1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2006 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* ethtool support for e1000 */
30
31#include "e1000.h"
32
33#include <asm/uaccess.h>
34
35extern char e1000_driver_name[];
36extern char e1000_driver_version[];
37
38extern int e1000_up(struct e1000_adapter *adapter);
39extern void e1000_down(struct e1000_adapter *adapter);
40extern void e1000_reinit_locked(struct e1000_adapter *adapter);
41extern void e1000_reset(struct e1000_adapter *adapter);
42extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
43extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
44extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
45extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
46extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
47extern void e1000_update_stats(struct e1000_adapter *adapter);
48
49
50struct e1000_stats {
51	char stat_string[ETH_GSTRING_LEN];
52	int sizeof_stat;
53	int stat_offset;
54};
55
56#define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
57		      offsetof(struct e1000_adapter, m)
58static const struct e1000_stats e1000_gstrings_stats[] = {
59	{ "rx_packets", E1000_STAT(stats.gprc) },
60	{ "tx_packets", E1000_STAT(stats.gptc) },
61	{ "rx_bytes", E1000_STAT(stats.gorcl) },
62	{ "tx_bytes", E1000_STAT(stats.gotcl) },
63	{ "rx_broadcast", E1000_STAT(stats.bprc) },
64	{ "tx_broadcast", E1000_STAT(stats.bptc) },
65	{ "rx_multicast", E1000_STAT(stats.mprc) },
66	{ "tx_multicast", E1000_STAT(stats.mptc) },
67	{ "rx_errors", E1000_STAT(stats.rxerrc) },
68	{ "tx_errors", E1000_STAT(stats.txerrc) },
69	{ "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
70	{ "multicast", E1000_STAT(stats.mprc) },
71	{ "collisions", E1000_STAT(stats.colc) },
72	{ "rx_length_errors", E1000_STAT(stats.rlerrc) },
73	{ "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
74	{ "rx_crc_errors", E1000_STAT(stats.crcerrs) },
75	{ "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
76	{ "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
77	{ "rx_missed_errors", E1000_STAT(stats.mpc) },
78	{ "tx_aborted_errors", E1000_STAT(stats.ecol) },
79	{ "tx_carrier_errors", E1000_STAT(stats.tncrs) },
80	{ "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
81	{ "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
82	{ "tx_window_errors", E1000_STAT(stats.latecol) },
83	{ "tx_abort_late_coll", E1000_STAT(stats.latecol) },
84	{ "tx_deferred_ok", E1000_STAT(stats.dc) },
85	{ "tx_single_coll_ok", E1000_STAT(stats.scc) },
86	{ "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
87	{ "tx_timeout_count", E1000_STAT(tx_timeout_count) },
88	{ "tx_restart_queue", E1000_STAT(restart_queue) },
89	{ "rx_long_length_errors", E1000_STAT(stats.roc) },
90	{ "rx_short_length_errors", E1000_STAT(stats.ruc) },
91	{ "rx_align_errors", E1000_STAT(stats.algnerrc) },
92	{ "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
93	{ "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
94	{ "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
95	{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
96	{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
97	{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
98	{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
99	{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
100	{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
101	{ "rx_header_split", E1000_STAT(rx_hdr_split) },
102	{ "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
103	{ "tx_smbus", E1000_STAT(stats.mgptc) },
104	{ "rx_smbus", E1000_STAT(stats.mgprc) },
105	{ "dropped_smbus", E1000_STAT(stats.mgpdc) },
106};
107
108#define E1000_QUEUE_STATS_LEN 0
109#define E1000_GLOBAL_STATS_LEN	\
110	sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
111#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
112static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113	"Register test  (offline)", "Eeprom test    (offline)",
114	"Interrupt test (offline)", "Loopback test  (offline)",
115	"Link test   (on/offline)"
116};
117#define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
118
119static int
120e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
121{
122	struct e1000_adapter *adapter = netdev_priv(netdev);
123	struct e1000_hw *hw = &adapter->hw;
124
125	if (hw->media_type == e1000_media_type_copper) {
126
127		ecmd->supported = (SUPPORTED_10baseT_Half |
128		                   SUPPORTED_10baseT_Full |
129		                   SUPPORTED_100baseT_Half |
130		                   SUPPORTED_100baseT_Full |
131		                   SUPPORTED_1000baseT_Full|
132		                   SUPPORTED_Autoneg |
133		                   SUPPORTED_TP);
134		if (hw->phy_type == e1000_phy_ife)
135			ecmd->supported &= ~SUPPORTED_1000baseT_Full;
136		ecmd->advertising = ADVERTISED_TP;
137
138		if (hw->autoneg == 1) {
139			ecmd->advertising |= ADVERTISED_Autoneg;
140			/* the e1000 autoneg seems to match ethtool nicely */
141			ecmd->advertising |= hw->autoneg_advertised;
142		}
143
144		ecmd->port = PORT_TP;
145		ecmd->phy_address = hw->phy_addr;
146
147		if (hw->mac_type == e1000_82543)
148			ecmd->transceiver = XCVR_EXTERNAL;
149		else
150			ecmd->transceiver = XCVR_INTERNAL;
151
152	} else {
153		ecmd->supported   = (SUPPORTED_1000baseT_Full |
154				     SUPPORTED_FIBRE |
155				     SUPPORTED_Autoneg);
156
157		ecmd->advertising = (ADVERTISED_1000baseT_Full |
158				     ADVERTISED_FIBRE |
159				     ADVERTISED_Autoneg);
160
161		ecmd->port = PORT_FIBRE;
162
163		if (hw->mac_type >= e1000_82545)
164			ecmd->transceiver = XCVR_INTERNAL;
165		else
166			ecmd->transceiver = XCVR_EXTERNAL;
167	}
168
169	if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU) {
170
171		e1000_get_speed_and_duplex(hw, &adapter->link_speed,
172		                                   &adapter->link_duplex);
173		ecmd->speed = adapter->link_speed;
174
175		/* unfortunatly FULL_DUPLEX != DUPLEX_FULL
176		 *          and HALF_DUPLEX != DUPLEX_HALF */
177
178		if (adapter->link_duplex == FULL_DUPLEX)
179			ecmd->duplex = DUPLEX_FULL;
180		else
181			ecmd->duplex = DUPLEX_HALF;
182	} else {
183		ecmd->speed = -1;
184		ecmd->duplex = -1;
185	}
186
187	ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
188			 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
189	return 0;
190}
191
192static int
193e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
194{
195	struct e1000_adapter *adapter = netdev_priv(netdev);
196	struct e1000_hw *hw = &adapter->hw;
197
198	/* When SoL/IDER sessions are active, autoneg/speed/duplex
199	 * cannot be changed */
200	if (e1000_check_phy_reset_block(hw)) {
201		DPRINTK(DRV, ERR, "Cannot change link characteristics "
202		        "when SoL/IDER is active.\n");
203		return -EINVAL;
204	}
205
206	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
207		msleep(1);
208
209	if (ecmd->autoneg == AUTONEG_ENABLE) {
210		hw->autoneg = 1;
211		if (hw->media_type == e1000_media_type_fiber)
212			hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
213				     ADVERTISED_FIBRE |
214				     ADVERTISED_Autoneg;
215		else
216			hw->autoneg_advertised = ecmd->advertising |
217			                         ADVERTISED_TP |
218			                         ADVERTISED_Autoneg;
219		ecmd->advertising = hw->autoneg_advertised;
220	} else
221		if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
222			clear_bit(__E1000_RESETTING, &adapter->flags);
223			return -EINVAL;
224		}
225
226	/* reset the link */
227
228	if (netif_running(adapter->netdev)) {
229		e1000_down(adapter);
230		e1000_up(adapter);
231	} else
232		e1000_reset(adapter);
233
234	clear_bit(__E1000_RESETTING, &adapter->flags);
235	return 0;
236}
237
238static void
239e1000_get_pauseparam(struct net_device *netdev,
240                     struct ethtool_pauseparam *pause)
241{
242	struct e1000_adapter *adapter = netdev_priv(netdev);
243	struct e1000_hw *hw = &adapter->hw;
244
245	pause->autoneg =
246		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
247
248	if (hw->fc == E1000_FC_RX_PAUSE)
249		pause->rx_pause = 1;
250	else if (hw->fc == E1000_FC_TX_PAUSE)
251		pause->tx_pause = 1;
252	else if (hw->fc == E1000_FC_FULL) {
253		pause->rx_pause = 1;
254		pause->tx_pause = 1;
255	}
256}
257
258static int
259e1000_set_pauseparam(struct net_device *netdev,
260                     struct ethtool_pauseparam *pause)
261{
262	struct e1000_adapter *adapter = netdev_priv(netdev);
263	struct e1000_hw *hw = &adapter->hw;
264	int retval = 0;
265
266	adapter->fc_autoneg = pause->autoneg;
267
268	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
269		msleep(1);
270
271	if (pause->rx_pause && pause->tx_pause)
272		hw->fc = E1000_FC_FULL;
273	else if (pause->rx_pause && !pause->tx_pause)
274		hw->fc = E1000_FC_RX_PAUSE;
275	else if (!pause->rx_pause && pause->tx_pause)
276		hw->fc = E1000_FC_TX_PAUSE;
277	else if (!pause->rx_pause && !pause->tx_pause)
278		hw->fc = E1000_FC_NONE;
279
280	hw->original_fc = hw->fc;
281
282	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
283		if (netif_running(adapter->netdev)) {
284			e1000_down(adapter);
285			e1000_up(adapter);
286		} else
287			e1000_reset(adapter);
288	} else
289		retval = ((hw->media_type == e1000_media_type_fiber) ?
