blocks left over at the end, set up the command
663	 * to queue the remainder of them.
664	 */
665	if (end_that_request_chunk(req, uptodate, bytes)) {
666		int leftover = (req->hard_nr_sectors << 9);
667
668		if (blk_pc_request(req))
669			leftover = req->data_len;
670
671		/* kill remainder if no retrys */
672		if (!uptodate && blk_noretry_request(req))
673			end_that_request_chunk(req, 0, leftover);
674		else {
675			if (requeue) {
676				/*
677				 * Bleah.  Leftovers again.  Stick the
678				 * leftovers in the front of the
679				 * queue, and goose the queue again.
680				 */
681				scsi_requeue_command(q, cmd);
682				cmd = NULL;
683			}
684			return cmd;
685		}
686	}
687
688	add_disk_randomness(req->rq_disk);
689
690	spin_lock_irqsave(q->queue_lock, flags);
691	if (blk_rq_tagged(req))
692		blk_queue_end_tag(q, req);
693	end_that_request_last(req, uptodate);
694	spin_unlock_irqrestore(q->queue_lock, flags);
695
696	/*
697	 * This will goose the queue request function at the end, so we don't
698	 * need to worry about launching another command.
699	 */
700	scsi_next_command(cmd);
701	return NULL;
702}
703
704struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
705{
706	struct scsi_host_sg_pool *sgp;
707	struct scatterlist *sgl;
708
709	BUG_ON(!cmd->use_sg);
710
711	switch (cmd->use_sg) {
712	case 1 ... 8:
713		cmd->sglist_len = 0;
714		break;
715	case 9 ... 16:
716		cmd->sglist_len = 1;
717		break;
718	case 17 ... 32:
719		cmd->sglist_len = 2;
720		break;
721#if (SCSI_MAX_PHYS_SEGMENTS > 32)
722	case 33 ... 64:
723		cmd->sglist_len = 3;
724		break;
725#if (SCSI_MAX_PHYS_SEGMENTS > 64)
726	case 65 ... 128:
727		cmd->sglist_len = 4;
728		break;
729#if (SCSI_MAX_PHYS_SEGMENTS  > 128)
730	case 129 ... 256:
731		cmd->sglist_len = 5;
732		break;
733#endif
734#endif
735#endif
736	default:
737		return NULL;
738	}
739
740	sgp = scsi_sg_pools + cmd->sglist_len;
741	sgl = mempool_alloc(sgp->pool, gfp_mask);
742	return sgl;
743}
744
745EXPORT_SYMBOL(scsi_alloc_sgtable);
746
747void scsi_free_sgtable(struct scatterlist *sgl, int index)
748{
749	struct scsi_host_sg_pool *sgp;
750
751	BUG_ON(index >= SG_MEMPOOL_NR);
752
753	sgp = scsi_sg_pools + index;
754	mempool_free(sgl, sgp->pool);
755}
756
757EXPORT_SYMBOL(scsi_free_sgtable);
758
759/*
760 * Function:    scsi_release_buffers()
761 *
762 * Purpose:     Completion processing for block device I/O requests.
763 *
764 * Arguments:   cmd	- command that we are bailing.
765 *
766 * Lock status: Assumed that no lock is held upon entry.
767 *
768 * Returns:     Nothing
769 *
770 * Notes:       In the event that an upper level driver rejects a
771 *		command, we must release resources allocated during
772 *		the __init_io() function.  Primarily this would involve
773 *		the scatter-gather table, and potentially any bounce
774 *		buffers.
775 */
776static void scsi_release_buffers(struct scsi_cmnd *cmd)
777{
778	if (cmd->use_sg)
779		scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
780
781	/*
782	 * Zero these out.  They now point to freed memory, and it is
783	 * dangerous to hang onto the pointers.
784	 */
785	cmd->request_buffer = NULL;
786	cmd->request_bufflen = 0;
787}
788
789/*
790 * Function:    scsi_io_completion()
791 *
792 * Purpose:     Completion processing for block device I/O requests.
793 *
794 * Arguments:   cmd   - command that is finished.
795 *
796 * Lock status: Assumed that no lock is held upon entry.
797 *
798 * Returns:     Nothing
799 *
800 * Notes:       This function is matched in terms of capabilities to
801 *              the function that created the scatter-gather list.
802 *              In other words, if there are no bounce buffers
803 *              (the normal case for most drivers), we don't need
804 *              the logic to deal with cleaning up afterwards.
805 *
806 *		We must do one of several things here:
807 *
808 *		a) Call scsi_end_request.  This will finish off the
809 *		   specified number of sectors.  If we are done, the
810 *		   command block will be released, and the queue
811 *		   function will be goosed.  If we are not done, then
812 *		   scsi_end_request will directly goose the queue.
813 *
814 *		b) We can just use scsi_requeue_command() here.  This would
815 *		   be used if we just wanted to retry, for example.
816 */
817void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
818{
819	int result = cmd->result;
820	int this_count = cmd->request_bufflen;
821	request_queue_t *q = cmd->device->request_queue;
822	struct request *req = cmd->request;
823	int clear_errors = 1;
824	struct scsi_sense_hdr sshdr;
825	int sense_valid = 0;
826	int sense_deferred = 0;
827
828	scsi_release_buffers(cmd);
829
830	if (result) {
831		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
832		if (sense_valid)
833			sense_deferred = scsi_sense_is_deferred(&sshdr);
834	}
835
836	if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
837		req->errors = result;
838		if (result) {
839			clear_errors = 0;
840			if (sense_valid && req->sense) {
841				/*
842				 * SG_IO wants current and deferred errors
843				 */
844				int len = 8 + cmd->sense_buffer[7];
845
846				if (len > SCSI_SENSE_BUFFERSIZE)
847					len = SCSI_SENSE_BUFFERSIZE;
848				memcpy(req->sense, cmd->sense_buffer,  len);
849				req->sense_len = len;
850			}
851		}
852		req->data_len = cmd->resid;
853	}
854
855	/*
856	 * Next deal with any sectors which we were able to correctly
857	 * handle.
858	 */
859	SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
860				      "%d bytes done.\n",
861				      req->nr_sectors, good_bytes));
862	SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
863
864	if (clear_errors)
865		req->errors = 0;
866
867	/* A number of bytes were successfully read.  If there
868	 * are leftovers and there is some kind of error
869	 * (result != 0), retry the rest.