290			  e1000_setup_link(hw) : e1000_force_mac_fc(hw));
291
292	clear_bit(__E1000_RESETTING, &adapter->flags);
293	return retval;
294}
295
296static uint32_t
297e1000_get_rx_csum(struct net_device *netdev)
298{
299	struct e1000_adapter *adapter = netdev_priv(netdev);
300	return adapter->rx_csum;
301}
302
303static int
304e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
305{
306	struct e1000_adapter *adapter = netdev_priv(netdev);
307	adapter->rx_csum = data;
308
309	if (netif_running(netdev))
310		e1000_reinit_locked(adapter);
311	else
312		e1000_reset(adapter);
313	return 0;
314}
315
316static uint32_t
317e1000_get_tx_csum(struct net_device *netdev)
318{
319	return (netdev->features & NETIF_F_HW_CSUM) != 0;
320}
321
322static int
323e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
324{
325	struct e1000_adapter *adapter = netdev_priv(netdev);
326
327	if (adapter->hw.mac_type < e1000_82543) {
328		if (!data)
329			return -EINVAL;
330		return 0;
331	}
332
333	if (data)
334		netdev->features |= NETIF_F_HW_CSUM;
335	else
336		netdev->features &= ~NETIF_F_HW_CSUM;
337
338	return 0;
339}
340
341static int
342e1000_set_tso(struct net_device *netdev, uint32_t data)
343{
344	struct e1000_adapter *adapter = netdev_priv(netdev);
345	if ((adapter->hw.mac_type < e1000_82544) ||
346	    (adapter->hw.mac_type == e1000_82547))
347		return data ? -EINVAL : 0;
348
349	if (data)
350		netdev->features |= NETIF_F_TSO;
351	else
352		netdev->features &= ~NETIF_F_TSO;
353
354	if (data)
355		netdev->features |= NETIF_F_TSO6;
356	else
357		netdev->features &= ~NETIF_F_TSO6;
358
359	DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
360	adapter->tso_force = TRUE;
361	return 0;
362}
363
364static uint32_t
365e1000_get_msglevel(struct net_device *netdev)
366{
367	struct e1000_adapter *adapter = netdev_priv(netdev);
368	return adapter->msg_enable;
369}
370
371static void
372e1000_set_msglevel(struct net_device *netdev, uint32_t data)
373{
374	struct e1000_adapter *adapter = netdev_priv(netdev);
375	adapter->msg_enable = data;
376}
377
378static int
379e1000_get_regs_len(struct net_device *netdev)
380{
381#define E1000_REGS_LEN 32
382	return E1000_REGS_LEN * sizeof(uint32_t);
383}
384
385static void
386e1000_get_regs(struct net_device *netdev,
387	       struct ethtool_regs *regs, void *p)
388{
389	struct e1000_adapter *adapter = netdev_priv(netdev);
390	struct e1000_hw *hw = &adapter->hw;
391	uint32_t *regs_buff = p;
392	uint16_t phy_data;
393
394	memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
395
396	regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
397
398	regs_buff[0]  = E1000_READ_REG(hw, CTRL);
399	regs_buff[1]  = E1000_READ_REG(hw, STATUS);
400
401	regs_buff[2]  = E1000_READ_REG(hw, RCTL);
402	regs_buff[3]  = E1000_READ_REG(hw, RDLEN);
403	regs_buff[4]  = E1000_READ_REG(hw, RDH);
404	regs_buff[5]  = E1000_READ_REG(hw, RDT);
405	regs_buff[6]  = E1000_READ_REG(hw, RDTR);
406
407	regs_buff[7]  = E1000_READ_REG(hw, TCTL);
408	regs_buff[8]  = E1000_READ_REG(hw, TDLEN);
409	regs_buff[9]  = E1000_READ_REG(hw, TDH);
410	regs_buff[10] = E1000_READ_REG(hw, TDT);
411	regs_buff[11] = E1000_READ_REG(hw, TIDV);
412
413	regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */
414	if (hw->phy_type == e1000_phy_igp) {
415		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
416				    IGP01E1000_PHY_AGC_A);
417		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
418				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
419		regs_buff[13] = (uint32_t)phy_data; /* cable length */
420		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
421				    IGP01E1000_PHY_AGC_B);
422		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
423				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
424		regs_buff[14] = (uint32_t)phy_data; /* cable length */
425		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
426				    IGP01E1000_PHY_AGC_C);
427		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
428				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
429		regs_buff[15] = (uint32_t)phy_data; /* cable length */
430		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
431				    IGP01E1000_PHY_AGC_D);
432		e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
433				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
434		regs_buff[16] = (uint32_t)phy_data; /* cable length */
435		regs_buff[17] = 0; /* extended 10bt distance (not needed) */
436		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
437		e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
438				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
439		regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
440		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
441				    IGP01E1000_PHY_PCS_INIT_REG);
442		e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
443				   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
444		regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
445		regs_buff[20] = 0; /* polarity correction enabled (always) */
446		regs_buff[22] = 0; /* phy receive errors (unavailable) */
447		regs_buff[23] = regs_buff[18]; /* mdix mode */
448		e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
449	} else {
450		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
451		regs_buff[13] = (uint32_t)phy_data; /* cable length */
452		regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
453		regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
454		regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
455		e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
456		regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
457		regs_buff[18] = regs_buff[13]; /* cable polarity */
458		regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
459		regs_buff[20] = regs_buff[17]; /* polarity correction */
460		/* phy receive errors */
461		regs_buff[22] = adapter->phy_stats.receive_errors;
462		regs_buff[23] = regs_buff[13]; /* mdix mode */
463	}
464	regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
465	e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
466	regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */
467	regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
468	if (hw->mac_type >= e1000_82540 &&
469	    hw->mac_type < e1000_82571 &&
470	    hw->media_type == e1000_media_type_copper) {
471		regs_buff[26] = E1000_READ_REG(hw, MANC);
472	}
473}
474
475static int
476e1000_get_eeprom_len(struct net_device *netdev)
477{
478	struct e1000_adapter *adapter = netdev_priv(netdev);
479	return adapter->hw.eeprom.word_size * 2;
480}
481
482static int
483e1000_get_eeprom(struct net_device *netdev,
484                      struct ethtool_eeprom *eeprom, uint8_t *bytes)
485{
486	struct e1000_adapter *adapter = netdev_priv(netdev);
487	struct e1000_hw *hw = &adapter->hw;
488	uint16_t *eeprom_buff;
489	int first_word, last_word;
490	int ret_val = 0;
491	uint16_t i;
492
493	if (eeprom->len == 0)
494		return -EINVAL;
495
496	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
497
498	first_word = eeprom->offset >> 1;
499	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
500
501	eeprom_buff = kmalloc(sizeof(uint16_t) *
502			(last_word - first_word + 1), GFP_KERNEL);
503	if (!eeprom_buff)
504		return -ENOMEM;
505
506	if (hw->eeprom.type == e1000_eeprom_spi)
507		ret_val = e1000_read_eeprom(hw, first_word,
508					    last_word - first_word + 1,
509					    eeprom_buff);
510	else {
511		for (i = 0; i < last_word - first_word + 1; i++)
512			if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
513							&eeprom_buff[i])))
514				break;
515	}
516
517	/* Device's eeprom is always little-endian, word addressable */
518	for (i = 0; i < last_word - first_word + 1; i++)
519		le16_to_cpus(&eeprom_buff[i]);
520
521	memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
522			eeprom->len);
523	kfree(eeprom_buff);
524
525	return ret_val;
526}
527
528static int
529e1000_set_eeprom(struct net_device *netdev,
530                      struct ethtool_eeprom *eeprom, uint8_t *bytes)
531{
532	struct e1000_adapter *adapter = netdev_priv(netdev);
533	struct e1000_hw *hw = &adapter->hw;
534	uint16_t *eeprom_buff;
535	void *ptr;
536	int max_len, first_word, last_word, ret_val = 0;
537	uint16_t i;
538
539	if (eeprom->len == 0)
540		return -EOPNOTSUPP;
541
542	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
543		return -EFAULT;
544