870	 */
871	if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
872		return;
873
874	/* good_bytes = 0, or (inclusive) there were leftovers and
875	 * result = 0, so scsi_end_request couldn't retry.
876	 */
877	if (sense_valid && !sense_deferred) {
878		switch (sshdr.sense_key) {
879		case UNIT_ATTENTION:
880			if (cmd->device->removable) {
881				/* Detected disc change.  Set a bit
882				 * and quietly refuse further access.
883				 */
884				cmd->device->changed = 1;
885				scsi_end_request(cmd, 0, this_count, 1);
886				return;
887			} else {
888				/* Must have been a power glitch, or a
889				 * bus reset.  Could not have been a
890				 * media change, so we just retry the
891				 * request and see what happens.
892				 */
893				scsi_requeue_command(q, cmd);
894				return;
895			}
896			break;
897		case ILLEGAL_REQUEST:
898			/* If we had an ILLEGAL REQUEST returned, then
899			 * we may have performed an unsupported
900			 * command.  The only thing this should be
901			 * would be a ten byte read where only a six
902			 * byte read was supported.  Also, on a system
903			 * where READ CAPACITY failed, we may have
904			 * read past the end of the disk.
905			 */
906			if ((cmd->device->use_10_for_rw &&
907			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
908			    (cmd->cmnd[0] == READ_10 ||
909			     cmd->cmnd[0] == WRITE_10)) {
910				cmd->device->use_10_for_rw = 0;
911				/* This will cause a retry with a
912				 * 6-byte command.
913				 */
914				scsi_requeue_command(q, cmd);
915				return;
916			} else {
917				scsi_end_request(cmd, 0, this_count, 1);
918				return;
919			}
920			break;
921		case NOT_READY:
922			/* If the device is in the process of becoming
923			 * ready, or has a temporary blockage, retry.
924			 */
925			if (sshdr.asc == 0x04) {
926				switch (sshdr.ascq) {
927				case 0x01: /* becoming ready */
928				case 0x04: /* format in progress */
929				case 0x05: /* rebuild in progress */
930				case 0x06: /* recalculation in progress */
931				case 0x07: /* operation in progress */
932				case 0x08: /* Long write in progress */
933				case 0x09: /* self test in progress */
934					scsi_requeue_command(q, cmd);
935					return;
936				default:
937					break;
938				}
939			}
940			if (!(req->cmd_flags & REQ_QUIET)) {
941				scmd_printk(KERN_INFO, cmd,
942					    "Device not ready: ");
943				scsi_print_sense_hdr("", &sshdr);
944			}
945			scsi_end_request(cmd, 0, this_count, 1);
946			return;
947		case VOLUME_OVERFLOW:
948			if (!(req->cmd_flags & REQ_QUIET)) {
949				scmd_printk(KERN_INFO, cmd,
950					    "Volume overflow, CDB: ");
951				__scsi_print_command(cmd->cmnd);
952				scsi_print_sense("", cmd);
953			}
954			/* See SSC3rXX or current. */
955			scsi_end_request(cmd, 0, this_count, 1);
956			return;
957		default:
958			break;
959		}
960	}
961	if (host_byte(result) == DID_RESET) {
962		/* Third party bus reset or reset for error recovery
963		 * reasons.  Just retry the request and see what
964		 * happens.
965		 */
966		scsi_requeue_command(q, cmd);
967		return;
968	}
969	if (result) {
970		if (!(req->cmd_flags & REQ_QUIET)) {
971			scsi_print_result(cmd);
972			if (driver_byte(result) & DRIVER_SENSE)
973				scsi_print_sense("", cmd);
974		}
975	}
976	scsi_end_request(cmd, 0, this_count, !result);
977}
978EXPORT_SYMBOL(scsi_io_completion);
979
980/*
981 * Function:    scsi_init_io()
982 *
983 * Purpose:     SCSI I/O initialize function.
984 *
985 * Arguments:   cmd   - Command descriptor we wish to initialize
986 *
987 * Returns:     0 on success
988 *		BLKPREP_DEFER if the failure is retryable
989 *		BLKPREP_KILL if the failure is fatal
990 */
991static int scsi_init_io(struct scsi_cmnd *cmd)
992{
993	struct request     *req = cmd->request;
994	struct scatterlist *sgpnt;
995	int		   count;
996
997	/*
998	 * We used to not use scatter-gather for single segment request,
999	 * but now we do (it makes highmem I/O easier to support without
1000	 * kmapping pages)
1001	 */
1002	cmd->use_sg = req->nr_phys_segments;
1003
1004	/*
1005	 * If sg table allocation fails, requeue request later.
1006	 */
1007	sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1008	if (unlikely(!sgpnt)) {
1009		scsi_unprep_request(req);
1010		return BLKPREP_DEFER;
1011	}
1012
1013	req->buffer = NULL;
1014	cmd->request_buffer = (char *) sgpnt;
1015	if (blk_pc_request(req))
1016		cmd->request_bufflen = req->data_len;
1017	else
1018		cmd->request_bufflen = req->nr_sectors << 9;
1019
1020	/*
1021	 * Next, walk the list, and fill in the addresses and sizes of
1022	 * each segment.
1023	 */
1024	count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1025	if (likely(count <= cmd->use_sg)) {
1026		cmd->use_sg = count;
1027		return BLKPREP_OK;
1028	}
1029
1030	printk(KERN_ERR "Incorrect number of segments after building list\n");
1031	printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1032	printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1033			req->current_nr_sectors);
1034
1035	/* release the command and kill it */
1036	scsi_release_buffers(cmd);
1037	scsi_put_command(cmd);
1038	return BLKPREP_KILL;
1039}
1040
1041static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1042			       sector_t *error_sector)
1043{
1044	struct scsi_device *sdev = q->queuedata;
1045	struct scsi_driver *drv;
1046
1047	if (sdev->sdev_state != SDEV_RUNNING)
1048		return -ENXIO;
1049
1050	drv = *(struct scsi_driver **) disk->private_data;
1051	if (drv->issue_flush)
1052		return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1053
1054	return -EOPNOTSUPP;
1055}
1056
1057static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1058		struct request *req)
1059{
1060	struct scsi_cmnd *cmd;
1061
1062	if (!req->special) {
1063		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1064		if (unlikely(!cmd))
1065			return NULL;
1066		req->special = cmd;
1067	} else {
1068		cmd = req->special;
1069	}
1070
1071	/* pull a tag out of the request if we have one */
1072	cmd->tag = req->tag;
1073	cmd->request = req;
1074
1075	return cmd;
1076}
1077
1078static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1079{
1080	BUG_ON(!blk_pc_request(cmd->request));
1081	/*
1082	 * This will complete the whole command with uptodate=1 so
1083	 * as far as the block layer is concerned the command completed
1084	 * successfully. Since this is a REQ_BLOCK_PC command the
1085	 * caller should check the request's errors value
1086	 */
1087	scsi_io_completion(cmd, cmd->request_bufflen);
1088}
1089
1090static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1091{
1092	struct scsi_cmnd *cmd;
1093
1094	cmd = scsi_get_cmd_from_req(sdev, req);
1095	if (unlikely(!cmd))
1096		return BLKPREP_DEFER;
1097
1098	/*
1099	 * BLOCK_PC requests may transfer data, in which case they must
1100	 * a bio attached to them.  Or they might contain a SCSI command
1101	 * that does not transfer data, in which case they may optionally
1102	 * submit a request without an attached bio.
1103	 */
1104	if (req->bio) {
1105		int ret;
1106
1107		BUG_ON(!req->nr_phys_segments);
1108
1109		ret = scsi_init_io(cmd);
1110		if (unlikely(ret))
1111			return ret;
1112	} else {
1113		BUG_ON(req->data_len);
1114		BUG_ON(req->data);
1115
1116		cmd->request_bufflen = 0;
1117		cmd->request_buffer = NULL;
1118		cmd->use_sg = 0;
1119		req->buffer = NULL;
1120	}
1121
1122	BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1123	memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1124	cmd->cmd_len = req->cmd_len;
1125	if (!req->data_len)
1126		cmd->sc_data_direction = DMA_NONE;
1127	else if (rq_data_dir(req) == WRITE)
1128		cmd->sc_data_direction = DMA_TO_DEVICE;
1129	else
1130		cmd->sc_data_direction = DMA_FROM_DEVICE;
1131
1132	cmd->transfersize = req->data_len;
1133	cmd->allowed = req->retries;
1134	cmd->timeout_per_command = req->timeout;
1135	cmd->done = scsi_blk_pc_done;
1136	return BLKPREP_OK;
1137}
1138
1139/*
1140 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1141 * from filesystems that still need to be translated to SCSI CDBs from
1142 * the ULD.
1143 */
1144static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1145{
1146	struct scsi_cmnd *cmd;
1147	struct scsi_driver *drv;
1148	int ret;
1149
1150	/*
1151	 * Filesystem requests must transfer data.
1152	 */
1153	BUG_ON(!req->nr_phys_segments);
1154
1155	cmd = scsi_get_cmd_from_req(sdev, req);
1156	if (unlikely(!cmd))
1157		return BLKPREP_DEFER;
1158
1159	ret = scsi_init_io(cmd);
1160	if (unlikely(ret))
1161		return ret;
1162
1163	/*
1164	 * Initialize the actual SCSI command for this request.
1165	 */
1166	drv = *(struct scsi_driver **)req->rq_disk->private_data;
1167	if (unlikely(!drv->init_command(cmd))) {
1168		scsi_release_buffers(cmd);
1169		scsi_put_command(cmd);
1170		return BLKPREP_KILL;
1171	}
1172
1173	return BLKPREP_OK;
1174}
1175
1176static int scsi_prep_fn(struct request_queue *q, struct request *req)
1177{
1178	struct scsi_device *sdev = q->queuedata;
1179	int ret = BLKPREP_OK;
1180
1181	/*
1182	 * If the device is not in running state we will reject some
1183	 * or all commands.
1184	 */
1185	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1186		switch (sdev->sdev_state) {
1187		case SDEV_OFFLINE:
1188			/*
1189			 * If the device is offline we refuse to process any
1190			 * commands.  The device must be brought online
1191			 * before trying any recovery commands.
1192			 */
1193			sdev_printk(KERN_ERR, sdev,
1194				    "rejecting I/O to offline device\n");
1195			ret = BLKPREP_KILL;
1196			break;
1197		case SDEV_DEL:
1198			/*
1199			 * If the device is fully deleted, we refuse to
1200			 * process any commands as well.
1201			 */
1202			sdev_printk(KERN_ERR, sdev,
1203				    "rejecting I/O to dead device\n");
1204			ret = BLKPREP_KILL;
1205			break;
1206		case SDEV_QUIESCE:
1207		case SDEV_BLOCK:
1208			/*
1209			 * If the devices is blocked we defer normal commands.
1210			 */
1211			if (!(req->cmd_flags & REQ_PREEMPT))
1212				ret = BLKPREP_DEFER;
1213			break;
1214		default:
1215			/*
1216			 * For any other not fully online state we only allow
1217			 * special commands.  In particular any user initiated
1218			 * command is not allowed.
1219			 */
1220			if (!(req->cmd_flags & REQ_PREEMPT))
1221				ret = BLKPREP_KILL;
1222			break;
1223		}
1224
1225		if (ret != BLKPREP_OK)
1226			goto out;
1227	}
1228
1229	switch (req->cmd_type) {
1230	case REQ_TYPE_BLOCK_PC:
1231		ret = scsi_setup_blk_pc_cmnd(sdev, req);
1232		break;
1233	case REQ_TYPE_FS:
1234		ret = scsi_setup_fs_cmnd(sdev, req);
1235		break;
1236	default:
1237		/*
1238		 * All other command types are not supported.
1239		 *
1240		 * Note that these days the SCSI subsystem does not use
1241		 * REQ_TYPE_SPECIAL requests anymore.  These are only used
1242		 * (directly or via blk_insert_request) by non-SCSI drivers.
1243		 */
1244		blk_dump_rq_flags(req, "SCSI bad req");
1245		ret = BLKPREP_KILL;
1246		break;
1247	}
1248
1249 out:
1250	switch (ret) {
1251	case BLKPREP_KILL:
1252		req->errors = DID_NO_CONNECT << 16;
1253		break;
1254	case BLKPREP_DEFER:
1255		/*
1256		 * If we defer, the elv_next_request() returns NULL, but the
1257		 * queue must be restarted, so we plug here if no returning
1258		 * command will automatically do that.
1259		 */
1260		if (sdev->device_busy == 0)
1261			blk_plug_device(q);
1262		break;
1263	default:
1264		req->cmd_flags |= REQ_DONTPREP;
1265	}
1266
1267	return ret;
1268}
1269
1270/*
1271 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1272 * return 0.