545	max_len = hw->eeprom.word_size * 2;
546
547	first_word = eeprom->offset >> 1;
548	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
549	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
550	if (!eeprom_buff)
551		return -ENOMEM;
552
553	ptr = (void *)eeprom_buff;
554
555	if (eeprom->offset & 1) {
556		/* need read/modify/write of first changed EEPROM word */
557		/* only the second byte of the word is being modified */
558		ret_val = e1000_read_eeprom(hw, first_word, 1,
559					    &eeprom_buff[0]);
560		ptr++;
561	}
562	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
563		/* need read/modify/write of last changed EEPROM word */
564		/* only the first byte of the word is being modified */
565		ret_val = e1000_read_eeprom(hw, last_word, 1,
566		                  &eeprom_buff[last_word - first_word]);
567	}
568
569	/* Device's eeprom is always little-endian, word addressable */
570	for (i = 0; i < last_word - first_word + 1; i++)
571		le16_to_cpus(&eeprom_buff[i]);
572
573	memcpy(ptr, bytes, eeprom->len);
574
575	for (i = 0; i < last_word - first_word + 1; i++)
576		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
577
578	ret_val = e1000_write_eeprom(hw, first_word,
579				     last_word - first_word + 1, eeprom_buff);
580
581	/* Update the checksum over the first part of the EEPROM if needed
582	 * and flush shadow RAM for 82573 conrollers */
583	if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
584				(hw->mac_type == e1000_82573)))
585		e1000_update_eeprom_checksum(hw);
586
587	kfree(eeprom_buff);
588	return ret_val;
589}
590
591static void
592e1000_get_drvinfo(struct net_device *netdev,
593                       struct ethtool_drvinfo *drvinfo)
594{
595	struct e1000_adapter *adapter = netdev_priv(netdev);
596	char firmware_version[32];
597	uint16_t eeprom_data;
598
599	strncpy(drvinfo->driver,  e1000_driver_name, 32);
600	strncpy(drvinfo->version, e1000_driver_version, 32);
601
602	/* EEPROM image version # is reported as firmware version # for
603	 * 8257{1|2|3} controllers */
604	e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data);
605	switch (adapter->hw.mac_type) {
606	case e1000_82571:
607	case e1000_82572:
608	case e1000_82573:
609	case e1000_80003es2lan:
610	case e1000_ich8lan:
611		sprintf(firmware_version, "%d.%d-%d",
612			(eeprom_data & 0xF000) >> 12,
613			(eeprom_data & 0x0FF0) >> 4,
614			eeprom_data & 0x000F);
615		break;
616	default:
617		sprintf(firmware_version, "N/A");
618	}
619
620	strncpy(drvinfo->fw_version, firmware_version, 32);
621	strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
622	drvinfo->n_stats = E1000_STATS_LEN;
623	drvinfo->testinfo_len = E1000_TEST_LEN;
624	drvinfo->regdump_len = e1000_get_regs_len(netdev);
625	drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
626}
627
628static void
629e1000_get_ringparam(struct net_device *netdev,
630                    struct ethtool_ringparam *ring)
631{
632	struct e1000_adapter *adapter = netdev_priv(netdev);
633	e1000_mac_type mac_type = adapter->hw.mac_type;
634	struct e1000_tx_ring *txdr = adapter->tx_ring;
635	struct e1000_rx_ring *rxdr = adapter->rx_ring;
636
637	ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
638		E1000_MAX_82544_RXD;
639	ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
640		E1000_MAX_82544_TXD;
641	ring->rx_mini_max_pending = 0;
642	ring->rx_jumbo_max_pending = 0;
643	ring->rx_pending = rxdr->count;
644	ring->tx_pending = txdr->count;
645	ring->rx_mini_pending = 0;
646	ring->rx_jumbo_pending = 0;
647}
648
649static int
650e1000_set_ringparam(struct net_device *netdev,
651                    struct ethtool_ringparam *ring)
652{
653	struct e1000_adapter *adapter = netdev_priv(netdev);
654	e1000_mac_type mac_type = adapter->hw.mac_type;
655	struct e1000_tx_ring *txdr, *tx_old;
656	struct e1000_rx_ring *rxdr, *rx_old;
657	int i, err;
658
659	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
660		return -EINVAL;
661
662	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
663		msleep(1);
664
665	if (netif_running(adapter->netdev))
666		e1000_down(adapter);
667
668	tx_old = adapter->tx_ring;
669	rx_old = adapter->rx_ring;
670
671	err = -ENOMEM;
672	txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
673	if (!txdr)
674		goto err_alloc_tx;
675
676	rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
677	if (!rxdr)
678		goto err_alloc_rx;
679
680	adapter->tx_ring = txdr;
681	adapter->rx_ring = rxdr;
682
683	rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
684	rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
685		E1000_MAX_RXD : E1000_MAX_82544_RXD));
686	rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
687
688	txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
689	txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
690		E1000_MAX_TXD : E1000_MAX_82544_TXD));
691	txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
692
693	for (i = 0; i < adapter->num_tx_queues; i++)
694		txdr[i].count = txdr->count;
695	for (i = 0; i < adapter->num_rx_queues; i++)
696		rxdr[i].count = rxdr->count;
697
698	if (netif_running(adapter->netdev)) {
699		/* Try to get new resources before deleting old */
700		if ((err = e1000_setup_all_rx_resources(adapter)))
701			goto err_setup_rx;
702		if ((err = e1000_setup_all_tx_resources(adapter)))
703			goto err_setup_tx;
704
705		/* save the new, restore the old in order to free it,
706		 * then restore the new back again */
707
708		adapter->rx_ring = rx_old;
709		adapter->tx_ring = tx_old;
710		e1000_free_all_rx_resources(adapter);
711		e1000_free_all_tx_resources(adapter);
712		kfree(tx_old);
713		kfree(rx_old);
714		adapter->rx_ring = rxdr;
715		adapter->tx_ring = txdr;
716		if ((err = e1000_up(adapter)))
717			goto err_setup;
718	}
719
720	clear_bit(__E1000_RESETTING, &adapter->flags);
721	return 0;
722err_setup_tx:
723	e1000_free_all_rx_resources(adapter);
724err_setup_rx:
725	adapter->rx_ring = rx_old;
726	adapter->tx_ring = tx_old;
727	kfree(rxdr);
728err_alloc_rx:
729	kfree(txdr);
730err_alloc_tx:
731	e1000_up(adapter);
732err_setup:
733	clear_bit(__E1000_RESETTING, &adapter->flags);
734	return err;
735}
736
737#define REG_PATTERN_TEST(R, M, W)                                              \
738{                                                                              \
739	uint32_t pat, value;                                                   \
740	uint32_t test[] =                                                      \
741		{0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \
742	for (pat = 0; pat < ARRAY_SIZE(test); pat++) {              \
743		E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \
744		value = E1000_READ_REG(&adapter->hw, R);                       \
745		if (value != (test[pat] & W & M)) {                             \
746			DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
747			        "0x%08X expected 0x%08X\n",                    \
748			        E1000_##R, value, (test[pat] & W & M));        \
749			*data = (adapter->hw.mac_type < e1000_82543) ?         \
750				E1000_82542_##R : E1000_##R;                   \
751			return 1;                                              \
752		}                                                              \
753	}                                                                      \
754}
755
756#define REG_SET_AND_CHECK(R, M, W)                                             \
757{                                                                              \
758	uint32_t value;                                                        \
759	E1000_WRITE_REG(&adapter->hw, R, W & M);                               \
760	value = E1000_READ_REG(&adapter->hw, R);                               \
761	if ((W & M) != (value & M)) {                                          \
762		DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
763		        "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
764		*data = (adapter->hw.mac_type < e1000_82543) ?                 \
765			E1000_82542_##R : E1000_##R;                           \
766		return 1;                                                      \
767	}                                                                      \
768}
769
770static int
771e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
772{
773	uint32_t value, before, after;
774	uint32_t i, toggle;
775
776	/* The status register is Read Only, so a write should fail.