1273 *
1274 * Called with the queue_lock held.
1275 */
1276static inline int scsi_dev_queue_ready(struct request_queue *q,
1277				  struct scsi_device *sdev)
1278{
1279	if (sdev->device_busy >= sdev->queue_depth)
1280		return 0;
1281	if (sdev->device_busy == 0 && sdev->device_blocked) {
1282		/*
1283		 * unblock after device_blocked iterates to zero
1284		 */
1285		if (--sdev->device_blocked == 0) {
1286			SCSI_LOG_MLQUEUE(3,
1287				   sdev_printk(KERN_INFO, sdev,
1288				   "unblocking device at zero depth\n"));
1289		} else {
1290			blk_plug_device(q);
1291			return 0;
1292		}
1293	}
1294	if (sdev->device_blocked)
1295		return 0;
1296
1297	return 1;
1298}
1299
1300/*
1301 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1302 * return 0. We must end up running the queue again whenever 0 is
1303 * returned, else IO can hang.
1304 *
1305 * Called with host_lock held.
1306 */
1307static inline int scsi_host_queue_ready(struct request_queue *q,
1308				   struct Scsi_Host *shost,
1309				   struct scsi_device *sdev)
1310{
1311	if (scsi_host_in_recovery(shost))
1312		return 0;
1313	if (shost->host_busy == 0 && shost->host_blocked) {
1314		/*
1315		 * unblock after host_blocked iterates to zero
1316		 */
1317		if (--shost->host_blocked == 0) {
1318			SCSI_LOG_MLQUEUE(3,
1319				printk("scsi%d unblocking host at zero depth\n",
1320					shost->host_no));
1321		} else {
1322			blk_plug_device(q);
1323			return 0;
1324		}
1325	}
1326	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1327	    shost->host_blocked || shost->host_self_blocked) {
1328		if (list_empty(&sdev->starved_entry))
1329			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1330		return 0;
1331	}
1332
1333	/* We're OK to process the command, so we can't be starved */
1334	if (!list_empty(&sdev->starved_entry))
1335		list_del_init(&sdev->starved_entry);
1336
1337	return 1;
1338}
1339
1340/*
1341 * Kill a request for a dead device
1342 */
1343static void scsi_kill_request(struct request *req, request_queue_t *q)
1344{
1345	struct scsi_cmnd *cmd = req->special;
1346	struct scsi_device *sdev = cmd->device;
1347	struct Scsi_Host *shost = sdev->host;
1348
1349	blkdev_dequeue_request(req);
1350
1351	if (unlikely(cmd == NULL)) {
1352		printk(KERN_CRIT "impossible request in %s.\n",
1353				 __FUNCTION__);
1354		BUG();
1355	}
1356
1357	scsi_init_cmd_errh(cmd);
1358	cmd->result = DID_NO_CONNECT << 16;
1359	atomic_inc(&cmd->device->iorequest_cnt);
1360
1361	/*
1362	 * SCSI request completion path will do scsi_device_unbusy(),
1363	 * bump busy counts.  To bump the counters, we need to dance
1364	 * with the locks as normal issue path does.
1365	 */
1366	sdev->device_busy++;
1367	spin_unlock(sdev->request_queue->queue_lock);
1368	spin_lock(shost->host_lock);
1369	shost->host_busy++;
1370	spin_unlock(shost->host_lock);
1371	spin_lock(sdev->request_queue->queue_lock);
1372
1373	__scsi_done(cmd);
1374}
1375
1376static void scsi_softirq_done(struct request *rq)
1377{
1378	struct scsi_cmnd *cmd = rq->completion_data;
1379	unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1380	int disposition;
1381
1382	INIT_LIST_HEAD(&cmd->eh_entry);
1383
1384	disposition = scsi_decide_disposition(cmd);
1385	if (disposition != SUCCESS &&
1386	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1387		sdev_printk(KERN_ERR, cmd->device,
1388			    "timing out command, waited %lus\n",
1389			    wait_for/HZ);
1390		disposition = SUCCESS;
1391	}
1392
1393	scsi_log_completion(cmd, disposition);
1394
1395	switch (disposition) {
1396		case SUCCESS:
1397			scsi_finish_command(cmd);
1398			break;
1399		case NEEDS_RETRY:
1400			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1401			break;
1402		case ADD_TO_MLQUEUE:
1403			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1404			break;
1405		default:
1406			if (!scsi_eh_scmd_add(cmd, 0))
1407				scsi_finish_command(cmd);
1408	}
1409}
1410
1411/*
1412 * Function:    scsi_request_fn()
1413 *
1414 * Purpose:     Main strategy routine for SCSI.
1415 *
1416 * Arguments:   q       - Pointer to actual queue.
1417 *
1418 * Returns:     Nothing
1419 *
1420 * Lock status: IO request lock assumed to be held when called.
1421 */
1422static void scsi_request_fn(struct request_queue *q)
1423{
1424	struct scsi_device *sdev = q->queuedata;
1425	struct Scsi_Host *shost;
1426	struct scsi_cmnd *cmd;
1427	struct request *req;
1428
1429	if (!sdev) {
1430		printk("scsi: killing requests for dead queue\n");
1431		while ((req = elv_next_request(q)) != NULL)
1432			scsi_kill_request(req, q);
1433		return;
1434	}
1435
1436	if(!get_device(&sdev->sdev_gendev))
1437		/* We must be tearing the block queue down already */
1438		return;
1439
1440	/*
1441	 * To start with, we keep looping until the queue is empty, or until
1442	 * the host is no longer able to accept any more requests.
1443	 */
1444	shost = sdev->host;
1445	while (!blk_queue_plugged(q)) {
1446		int rtn;
1447		/*
1448		 * get next queueable request.  We do this early to make sure
1449		 * that the request is fully prepared even if we cannot
1450		 * accept it.
1451		 */
1452		req = elv_next_request(q);
1453		if (!req || !scsi_dev_queue_ready(q, sdev))
1454			break;
1455
1456		if (unlikely(!scsi_device_online(sdev))) {
1457			sdev_printk(KERN_ERR, sdev,
1458				    "rejecting I/O to offline device\n");
1459			scsi_kill_request(req, q);
1460			continue;
1461		}
1462
1463
1464		/*
1465		 * Remove the request from the request list.
1466		 */
1467		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1468			blkdev_dequeue_request(req);
1469		sdev->device_busy++;
1470
1471		spin_unlock(q->queue_lock);
1472		cmd = req->special;
1473		if (unlikely(cmd == NULL)) {
1474			printk(KERN_CRIT "impossible request in %s.\n"
1475					 "please mail a stack trace to "
1476					 "linux-scsi@vger.kernel.org\n",
1477					 __FUNCTION__);
1478			blk_dump_rq_flags(req, "foo");
1479			BUG();
1480		}
1481		spin_lock(shost->host_lock);
1482
1483		if (!scsi_host_queue_ready(q, shost, sdev))
1484			goto not_ready;
1485		if (sdev->single_lun) {
1486			if (scsi_target(sdev)->starget_sdev_user &&
1487			    scsi_target(sdev)->starget_sdev_user != sdev)
1488				goto not_ready;
1489			scsi_target(sdev)->starget_sdev_user = sdev;
1490		}
1491		shost->host_busy++;
1492
1493		spin_unlock_irq(shost->host_lock);
1494
1495		/*
1496		 * Finally, initialize any error handling parameters, and set up
1497		 * the timers for timeouts.
1498		 */
1499		scsi_init_cmd_errh(cmd);
1500
1501		/*
1502		 * Dispatch the command to the low-level driver.
1503		 */
1504		rtn = scsi_dispatch_cmd(cmd);
1505		spin_lock_irq(q->queue_lock);
1506		if(rtn) {
1507			/* we're refusing the command; because of
1508			 * the way locks get dropped, we need to
1509			 * check here if plugging is required */
1510			if(sdev->device_busy == 0)
1511				blk_plug_device(q);
1512
1513			break;
1514		}
1515	}
1516
1517	goto out;
1518
1519 not_ready:
1520	spin_unlock_irq(shost->host_lock);
1521
1522	/*
1523	 * lock q, handle tag, requeue req, and decrement device_busy. We
1524	 * must return with queue_lock held.
1525	 *
1526	 * Decrementing device_busy without checking it is OK, as all such
1527	 * cases (host limits or settings) should run the queue at some
1528	 * later time.
1529	 */
1530	spin_lock_irq(q->queue_lock);
1531	blk_requeue_request(q, req);
1532	sdev->device_busy--;
1533	if(sdev->device_busy == 0)
1534		blk_plug_device(q);
1535 out:
1536	/* must be careful here...if we trigger the ->remove() function
1537	 * we cannot be holding the q lock */
1538	spin_unlock_irq(q->queue_lock);
1539	put_device(&sdev->sdev_gendev);
1540	spin_lock_irq(q->queue_lock);
1541}
1542
1543u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1544{
1545	struct device *host_dev;
1546	u64 bounce_limit = 0xffffffff;
1547
1548	if (shost->unchecked_isa_dma)
1549		return BLK_BOUNCE_ISA;
1550	/*
1551	 * Platforms with virtual-DMA translation
1552	 * hardware have no practical limit.
1553	 */
1554	if (!PCI_DMA_BUS_IS_PHYS)
1555		return BLK_BOUNCE_ANY;
1556
1557	host_dev = scsi_get_device(shost);
1558	if (host_dev && host_dev->dma_mask)
1559		bounce_limit = *host_dev->dma_mask;
1560
1561	return bounce_limit;
1562}
1563EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1564
1565struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1566					 request_fn_proc *request_fn)
1567{
1568	struct request_queue *q;
1569
1570	q = blk_init_queue(request_fn, NULL);
1571	if (!q)
1572		return NULL;
1573
1574	blk_queue_max_hw_segments(q, shost->sg_tablesize);
1575	blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1576	blk_queue_max_sectors(q, shost->max_sectors);
1577	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1578	blk_queue_segment_boundary(q, shost->dma_boundary);
1579
1580	if (!shost->use_clustering)
1581		clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1582	return q;
1583}
1584EXPORT_SYMBOL(__scsi_alloc_queue);
1585
1586struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1587{
1588	struct request_queue *q;
1589
1590	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1591	if (!q)
1592		return NULL;
1593
1594	blk_queue_prep_rq(q, scsi_prep_fn);
1595	blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1596	blk_queue_softirq_done(q, scsi_softirq_done);
1597	return q;
1598}
1599
1600void scsi_free_queue(struct request_queue *q)
1601{
1602	blk_cleanup_queue(q);
1603}
1604
1605/*
1606 * Function:    scsi_block_requests()
1607 *
1608 * Purpose:     Utility function used by low-level drivers to prevent further
1609 *		commands from being queued to the device.
1610 *
1611 * Arguments:   shost       - Host in question
1612 *
1613 * Returns:     Nothing
1614 *
1615 * Lock status: No locks are assumed held.
1616 *
1617 * Notes:       There is no timer nor any other means by which the requests
1618 *		get unblocked other than the low-level driver calling
1619 *		scsi_unblock_requests().
1620 */
1621void scsi_block_requests(struct Scsi_Host *shost)
1622{
1623	shost->host_self_blocked = 1;
1624}
1625EXPORT_SYMBOL(scsi_block_requests);
1626
1627/*
1628 * Function:    scsi_unblock_requests()
1629 *
1630 * Purpose:     Utility function used by low-level drivers to allow further
1631 *		commands from being queued to the device.
1632 *
1633 * Arguments:   shost       - Host in question
1634 *
1635 * Returns:     Nothing
1636 *
1637 * Lock status: No locks are assumed held.
1638 *
1639 * Notes:       There is no timer nor any other means by which the requests
1640 *		get unblocked other than the low-level driver calling
1641 *		scsi_unblock_requests().
1642 *
1643 *		This is done as an API function so that changes to the
1644 *		internals of the scsi mid-layer won't require wholesale
1645 *		changes to drivers that use this feature.