777	 * Some bits that get toggled are ignored.
778	 */
779	switch (adapter->hw.mac_type) {
780	/* there are several bits on newer hardware that are r/w */
781	case e1000_82571:
782	case e1000_82572:
783	case e1000_80003es2lan:
784		toggle = 0x7FFFF3FF;
785		break;
786	case e1000_82573:
787	case e1000_ich8lan:
788		toggle = 0x7FFFF033;
789		break;
790	default:
791		toggle = 0xFFFFF833;
792		break;
793	}
794
795	before = E1000_READ_REG(&adapter->hw, STATUS);
796	value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
797	E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
798	after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
799	if (value != after) {
800		DPRINTK(DRV, ERR, "failed STATUS register test got: "
801		        "0x%08X expected: 0x%08X\n", after, value);
802		*data = 1;
803		return 1;
804	}
805	/* restore previous status */
806	E1000_WRITE_REG(&adapter->hw, STATUS, before);
807
808	if (adapter->hw.mac_type != e1000_ich8lan) {
809		REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
810		REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
811		REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
812		REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
813	}
814
815	REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
816	REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
817	REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
818	REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
819	REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
820	REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
821	REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
822	REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
823	REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
824	REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
825
826	REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
827
828	before = (adapter->hw.mac_type == e1000_ich8lan ?
829	          0x06C3B33E : 0x06DFB3FE);
830	REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
831	REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
832
833	if (adapter->hw.mac_type >= e1000_82543) {
834
835		REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
836		REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
837		if (adapter->hw.mac_type != e1000_ich8lan)
838			REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
839		REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
840		REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
841		value = (adapter->hw.mac_type == e1000_ich8lan ?
842		         E1000_RAR_ENTRIES_ICH8LAN : E1000_RAR_ENTRIES);
843		for (i = 0; i < value; i++) {
844			REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
845			                 0xFFFFFFFF);
846		}
847
848	} else {
849
850		REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
851		REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
852		REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
853		REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
854
855	}
856
857	value = (adapter->hw.mac_type == e1000_ich8lan ?
858			E1000_MC_TBL_SIZE_ICH8LAN : E1000_MC_TBL_SIZE);
859	for (i = 0; i < value; i++)
860		REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
861
862	*data = 0;
863	return 0;
864}
865
866static int
867e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
868{
869	uint16_t temp;
870	uint16_t checksum = 0;
871	uint16_t i;
872
873	*data = 0;
874	/* Read and add up the contents of the EEPROM */
875	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
876		if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
877			*data = 1;
878			break;
879		}
880		checksum += temp;
881	}
882
883	/* If Checksum is not Correct return error else test passed */
884	if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
885		*data = 2;
886
887	return *data;
888}
889
890static irqreturn_t
891e1000_test_intr(int irq, void *data)
892{
893	struct net_device *netdev = (struct net_device *) data;
894	struct e1000_adapter *adapter = netdev_priv(netdev);
895
896	adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
897
898	return IRQ_HANDLED;
899}
900
901static int
902e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
903{
904	struct net_device *netdev = adapter->netdev;
905	uint32_t mask, i=0, shared_int = TRUE;
906	uint32_t irq = adapter->pdev->irq;
907
908	*data = 0;
909
910	/* NOTE: we don't test MSI interrupts here, yet */
911	/* Hook up test interrupt handler just for this test */
912	if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
913	                 netdev))
914		shared_int = FALSE;
915	else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
916	         netdev->name, netdev)) {
917		*data = 1;
918		return -1;
919	}
920	DPRINTK(HW, INFO, "testing %s interrupt\n",
921	        (shared_int ? "shared" : "unshared"));
922
923	/* Disable all the interrupts */
924	E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
925	msleep(10);
926
927	/* Test each interrupt */
928	for (; i < 10; i++) {
929
930		if (adapter->hw.mac_type == e1000_ich8lan && i == 8)
931			continue;
932
933		/* Interrupt to test */
934		mask = 1 << i;
935
936		if (!shared_int) {
937			/* Disable the interrupt to be reported in
938			 * the cause register and then force the same
939			 * interrupt and see if one gets posted.  If
940			 * an interrupt was posted to the bus, the
941			 * test failed.
942			 */
943			adapter->test_icr = 0;
944			E1000_WRITE_REG(&adapter->hw, IMC, mask);
945			E1000_WRITE_REG(&adapter->hw, ICS, mask);
946			msleep(10);
947
948			if (adapter->test_icr & mask) {
949				*data = 3;
950				break;
951			}
952		}
953
954		/* Enable the interrupt to be reported in
955		 * the cause register and then force the same
956		 * interrupt and see if one gets posted.  If
957		 * an interrupt was not posted to the bus, the
958		 * test failed.
959		 */
960		adapter->test_icr = 0;
961		E1000_WRITE_REG(&adapter->hw, IMS, mask);
962		E1000_WRITE_REG(&adapter->hw, ICS, mask);
963		msleep(10);
964
965		if (!(adapter->test_icr & mask)) {
966			*data = 4;
967			break;
968		}
969
970		if (!shared_int) {
971			/* Disable the other interrupts to be reported in
972			 * the cause register and then force the other
973			 * interrupts and see if any get posted.  If
974			 * an interrupt was posted to the bus, the
975			 * test failed.