1646 */
1647void scsi_unblock_requests(struct Scsi_Host *shost)
1648{
1649	shost->host_self_blocked = 0;
1650	scsi_run_host_queues(shost);
1651}
1652EXPORT_SYMBOL(scsi_unblock_requests);
1653
1654int __init scsi_init_queue(void)
1655{
1656	int i;
1657
1658	scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1659					sizeof(struct scsi_io_context),
1660					0, 0, NULL, NULL);
1661	if (!scsi_io_context_cache) {
1662		printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1663		return -ENOMEM;
1664	}
1665
1666	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1667		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1668		int size = sgp->size * sizeof(struct scatterlist);
1669
1670		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1671				SLAB_HWCACHE_ALIGN, NULL, NULL);
1672		if (!sgp->slab) {
1673			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1674					sgp->name);
1675		}
1676
1677		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1678						     sgp->slab);
1679		if (!sgp->pool) {
1680			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1681					sgp->name);
1682		}
1683	}
1684
1685	return 0;
1686}
1687
1688void scsi_exit_queue(void)
1689{
1690	int i;
1691
1692	kmem_cache_destroy(scsi_io_context_cache);
1693
1694	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1695		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1696		mempool_destroy(sgp->pool);
1697		kmem_cache_destroy(sgp->slab);
1698	}
1699}
1700
1701/**
1702 *	scsi_mode_select - issue a mode select
1703 *	@sdev:	SCSI device to be queried
1704 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1705 *	@sp:	Save page bit (0 == don't save, 1 == save)
1706 *	@modepage: mode page being requested
1707 *	@buffer: request buffer (may not be smaller than eight bytes)
1708 *	@len:	length of request buffer.
1709 *	@timeout: command timeout
1710 *	@retries: number of retries before failing
1711 *	@data: returns a structure abstracting the mode header data
1712 *	@sense: place to put sense data (or NULL if no sense to be collected).
1713 *		must be SCSI_SENSE_BUFFERSIZE big.
1714 *
1715 *	Returns zero if successful; negative error number or scsi
1716 *	status on error
1717 *
1718 */
1719int
1720scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1721		 unsigned char *buffer, int len, int timeout, int retries,
1722		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1723{
1724	unsigned char cmd[10];
1725	unsigned char *real_buffer;
1726	int ret;
1727
1728	memset(cmd, 0, sizeof(cmd));
1729	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1730
1731	if (sdev->use_10_for_ms) {
1732		if (len > 65535)
1733			return -EINVAL;
1734		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1735		if (!real_buffer)
1736			return -ENOMEM;
1737		memcpy(real_buffer + 8, buffer, len);
1738		len += 8;
1739		real_buffer[0] = 0;
1740		real_buffer[1] = 0;
1741		real_buffer[2] = data->medium_type;
1742		real_buffer[3] = data->device_specific;
1743		real_buffer[4] = data->longlba ? 0x01 : 0;
1744		real_buffer[5] = 0;
1745		real_buffer[6] = data->block_descriptor_length >> 8;
1746		real_buffer[7] = data->block_descriptor_length;
1747
1748		cmd[0] = MODE_SELECT_10;
1749		cmd[7] = len >> 8;
1750		cmd[8] = len;
1751	} else {
1752		if (len > 255 || data->block_descriptor_length > 255 ||
1753		    data->longlba)
1754			return -EINVAL;
1755
1756		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1757		if (!real_buffer)
1758			return -ENOMEM;
1759		memcpy(real_buffer + 4, buffer, len);
1760		len += 4;
1761		real_buffer[0] = 0;
1762		real_buffer[1] = data->medium_type;
1763		real_buffer[2] = data->device_specific;
1764		real_buffer[3] = data->block_descriptor_length;
1765
1766
1767		cmd[0] = MODE_SELECT;
1768		cmd[4] = len;
1769	}
1770
1771	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1772			       sshdr, timeout, retries);
1773	kfree(real_buffer);
1774	return ret;
1775}
1776EXPORT_SYMBOL_GPL(scsi_mode_select);
1777
1778/**
1779 *	scsi_mode_sense - issue a mode sense, falling back from 10 to
1780 *		six bytes if necessary.
1781 *	@sdev:	SCSI device to be queried
1782 *	@dbd:	set if mode sense will allow block descriptors to be returned
1783 *	@modepage: mode page being requested
1784 *	@buffer: request buffer (may not be smaller than eight bytes)
1785 *	@len:	length of request buffer.
1786 *	@timeout: command timeout
1787 *	@retries: number of retries before failing
1788 *	@data: returns a structure abstracting the mode header data
1789 *	@sense: place to put sense data (or NULL if no sense to be collected).
1790 *		must be SCSI_SENSE_BUFFERSIZE big.
1791 *
1792 *	Returns zero if unsuccessful, or the header offset (either 4
1793 *	or 8 depending on whether a six or ten byte command was
1794 *	issued) if successful.
1795 **/
1796int
1797scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1798		  unsigned char *buffer, int len, int timeout, int retries,
1799		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1800{
1801	unsigned char cmd[12];
1802	int use_10_for_ms;
1803	int header_length;
1804	int result;
1805	struct scsi_sense_hdr my_sshdr;
1806
1807	memset(data, 0, sizeof(*data));
1808	memset(&cmd[0], 0, 12);
1809	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1810	cmd[2] = modepage;
1811
1812	/* caller might not be interested in sense, but we need it */
1813	if (!sshdr)
1814		sshdr = &my_sshdr;
1815
1816 retry:
1817	use_10_for_ms = sdev->use_10_for_ms;
1818
1819	if (use_10_for_ms) {
1820		if (len < 8)
1821			len = 8;
1822
1823		cmd[0] = MODE_SENSE_10;
1824		cmd[8] = len;
1825		header_length = 8;
1826	} else {
1827		if (len < 4)
1828			len = 4;
1829
1830		cmd[0] = MODE_SENSE;
1831		cmd[4] = len;
1832		header_length = 4;
1833	}
1834
1835	memset(buffer, 0, len);
1836
1837	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1838				  sshdr, timeout, retries);
1839
1840	/* This code looks awful: what it's doing is making sure an
1841	 * ILLEGAL REQUEST sense return identifies the actual command
1842	 * byte as the problem.  MODE_SENSE commands can return
1843	 * ILLEGAL REQUEST if the code page isn't supported */
1844
1845	if (use_10_for_ms && !scsi_status_is_good(result) &&
1846	    (driver_byte(result) & DRIVER_SENSE)) {
1847		if (scsi_sense_valid(sshdr)) {
1848			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1849			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1850				/*
1851				 * Invalid command operation code
1852				 */
1853				sdev->use_10_for_ms = 0;
1854				goto retry;
1855			}
1856		}
1857	}
1858
1859	if(scsi_status_is_good(result)) {
1860		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1861			     (modepage == 6 || modepage == 8))) {
1862			/* Initio breakage? */
1863			header_length = 0;
1864			data->length = 13;
1865			data->medium_type = 0;
1866			data->device_specific = 0;
1867			data->longlba = 0;
1868			data->block_descriptor_length = 0;
1869		} else if(use_10_for_ms) {
1870			data->length = buffer[0]*256 + buffer[1] + 2;
1871			data->medium_type = buffer[2];
1872			data->device_specific = buffer[3];
1873			data->longlba = buffer[4] & 0x01;
1874			data->block_descriptor_length = buffer[6]*256
1875				+ buffer[7];
1876		} else {
1877			data->length = buffer[0] + 1;
1878			data->medium_type = buffer[1];
1879			data->device_specific = buffer[2];
1880			data->block_descriptor_length = buffer[3];
1881		}
1882		data->header_length = header_length;
1883	}
1884
1885	return result;
1886}
1887EXPORT_SYMBOL(scsi_mode_sense);
1888
1889int
1890scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1891{
1892	char cmd[] = {
1893		TEST_UNIT_READY, 0, 0, 0, 0, 0,
1894	};
1895	struct scsi_sense_hdr sshdr;
1896	int result;
1897
1898	result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1899				  timeout, retries);
1900
1901	if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1902
1903		if ((scsi_sense_valid(&sshdr)) &&
1904		    ((sshdr.sense_key == UNIT_ATTENTION) ||
1905		     (sshdr.sense_key == NOT_READY))) {
1906			sdev->changed = 1;
1907			result = 0;
1908		}
1909	}
1910	return result;
1911}
1912EXPORT_SYMBOL(scsi_test_unit_ready);
1913
1914/**
1915 *	scsi_device_set_state - Take the given device through the device
1916 *		state model.
1917 *	@sdev:	scsi device to change the state of.
1918 *	@state:	state to change to.
1919 *
1920 *	Returns zero if unsuccessful or an error if the requested
1921 *	transition is illegal.
1922 **/
1923int
1924scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1925{
1926	enum scsi_device_state oldstate = sdev->sdev_state;
1927
1928	if (state == oldstate)
1929		return 0;
1930
1931	switch (state) {
1932	case SDEV_CREATED:
1933		/* There are no legal states that come back to
1934		 * created.  This is the manually initialised start
1935		 * state */
1936		goto illegal;
1937
1938	case SDEV_RUNNING:
1939		switch (oldstate) {
1940		case SDEV_CREATED:
1941		case SDEV_OFFLINE:
1942		case SDEV_QUIESCE:
1943		case SDEV_BLOCK:
1944			break;
1945		default:
1946			goto illegal;
1947		}
1948		break;
1949
1950	case SDEV_QUIESCE:
1951		switch (oldstate) {
1952		case SDEV_RUNNING:
1953		case SDEV_OFFLINE:
1954			break;
1955		default:
1956			goto illegal;
1957		}
1958		break;
1959
1960	case SDEV_OFFLINE:
1961		switch (oldstate) {
1962		case SDEV_CREATED:
1963		case SDEV_RUNNING:
1964		case SDEV_QUIESCE:
1965		case SDEV_BLOCK:
1966			break;
1967		default:
1968			goto illegal;
1969		}
1970		break;
1971
1972	case SDEV_BLOCK:
1973		switch (oldstate) {
1974		case SDEV_CREATED:
1975		case SDEV_RUNNING:
1976			break;
1977		default:
1978			goto illegal;
1979		}
1980		break;
1981
1982	case SDEV_CANCEL:
1983		switch (oldstate) {
1984		case SDEV_CREATED:
1985		case SDEV_RUNNING:
1986		case SDEV_QUIESCE:
1987		case SDEV_OFFLINE:
1988		case SDEV_BLOCK:
1989			break;
1990		default:
1991			goto illegal;
1992		}
1993		break;
1994
1995	case SDEV_DEL:
1996		switch (oldstate) {
1997		case SDEV_CREATED:
1998		case SDEV_RUNNING:
1999		case SDEV_OFFLINE:
2000		case SDEV_CANCEL:
2001			break;
2002		default:
2003			goto illegal;
2004		}
2005		break;
2006
2007	}
2008	sdev->sdev_state = state;
2009	return 0;
2010
2011 illegal:
2012	SCSI_LOG_ERROR_RECOVERY(1,
2013				sdev_printk(KERN_ERR, sdev,
2014					    "Illegal state transition %s->%s\n",
2015					    scsi_device_state_name(oldstate),
2016					    scsi_device_state_name(state))
2017				);
2018	return -EINVAL;
2019}
2020EXPORT_SYMBOL(scsi_device_set_state);
2021
2022/**
2023 *	scsi_device_quiesce - Block user issued commands.
2024 *	@sdev:	scsi device to quiesce.
2025 *
2026 *	This works by trying to transition to the SDEV_QUIESCE state
2027 *	(which must be a legal transition).  When the device is in this
2028 *	state, only special requests will be accepted, all others will
2029 *	be deferred.  Since special requests may also be requeued requests,
2030 *	a successful return doesn't guarantee the device will be
2031 *	totally quiescent.
2032 *
2033 *	Must be called with user context, may sleep.
2034 *
2035 *	Returns zero if unsuccessful or an error if not.
2036 **/
2037int
2038scsi_device_quiesce(struct scsi_device *sdev)
2039{
2040	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2041	if (err)
2042		return err;
2043
2044	scsi_run_queue(sdev->request_queue);
2045	while (sdev->device_busy) {
2046		msleep_interruptible(200);
2047		scsi_run_queue(sdev->request_queue);
2048	}
2049	return 0;
2050}
2051EXPORT_SYMBOL(scsi_device_quiesce);
2052
2053/**
2054 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2055 *	@sdev:	scsi device to resume.
2056 *
2057 *	Moves the device from quiesced back to running and restarts the
2058 *	queues.
2059 *
2060 *	Must be called with user context, may sleep.
2061 **/
2062void
2063scsi_device_resume(struct scsi_device *sdev)
2064{
2065	if(scsi_device_set_state(sdev, SDEV_RUNNING))
2066		return;
2067	scsi_run_queue(sdev->request_queue);
2068}
2069EXPORT_SYMBOL(scsi_device_resume);
2070
2071static void
2072device_quiesce_fn(struct scsi_device *sdev, void *data)
2073{
2074	scsi_device_quiesce(sdev);
2075}
2076
2077void
2078scsi_target_quiesce(struct scsi_target *starget)
2079{
2080	starget_for_each_device(starget, NULL, device_quiesce_fn);
2081}
2082EXPORT_SYMBOL(scsi_target_quiesce);
2083
2084static void
2085device_resume_fn(struct scsi_device *sdev, void *data)
2086{
2087	scsi_device_resume(sdev);
2088}
2089
2090void
2091scsi_target_resume(struct scsi_target *starget)
2092{
2093	starget_for_each_device(starget, NULL, device_resume_fn);
2094}
2095EXPORT_SYMBOL(scsi_target_resume);
2096
2097/**
2098 * scsi_internal_device_block - internal function to put a device
2099 *				temporarily into the SDEV_BLOCK state
2100 * @sdev:	device to block
2101 *
2102 * Block request made by scsi lld's to temporarily stop all
2103 * scsi commands on the specified device.  Called from interrupt
2104 * or normal process context.