976			 */
977			adapter->test_icr = 0;
978			E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
979			E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
980			msleep(10);
981
982			if (adapter->test_icr) {
983				*data = 5;
984				break;
985			}
986		}
987	}
988
989	/* Disable all the interrupts */
990	E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
991	msleep(10);
992
993	/* Unhook test interrupt handler */
994	free_irq(irq, netdev);
995
996	return *data;
997}
998
999static void
1000e1000_free_desc_rings(struct e1000_adapter *adapter)
1001{
1002	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004	struct pci_dev *pdev = adapter->pdev;
1005	int i;
1006
1007	if (txdr->desc && txdr->buffer_info) {
1008		for (i = 0; i < txdr->count; i++) {
1009			if (txdr->buffer_info[i].dma)
1010				pci_unmap_single(pdev, txdr->buffer_info[i].dma,
1011						 txdr->buffer_info[i].length,
1012						 PCI_DMA_TODEVICE);
1013			if (txdr->buffer_info[i].skb)
1014				dev_kfree_skb(txdr->buffer_info[i].skb);
1015		}
1016	}
1017
1018	if (rxdr->desc && rxdr->buffer_info) {
1019		for (i = 0; i < rxdr->count; i++) {
1020			if (rxdr->buffer_info[i].dma)
1021				pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
1022						 rxdr->buffer_info[i].length,
1023						 PCI_DMA_FROMDEVICE);
1024			if (rxdr->buffer_info[i].skb)
1025				dev_kfree_skb(rxdr->buffer_info[i].skb);
1026		}
1027	}
1028
1029	if (txdr->desc) {
1030		pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
1031		txdr->desc = NULL;
1032	}
1033	if (rxdr->desc) {
1034		pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
1035		rxdr->desc = NULL;
1036	}
1037
1038	kfree(txdr->buffer_info);
1039	txdr->buffer_info = NULL;
1040	kfree(rxdr->buffer_info);
1041	rxdr->buffer_info = NULL;
1042
1043	return;
1044}
1045
1046static int
1047e1000_setup_desc_rings(struct e1000_adapter *adapter)
1048{
1049	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1050	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1051	struct pci_dev *pdev = adapter->pdev;
1052	uint32_t rctl;
1053	int i, ret_val;
1054
1055	/* Setup Tx descriptor ring and Tx buffers */
1056
1057	if (!txdr->count)
1058		txdr->count = E1000_DEFAULT_TXD;
1059
1060	if (!(txdr->buffer_info = kcalloc(txdr->count,
1061	                                  sizeof(struct e1000_buffer),
1062		                          GFP_KERNEL))) {
1063		ret_val = 1;
1064		goto err_nomem;
1065	}
1066
1067	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1068	txdr->size = ALIGN(txdr->size, 4096);
1069	if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size,
1070	                                        &txdr->dma))) {
1071		ret_val = 2;
1072		goto err_nomem;
1073	}
1074	memset(txdr->desc, 0, txdr->size);
1075	txdr->next_to_use = txdr->next_to_clean = 0;
1076
1077	E1000_WRITE_REG(&adapter->hw, TDBAL,
1078			((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
1079	E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
1080	E1000_WRITE_REG(&adapter->hw, TDLEN,
1081			txdr->count * sizeof(struct e1000_tx_desc));
1082	E1000_WRITE_REG(&adapter->hw, TDH, 0);
1083	E1000_WRITE_REG(&adapter->hw, TDT, 0);
1084	E1000_WRITE_REG(&adapter->hw, TCTL,
1085			E1000_TCTL_PSP | E1000_TCTL_EN |
1086			E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1087			E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1088
1089	for (i = 0; i < txdr->count; i++) {
1090		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1091		struct sk_buff *skb;
1092		unsigned int size = 1024;
1093
1094		if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1095			ret_val = 3;
1096			goto err_nomem;
1097		}
1098		skb_put(skb, size);
1099		txdr->buffer_info[i].skb = skb;
1100		txdr->buffer_info[i].length = skb->len;
1101		txdr->buffer_info[i].dma =
1102			pci_map_single(pdev, skb->data, skb->len,
1103				       PCI_DMA_TODEVICE);
1104		tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1105		tx_desc->lower.data = cpu_to_le32(skb->len);
1106		tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1107						   E1000_TXD_CMD_IFCS |
1108						   E1000_TXD_CMD_RPS);
1109		tx_desc->upper.data = 0;
1110	}
1111
1112	/* Setup Rx descriptor ring and Rx buffers */
1113
1114	if (!rxdr->count)
1115		rxdr->count = E1000_DEFAULT_RXD;
1116
1117	if (!(rxdr->buffer_info = kcalloc(rxdr->count,
1118	                                  sizeof(struct e1000_buffer),
1119	                                  GFP_KERNEL))) {
1120		ret_val = 4;
1121		goto err_nomem;
1122	}
1123
1124	rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1125	if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1126		ret_val = 5;
1127		goto err_nomem;
1128	}
1129	memset(rxdr->desc, 0, rxdr->size);
1130	rxdr->next_to_use = rxdr->next_to_clean = 0;
1131
1132	rctl = E1000_READ_REG(&adapter->hw, RCTL);
1133	E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
1134	E1000_WRITE_REG(&adapter->hw, RDBAL,
1135			((uint64_t) rxdr->dma & 0xFFFFFFFF));
1136	E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
1137	E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
1138	E1000_WRITE_REG(&adapter->hw, RDH, 0);
1139	E1000_WRITE_REG(&adapter->hw, RDT, 0);
1140	rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1141		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1142		(adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1143	E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1144
1145	for (i = 0; i < rxdr->count; i++) {
1146		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1147		struct sk_buff *skb;
1148
1149		if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1150				GFP_KERNEL))) {
1151			ret_val = 6;
1152			goto err_nomem;
1153		}
1154		skb_reserve(skb, NET_IP_ALIGN);
1155		rxdr->buffer_info[i].skb = skb;
1156		rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1157		rxdr->buffer_info[i].dma =
1158			pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1159				       PCI_DMA_FROMDEVICE);
1160		rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1161		memset(skb->data, 0x00, skb->len);
1162	}
1163
1164	return 0;
1165
1166err_nomem:
1167	e1000_free_desc_rings(adapter);
1168	return ret_val;
1169}
1170
1171static void
1172e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1173{
1174	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1175	e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
1176	e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
1177	e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
1178	e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
1179}
1180
1181static void
1182e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1183{
1184	uint16_t phy_reg;
1185
1186	/* Because we reset the PHY above, we need to re-force TX_CLK in the
1187	 * Extended PHY Specific Control Register to 25MHz clock.  This
1188	 * value defaults back to a 2.5MHz clock when the PHY is reset.
1189	 */
1190	e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1191	phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1192	e1000_write_phy_reg(&adapter->hw,
1193		M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1194
1195	/* In addition, because of the s/w reset above, we need to enable
1196	 * CRS on TX.  This must be set for both full and half duplex
1197	 * operation.
1198	 */
1199	e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1200	phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1201	e1000_write_phy_reg(&adapter->hw,
1202		M88E1000_PHY_SPEC_CTRL, phy_reg);
1203}
1204
1205static int
1206e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1207{
1208	uint32_t ctrl_reg;
1209	uint16_t phy_reg;
1210
1211	/* Setup the Device Control Register for PHY loopback test. */
1212
1213	ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1214	ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */
1215		     E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */
1216		     E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */
1217		     E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */
1218		     E1000_CTRL_FD);		/* Force Duplex to FULL */
1219
1220	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1221
1222	/* Read the PHY Specific Control Register (0x10) */
1223	e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1224
1225	/* Clear Auto-Crossover bits in PHY Specific Control Register
1226	 * (bits 6:5).
1227	 */
1228	phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1229	e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1230
1231	/* Perform software reset on the PHY */
1232	e1000_phy_reset(&adapter->hw);
1233
1234	/* Have to setup TX_CLK and TX_CRS after software reset */
1235	e1000_phy_reset_clk_and_crs(adapter);
1236
1237	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
1238
1239	/* Wait for reset to complete. */
1240	udelay(500);
1241
1242	/* Have to setup TX_CLK and TX_CRS after software reset */
1243	e1000_phy_reset_clk_and_crs(adapter);
1244
1245	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1246	e1000_phy_disable_receiver(adapter);
1247
1248	/* Set the loopback bit in the PHY control register. */
1249	e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1250	phy_reg |= MII_CR_LOOPBACK;
1251	e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1252
1253	/* Setup TX_CLK and TX_CRS one more time. */
1254	e1000_phy_reset_clk_and_crs(adapter);
1255
1256	/* Check Phy Configuration */
1257	e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1258	if (phy_reg != 0x4100)
1259		 return 9;
1260
1261	e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1262	if (phy_reg != 0x0070)
1263		return 10;
1264
1265	e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1266	if (phy_reg != 0x001A)
1267		return 11;
1268
1269	return 0;
1270}
1271
1272static int
1273e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1274{
1275	uint32_t ctrl_reg = 0;
1276	uint32_t stat_reg = 0;
1277
1278	adapter->hw.autoneg = FALSE;
1279
1280	if (adapter->hw.phy_type == e1000_phy_m88) {
1281		/* Auto-MDI/MDIX Off */
1282		e1000_write_phy_reg(&adapter->hw,
1283				    M88E1000_PHY_SPEC_CTRL, 0x0808);
1284		/* reset to update Auto-MDI/MDIX */
1285		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
1286		/* autoneg off */
1287		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
1288	} else if (adapter->hw.phy_type == e1000_phy_gg82563)
1289		e1000_write_phy_reg(&adapter->hw,
1290		                    GG82563_PHY_KMRN_MODE_CTRL,
1291		                    0x1CC);
1292
1293	ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1294
1295	if (adapter->hw.phy_type == e1000_phy_ife) {
1296		/* force 100, set loopback */
1297		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x6100);
1298
1299		/* Now set up the MAC to the same speed/duplex as the PHY. */
1300		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1301		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1302			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1303			     E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1304			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1305	} else {
1306		/* force 1000, set loopback */
1307		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
1308
1309		/* Now set up the MAC to the same speed/duplex as the PHY. */
1310		ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
1311		ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1312		ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1313			     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1314			     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1315			     E1000_CTRL_FD);	 /* Force Duplex to FULL */
1316	}
1317
1318	if (adapter->hw.media_type == e1000_media_type_copper &&
1319	   adapter->hw.phy_type == e1000_phy_m88)
1320		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1321	else {
1322		/* Set the ILOS bit on the fiber Nic is half
1323		 * duplex link is detected. */
1324		stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1325		if ((stat_reg & E1000_STATUS_FD) == 0)
1326			ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1327	}
1328
1329	E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
1330
1331	/* Disable the receiver on the PHY so when a cable is plugged in, the
1332	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1333	 */
1334	if (adapter->hw.phy_type == e1000_phy_m88)
1335		e1000_phy_disable_receiver(adapter);
1336
1337	udelay(500);
1338
1339	return 0;
1340}
1341
1342static int
1343e1000_set_phy_loopback(struct e1000_adapter *adapter)
1344{
1345	uint16_t phy_reg = 0;
1346	uint16_t count = 0;
1347
1348	switch (adapter->hw.mac_type) {
1349	case e1000_82543:
1350		if (adapter->hw.media_type == e1000_media_type_copper) {
1351			/* Attempt to setup Loopback mode on Non-integrated PHY.
1352			 * Some PHY registers get corrupted at random, so
1353			 * attempt this 10 times.
1354			 */
1355			while (e1000_nonintegrated_phy_loopback(adapter) &&
1356			      count++ < 10);
1357			if (count < 11)
1358				return 0;
1359		}
1360		break;
1361
1362	case e1000_82544:
1363	case e1000_82540:
1364	case e1000_82545:
1365	case e1000_82545_rev_3:
1366	case e1000_82546:
1367	case e1000_82546_rev_3:
1368	case e1000_82541:
1369	case e1000_82541_rev_2:
1370	case e1000_82547:
1371	case e1000_82547_rev_2:
1372	case e1000_82571:
1373	case e1000_82572:
1374	case e1000_82573:
1375	case e1000_80003es2lan:
1376	case e1000_ich8lan:
1377		return e1000_integrated_phy_loopback(adapter);
1378		break;
1379
1380	default:
1381		/* Default PHY loopback work is to read the MII
1382		 * control register and assert bit 14 (loopback mode).
1383		 */
1384		e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1385		phy_reg |= MII_CR_LOOPBACK;
1386		e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
1387		return 0;
1388		break;
1389	}
1390
1391	return 8;
1392}
1393
1394static int
1395e1000_setup_loopback_test(struct e1000_adapter *adapter)
1396{
1397	struct e1000_hw *hw = &adapter->hw;
1398	uint32_t rctl;
1399
1400	if (hw->media_type == e1000_media_type_fiber ||
1401	    hw->media_type == e1000_media_type_internal_serdes) {
1402		switch (hw->mac_type) {
1403		case e1000_82545:
1404		case e1000_82546:
1405		case e1000_82545_rev_3:
1406		case e1000_82546_rev_3:
1407			return e1000_set_phy_loopback(adapter);
1408			break;
1409		case e1000_82571:
1410		case e1000_82572:
1411#define E1000_SERDES_LB_ON 0x410
1412			e1000_set_phy_loopback(adapter);
1413			E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON);
1414			msleep(10);
1415			return 0;
1416			break;
1417		default:
1418			rctl = E1000_READ_REG(hw, RCTL);
1419			rctl |= E1000_RCTL_LBM_TCVR;
1420			E1000_WRITE_REG(hw, RCTL, rctl);
1421			return 0;
1422		}
1423	} else if (hw->media_type == e1000_media_type_copper)
1424		return e1000_set_phy_loopback(adapter);
1425
1426	return 7;
1427}
1428
1429static void
1430e1000_loopback_cleanup(struct e1000_adapter *adapter)
1431{
1432	struct e1000_hw *hw = &adapter->hw;
1433	uint32_t rctl;
1434	uint16_t phy_reg;
1435
1436	rctl = E1000_READ_REG(hw, RCTL);
1437	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1438	E1000_WRITE_REG(hw, RCTL, rctl);
1439
1440	switch (hw->mac_type) {
1441	case e1000_82571:
1442	case e1000_82572:
1443		if (hw->media_type == e1000_media_type_fiber ||
1444		    hw->media_type == e1000_media_type_internal_serdes) {
1445#define E1000_SERDES_LB_OFF 0x400
1446			E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF);
1447			msleep(10);
1448			break;
1449		}
1450		/* Fall Through */
1451	case e1000_82545:
1452	case e1000_82546:
1453	case e1000_82545_rev_3:
1454	case e1000_82546_rev_3:
1455	default:
1456		hw->autoneg = TRUE;
1457		if (hw->phy_type == e1000_phy_gg82563)
1458			e1000_write_phy_reg(hw,
1459					    GG82563_PHY_KMRN_MODE_CTRL,
1460					    0x180);
1461		e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1462		if (phy_reg & MII_CR_LOOPBACK) {
1463			phy_reg &= ~MII_CR_LOOPBACK;
1464			e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1465			e1000_phy_reset(hw);
1466		}
1467		break;
1468	}
1469}
1470
1471static void
1472e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1473{
1474	memset(skb->data, 0xFF, frame_size);
1475	frame_size &= ~1;
1476	memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1477	memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1478	memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1479}
1480
1481static int