2105 *
2106 * Returns zero if successful or error if not
2107 *
2108 * Notes:
2109 *	This routine transitions the device to the SDEV_BLOCK state
2110 *	(which must be a legal transition).  When the device is in this
2111 *	state, all commands are deferred until the scsi lld reenables
2112 *	the device with scsi_device_unblock or device_block_tmo fires.
2113 *	This routine assumes the host_lock is held on entry.
2114 **/
2115int
2116scsi_internal_device_block(struct scsi_device *sdev)
2117{
2118	request_queue_t *q = sdev->request_queue;
2119	unsigned long flags;
2120	int err = 0;
2121
2122	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2123	if (err)
2124		return err;
2125
2126	/*
2127	 * The device has transitioned to SDEV_BLOCK.  Stop the
2128	 * block layer from calling the midlayer with this device's
2129	 * request queue.
2130	 */
2131	spin_lock_irqsave(q->queue_lock, flags);
2132	blk_stop_queue(q);
2133	spin_unlock_irqrestore(q->queue_lock, flags);
2134
2135	return 0;
2136}
2137EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2138
2139/**
2140 * scsi_internal_device_unblock - resume a device after a block request
2141 * @sdev:	device to resume
2142 *
2143 * Called by scsi lld's or the midlayer to restart the device queue
2144 * for the previously suspended scsi device.  Called from interrupt or
2145 * normal process context.
2146 *
2147 * Returns zero if successful or error if not.
2148 *
2149 * Notes:
2150 *	This routine transitions the device to the SDEV_RUNNING state
2151 *	(which must be a legal transition) allowing the midlayer to
2152 *	goose the queue for this device.  This routine assumes the
2153 *	host_lock is held upon entry.
2154 **/
2155int
2156scsi_internal_device_unblock(struct scsi_device *sdev)
2157{
2158	request_queue_t *q = sdev->request_queue;
2159	int err;
2160	unsigned long flags;
2161
2162	/*
2163	 * Try to transition the scsi device to SDEV_RUNNING
2164	 * and goose the device queue if successful.
2165	 */
2166	err = scsi_device_set_state(sdev, SDEV_RUNNING);
2167	if (err)
2168		return err;
2169
2170	spin_lock_irqsave(q->queue_lock, flags);
2171	blk_start_queue(q);
2172	spin_unlock_irqrestore(q->queue_lock, flags);
2173
2174	return 0;
2175}
2176EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2177
2178static void
2179device_block(struct scsi_device *sdev, void *data)
2180{
2181	scsi_internal_device_block(sdev);
2182}
2183
2184static int
2185target_block(struct device *dev, void *data)
2186{
2187	if (scsi_is_target_device(dev))
2188		starget_for_each_device(to_scsi_target(dev), NULL,
2189					device_block);
2190	return 0;
2191}
2192
2193void
2194scsi_target_block(struct device *dev)
2195{
2196	if (scsi_is_target_device(dev))
2197		starget_for_each_device(to_scsi_target(dev), NULL,
2198					device_block);
2199	else
2200		device_for_each_child(dev, NULL, target_block);
2201}
2202EXPORT_SYMBOL_GPL(scsi_target_block);
2203
2204static void
2205device_unblock(struct scsi_device *sdev, void *data)
2206{
2207	scsi_internal_device_unblock(sdev);
2208}
2209
2210static int
2211target_unblock(struct device *dev, void *data)
2212{
2213	if (scsi_is_target_device(dev))
2214		starget_for_each_device(to_scsi_target(dev), NULL,
2215					device_unblock);
2216	return 0;
2217}
2218
2219void
2220scsi_target_unblock(struct device *dev)
2221{
2222	if (scsi_is_target_device(dev))
2223		starget_for_each_device(to_scsi_target(dev), NULL,
2224					device_unblock);
2225	else
2226		device_for_each_child(dev, NULL, target_unblock);
2227}
2228EXPORT_SYMBOL_GPL(scsi_target_unblock);
2229
2230/**
2231 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2232 * @sg:		scatter-gather list
2233 * @sg_count:	number of segments in sg
2234 * @offset:	offset in bytes into sg, on return offset into the mapped area
2235 * @len:	bytes to map, on return number of bytes mapped
2236 *
2237 * Returns virtual address of the start of the mapped page
2238 */
2239void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2240			  size_t *offset, size_t *len)
2241{
2242	int i;
2243	size_t sg_len = 0, len_complete = 0;
2244	struct page *page;
2245
2246	WARN_ON(!irqs_disabled());
2247
2248	for (i = 0; i < sg_count; i++) {
2249		len_complete = sg_len; /* Complete sg-entries */
2250		sg_len += sg[i].length;
2251		if (sg_len > *offset)
2252			break;
2253	}
2254
2255	if (unlikely(i == sg_count)) {
2256		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2257			"elements %d\n",
2258		       __FUNCTION__, sg_len, *offset, sg_count);
2259		WARN_ON(1);
2260		return NULL;
2261	}
2262
2263	/* Offset starting from the beginning of first page in this sg-entry */
2264	*offset = *offset - len_complete + sg[i].offset;
2265
2266	/* Assumption: contiguous pages can be accessed as "page + i" */
2267	page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2268	*offset &= ~PAGE_MASK;
2269
2270	/* Bytes in this sg-entry from *offset to the end of the page */
2271	sg_len = PAGE_SIZE - *offset;
2272	if (*len > sg_len)
2273		*len = sg_len;
2274
2275	return kmap_atomic(page, KM_BIO_SRC_IRQ);
2276}
2277EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2278
2279/**
2280 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2281 *			   mapped with scsi_kmap_atomic_sg
2282 * @virt:	virtual address to be unmapped
2283 */
2284void scsi_kunmap_atomic_sg(void *virt)
2285{
2286	kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2287}
2288EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2289