1482e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1483{
1484	frame_size &= ~1;
1485	if (*(skb->data + 3) == 0xFF) {
1486		if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1487		   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1488			return 0;
1489		}
1490	}
1491	return 13;
1492}
1493
1494static int
1495e1000_run_loopback_test(struct e1000_adapter *adapter)
1496{
1497	struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1498	struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1499	struct pci_dev *pdev = adapter->pdev;
1500	int i, j, k, l, lc, good_cnt, ret_val=0;
1501	unsigned long time;
1502
1503	E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1504
1505	/* Calculate the loop count based on the largest descriptor ring
1506	 * The idea is to wrap the largest ring a number of times using 64
1507	 * send/receive pairs during each loop
1508	 */
1509
1510	if (rxdr->count <= txdr->count)
1511		lc = ((txdr->count / 64) * 2) + 1;
1512	else
1513		lc = ((rxdr->count / 64) * 2) + 1;
1514
1515	k = l = 0;
1516	for (j = 0; j <= lc; j++) { /* loop count loop */
1517		for (i = 0; i < 64; i++) { /* send the packets */
1518			e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1519					1024);
1520			pci_dma_sync_single_for_device(pdev,
1521					txdr->buffer_info[k].dma,
1522				    	txdr->buffer_info[k].length,
1523				    	PCI_DMA_TODEVICE);
1524			if (unlikely(++k == txdr->count)) k = 0;
1525		}
1526		E1000_WRITE_REG(&adapter->hw, TDT, k);
1527		msleep(200);
1528		time = jiffies; /* set the start time for the receive */
1529		good_cnt = 0;
1530		do { /* receive the sent packets */
1531			pci_dma_sync_single_for_cpu(pdev,
1532					rxdr->buffer_info[l].dma,
1533				    	rxdr->buffer_info[l].length,
1534				    	PCI_DMA_FROMDEVICE);
1535
1536			ret_val = e1000_check_lbtest_frame(
1537					rxdr->buffer_info[l].skb,
1538				   	1024);
1539			if (!ret_val)
1540				good_cnt++;
1541			if (unlikely(++l == rxdr->count)) l = 0;
1542			/* time + 20 msecs (200 msecs on 2.4) is more than
1543			 * enough time to complete the receives, if it's
1544			 * exceeded, break and error off
1545			 */
1546		} while (good_cnt < 64 && jiffies < (time + 20));
1547		if (good_cnt != 64) {
1548			ret_val = 13; /* ret_val is the same as mis-compare */
1549			break;
1550		}
1551		if (jiffies >= (time + 2)) {
1552			ret_val = 14; /* error code for time out error */
1553			break;
1554		}
1555	} /* end loop count loop */
1556	return ret_val;
1557}
1558
1559static int
1560e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
1561{
1562	/* PHY loopback cannot be performed if SoL/IDER
1563	 * sessions are active */
1564	if (e1000_check_phy_reset_block(&adapter->hw)) {
1565		DPRINTK(DRV, ERR, "Cannot do PHY loopback test "
1566		        "when SoL/IDER is active.\n");
1567		*data = 0;
1568		goto out;
1569	}
1570
1571	if ((*data = e1000_setup_desc_rings(adapter)))
1572		goto out;
1573	if ((*data = e1000_setup_loopback_test(adapter)))
1574		goto err_loopback;
1575	*data = e1000_run_loopback_test(adapter);
1576	e1000_loopback_cleanup(adapter);
1577
1578err_loopback:
1579	e1000_free_desc_rings(adapter);
1580out:
1581	return *data;
1582}
1583
1584static int
1585e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1586{
1587	*data = 0;
1588	if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
1589		int i = 0;
1590		adapter->hw.serdes_link_down = TRUE;
1591
1592		/* On some blade server designs, link establishment
1593		 * could take as long as 2-3 minutes */
1594		do {
1595			e1000_check_for_link(&adapter->hw);
1596			if (adapter->hw.serdes_link_down == FALSE)
1597				return *data;
1598			msleep(20);
1599		} while (i++ < 3750);
1600
1601		*data = 1;
1602	} else {
1603		e1000_check_for_link(&adapter->hw);
1604		if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */
1605			msleep(4000);
1606
1607		if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1608			*data = 1;
1609		}
1610	}
1611	return *data;
1612}
1613
1614static int
1615e1000_diag_test_count(struct net_device *netdev)
1616{
1617	return E1000_TEST_LEN;
1618}
1619
1620extern void e1000_power_up_phy(struct e1000_adapter *);
1621
1622static void
1623e1000_diag_test(struct net_device *netdev,
1624		   struct ethtool_test *eth_test, uint64_t *data)
1625{
1626	struct e1000_adapter *adapter = netdev_priv(netdev);
1627	boolean_t if_running = netif_running(netdev);
1628
1629	set_bit(__E1000_TESTING, &adapter->flags);
1630	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1631		/* Offline tests */
1632
1633		/* save speed, duplex, autoneg settings */
1634		uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
1635		uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
1636		uint8_t autoneg = adapter->hw.autoneg;
1637
1638		DPRINTK(HW, INFO, "offline testing starting\n");
1639
1640		/* Link test performed before hardware reset so autoneg doesn't
1641		 * interfere with test result */
1642		if (e1000_link_test(adapter, &data[4]))
1643			eth_test->flags |= ETH_TEST_FL_FAILED;
1644
1645		if (if_running)
1646			/* indicate we're in test mode */
1647			dev_close(netdev);
1648		else
1649			e1000_reset(adapter);
1650
1651		if (e1000_reg_test(adapter, &data[0]))
1652			eth_test->flags |= ETH_TEST_FL_FAILED;
1653
1654		e1000_reset(adapter);
1655		if (e1000_eeprom_test(adapter, &data[1]))
1656			eth_test->flags |= ETH_TEST_FL_FAILED;
1657
1658		e1000_reset(adapter);
1659		if (e1000_intr_test(adapter, &data[2]))
1660			eth_test->flags |= ETH_TEST_FL_FAILED;
1661
1662		e1000_reset(adapter);
1663		/* make sure the phy is powered up */
1664		e1000_power_up_phy(adapter);
1665		if (e1000_loopback_test(adapter, &data[3]))
1666			eth_test->flags |= ETH_TEST_FL_FAILED;
1667
1668		/* restore speed, duplex, autoneg settings */
1669		adapter->hw.autoneg_advertised = autoneg_advertised;
1670		adapter->hw.forced_speed_duplex = forced_speed_duplex;
1671		adapter->hw.autoneg = autoneg;
1672
1673		e1000_reset(adapter);
1674		clear_bit(__E1000_TESTING, &adapter->flags);
1675		if (if_running)
1676			dev_open(netdev);
1677	} else {
1678		DPRINTK(HW, INFO, "online testing starting\n");
1679		/* Online tests */
1680		if (e1000_link_test(adapter, &data[4]))
1681			eth_test->flags |= ETH_TEST_FL_FAILED;
1682
1683		/* Online tests aren't run; pass by default */
1684		data[0] = 0;
1685		data[1] = 0;
1686		data[2] = 0;
1687		data[3] = 0;
1688
1689		clear_bit(__E1000_TESTING, &adapter->flags);
1690	}
1691	msleep_interruptible(4 * 1000);
1692}
1693
1694static int e1000_wol_exclusion(struct e1000_adapter *adapter, struct ethtool_wolinfo *wol)
1695{
1696	struct e1000_hw *hw = &adapter->hw;
1697	int retval = 1; /* fail by default */
1698
1699	switch (hw->device_id) {
1700	case E1000_DEV_ID_82542:
1701	case E1000_DEV_ID_82543GC_FIBER:
1702	case E1000_DEV_ID_82543GC_COPPER:
1703	case E1000_DEV_ID_82544EI_FIBER:
1704	case E1000_DEV_ID_82546EB_QUAD_COPPER:
1705	case E1000_DEV_ID_82545EM_FIBER:
1706	case E1000_DEV_ID_82545EM_COPPER:
1707	case E1000_DEV_ID_82546GB_QUAD_COPPER:
1708	case E1000_DEV_ID_82546GB_PCIE:
1709		/* these don't support WoL at all */
1710		wol->supported = 0;
1711		break;
1712	case E1000_DEV_ID_82546EB_FIBER:
1713	case E1000_DEV_ID_82546GB_FIBER:
1714	case E1000_DEV_ID_82571EB_FIBER:
1715	case E1000_DEV_ID_82571EB_SERDES:
1716	case E1000_DEV_ID_82571EB_COPPER:
1717		/* Wake events not supported on port B */
1718		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1719			wol->supported = 0;
1720			break;
1721		}
1722		/* return success for non excluded adapter ports */
1723		retval = 0;
1724		break;
1725	case E1000_DEV_ID_82571EB_QUAD_COPPER:
1726	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1727	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1728		/* quad port adapters only support WoL on port A */
1729		if (!adapter->quad_port_a) {
1730			wol->supported = 0;
1731			break;
1732		}
1733		/* return success for non excluded adapter ports */
1734		retval = 0;
1735		break;
1736	default:
1737		/* dual port cards only support WoL on port A from now on
1738		 * unless it was enabled in the eeprom for port B
1739		 * so exclude FUNC_1 ports from having WoL enabled */
1740		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1 &&
1741		    !adapter->eeprom_wol) {
1742			wol->supported = 0;
1743			break;
1744		}
1745
1746		retval = 0;
1747	}
1748
1749	return retval;
1750}
1751
1752static void
1753e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1754{
1755	struct e1000_adapter *adapter = netdev_priv(netdev);
1756
1757	wol->supported = WAKE_UCAST | WAKE_MCAST |
1758	                 WAKE_BCAST | WAKE_MAGIC;
1759	wol->wolopts = 0;
1760
1761	/* this function will set ->supported = 0 and return 1 if wol is not
1762	 * supported by this hardware */
1763	if (e1000_wol_exclusion(adapter, wol))
1764		return;
1765
1766	/* apply any specific unsupported masks here */
1767	switch (adapter->hw.device_id) {
1768	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1769		/* KSP3 does not suppport UCAST wake-ups */
1770		wol->supported &= ~WAKE_UCAST;
1771
1772		if (adapter->wol & E1000_WUFC_EX)
1773			DPRINTK(DRV, ERR, "Interface does not support "
1774		        "directed (unicast) frame wake-up packets\n");
1775		break;
1776	default:
1777		break;
1778	}
1779
1780	if (adapter->wol & E1000_WUFC_EX)
1781		wol->wolopts |= WAKE_UCAST;
1782	if (adapter->wol & E1000_WUFC_MC)
1783		wol->wolopts |= WAKE_MCAST;
1784	if (adapter->wol & E1000_WUFC_BC)
1785		wol->wolopts |= WAKE_BCAST;
1786	if (adapter->wol & E1000_WUFC_MAG)
1787		wol->wolopts |= WAKE_MAGIC;
1788
1789	return;
1790}
1791
1792static int
1793e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1794{
1795	struct e1000_adapter *adapter = netdev_priv(netdev);
1796	struct e1000_hw *hw = &adapter->hw;
1797
1798	if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1799		return -EOPNOTSUPP;
1800
1801	if (e1000_wol_exclusion(adapter, wol))
1802		return wol->wolopts ? -EOPNOTSUPP : 0;
1803
1804	switch (hw->device_id) {
1805	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1806		if (wol->wolopts & WAKE_UCAST) {
1807			DPRINTK(DRV, ERR, "Interface does not support "
1808		        "directed (unicast) frame wake-up packets\n");
1809			return -EOPNOTSUPP;
1810		}
1811		break;
1812	default:
1813		break;
1814	}
1815
1816	/* these settings will always override what we currently have */
1817	adapter->wol = 0;
1818
1819	if (wol->wolopts & WAKE_UCAST)
1820		adapter->wol |= E1000_WUFC_EX;
1821	if (wol->wolopts & WAKE_MCAST)
1822		adapter->wol |= E1000_WUFC_MC;
1823	if (wol->wolopts & WAKE_BCAST)
1824		adapter->wol |= E1000_WUFC_BC;
1825	if (wol->wolopts & WAKE_MAGIC)
1826		adapter->wol |= E1000_WUFC_MAG;
1827
1828	return 0;
1829}
1830
1831/* toggle LED 4 times per second = 2 "blinks" per second */
1832#define E1000_ID_INTERVAL	(HZ/4)
1833
1834/* bit defines for adapter->led_status */
1835#define E1000_LED_ON		0
1836
1837static void
1838e1000_led_blink_callback(unsigned long data)
1839{
1840	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1841
1842	if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1843		e1000_led_off(&adapter->hw);
1844	else
1845		e1000_led_on(&adapter->hw);
1846
1847	mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1848}
1849
1850static int
1851e1000_phys_id(struct net_device *netdev, uint32_t data)
1852{
1853	struct e1000_adapter *adapter = netdev_priv(netdev);
1854
1855	if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1856		data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1857
1858	if (adapter->hw.mac_type < e1000_82571) {
1859		if (!adapter->blink_timer.function) {
1860			init_timer(&adapter->blink_timer);
1861			adapter->blink_timer.function = e1000_led_blink_callback;
1862			adapter->blink_timer.data = (unsigned long) adapter;
1863		}
1864		e1000_setup_led(&adapter->hw);
1865		mod_timer(&adapter->blink_timer, jiffies);
1866		msleep_interruptible(data * 1000);
1867		del_timer_sync(&adapter->blink_timer);
1868	} else if (adapter->hw.phy_type == e1000_phy_ife) {
1869		if (!adapter->blink_timer.function) {
1870			init_timer(&adapter->blink_timer);
1871			adapter->blink_timer.function = e1000_led_blink_callback;
1872			adapter->blink_timer.data = (unsigned long) adapter;
1873		}
1874		mod_timer(&adapter->blink_timer, jiffies);
1875		msleep_interruptible(data * 1000);
1876		del_timer_sync(&adapter->blink_timer);
1877		e1000_write_phy_reg(&(adapter->hw), IFE_PHY_SPECIAL_CONTROL_LED, 0);
1878	} else {
1879		e1000_blink_led_start(&adapter->hw);
1880		msleep_interruptible(data * 1000);
1881	}
1882
1883	e1000_led_off(&adapter->hw);
1884	clear_bit(E1000_LED_ON, &adapter->led_status);
1885	e1000_cleanup_led(&adapter->hw);
1886
1887	return 0;
1888}
1889
1890static int
1891e1000_nway_reset(struct net_device *netdev)
1892{
1893	struct e1000_adapter *adapter = netdev_priv(netdev);
1894	if (netif_running(netdev))
1895		e1000_reinit_locked(adapter);
1896	return 0;
1897}
1898
1899static int
1900e1000_get_stats_count(struct net_device *netdev)
1901{
1902	return E1000_STATS_LEN;
1903}
1904
1905static void
1906e1000_get_ethtool_stats(struct net_device *netdev,
1907		struct ethtool_stats *stats, uint64_t *data)
1908{
1909	struct e1000_adapter *adapter = netdev_priv(netdev);
1910	int i;
1911
1912	e1000_update_stats(adapter);
1913	for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1914		char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1915		data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1916			sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
1917	}
1918/*	BUG_ON(i != E1000_STATS_LEN); */
1919}
1920
1921static void
1922e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1923{
1924	uint8_t *p = data;
1925	int i;
1926
1927	switch (stringset) {
1928	case ETH_SS_TEST:
1929		memcpy(data, *e1000_gstrings_test,
1930			E1000_TEST_LEN*ETH_GSTRING_LEN);
1931		break;
1932	case ETH_SS_STATS:
1933		for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1934			memcpy(p, e1000_gstrings_stats[i].stat_string,
1935			       ETH_GSTRING_LEN);
1936			p += ETH_GSTRING_LEN;
1937		}
1938/*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1939		break;
1940	}
1941}
1942
1943static const struct ethtool_ops e1000_ethtool_ops = {
1944	.get_settings           = e1000_get_settings,
1945	.set_settings           = e1000_set_settings,
1946	.get_drvinfo            = e1000_get_drvinfo,
1947	.get_regs_len           = e1000_get_regs_len,
1948	.get_regs               = e1000_get_regs,
1949	.get_wol                = e1000_get_wol,
1950	.set_wol                = e1000_set_wol,
1951	.get_msglevel           = e1000_get_msglevel,
1952	.set_msglevel           = e1000_set_msglevel,
1953	.nway_reset             = e1000_nway_reset,
1954	.get_link               = ethtool_op_get_link,
1955	.get_eeprom_len         = e1000_get_eeprom_len,
1956	.get_eeprom             = e1000_get_eeprom,
1957	.set_eeprom             = e1000_set_eeprom,
1958	.get_ringparam          = e1000_get_ringparam,
1959	.set_ringparam          = e1000_set_ringparam,
1960	.get_pauseparam         = e1000_get_pauseparam,
1961	.set_pauseparam         = e1000_set_pauseparam,
1962	.get_rx_csum            = e1000_get_rx_csum,
1963	.set_rx_csum            = e1000_set_rx_csum,
1964	.get_tx_csum            = e1000_get_tx_csum,
1965	.set_tx_csum            = e1000_set_tx_csum,
1966	.get_sg                 = ethtool_op_get_sg,
1967	.set_sg                 = ethtool_op_set_sg,
1968	.get_tso                = ethtool_op_get_tso,
1969	.set_tso                = e1000_set_tso,
1970	.self_test_count        = e1000_diag_test_count,
1971	.self_test              = e1000_diag_test,
1972	.get_strings            = e1000_get_strings,
1973	.phys_id                = e1000_phys_id,
1974	.get_stats_count        = e1000_get_stats_count,
1975	.get_ethtool_stats      = e1000_get_ethtool_stats,
1976	.get_perm_addr          = ethtool_op_get_perm_addr,
1977};
1978
1979void e1000_set_ethtool_ops(struct net_device *netdev)
1980{
1981	SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1982}
1983