1/*****************************************************************************
2 *                                                                           *
3 * File: sge.c                                                               *
4 * $Revision: 1.1.1.1 $                                                         *
5 * $Date: 2007/08/03 18:52:46 $                                              *
6 * Description:                                                              *
7 *  DMA engine.                                                              *
8 *  part of the Chelsio 10Gb Ethernet Driver.                                *
9 *                                                                           *
10 * This program is free software; you can redistribute it and/or modify      *
11 * it under the terms of the GNU General Public License, version 2, as       *
12 * published by the Free Software Foundation.                                *
13 *                                                                           *
14 * You should have received a copy of the GNU General Public License along   *
15 * with this program; if not, write to the Free Software Foundation, Inc.,   *
16 * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
17 *                                                                           *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
21 *                                                                           *
22 * http://www.chelsio.com                                                    *
23 *                                                                           *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
25 * All rights reserved.                                                      *
26 *                                                                           *
27 * Maintainers: maintainers@chelsio.com                                      *
28 *                                                                           *
29 * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
30 *          Tina Yang               <tainay@chelsio.com>                     *
31 *          Felix Marti             <felix@chelsio.com>                      *
32 *          Scott Bardone           <sbardone@chelsio.com>                   *
33 *          Kurt Ottaway            <kottaway@chelsio.com>                   *
34 *          Frank DiMambro          <frank@chelsio.com>                      *
35 *                                                                           *
36 * History:                                                                  *
37 *                                                                           *
38 ****************************************************************************/
39
40#include "common.h"
41
42#include <linux/types.h>
43#include <linux/errno.h>
44#include <linux/pci.h>
45#include <linux/ktime.h>
46#include <linux/netdevice.h>
47#include <linux/etherdevice.h>
48#include <linux/if_vlan.h>
49#include <linux/skbuff.h>
50#include <linux/init.h>
51#include <linux/mm.h>
52#include <linux/tcp.h>
53#include <linux/ip.h>
54#include <linux/in.h>
55#include <linux/if_arp.h>
56
57#include "cpl5_cmd.h"
58#include "sge.h"
59#include "regs.h"
60#include "espi.h"
61
62/* This belongs in if_ether.h */
63#define ETH_P_CPL5 0xf
64
65#define SGE_CMDQ_N		2
66#define SGE_FREELQ_N		2
67#define SGE_CMDQ0_E_N		1024
68#define SGE_CMDQ1_E_N		128
69#define SGE_FREEL_SIZE		4096
70#define SGE_JUMBO_FREEL_SIZE	512
71#define SGE_FREEL_REFILL_THRESH	16
72#define SGE_RESPQ_E_N		1024
73#define SGE_INTRTIMER_NRES	1000
74#define SGE_RX_SM_BUF_SIZE	1536
75#define SGE_TX_DESC_MAX_PLEN	16384
76
77#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
78
79/*
80 * Period of the TX buffer reclaim timer.  This timer does not need to run
81 * frequently as TX buffers are usually reclaimed by new TX packets.
82 */
83#define TX_RECLAIM_PERIOD (HZ / 4)
84
85#define M_CMD_LEN       0x7fffffff
86#define V_CMD_LEN(v)    (v)
87#define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
88#define V_CMD_GEN1(v)   ((v) << 31)
89#define V_CMD_GEN2(v)   (v)
90#define F_CMD_DATAVALID (1 << 1)
91#define F_CMD_SOP       (1 << 2)
92#define V_CMD_EOP(v)    ((v) << 3)
93
94/*
95 * Command queue, receive buffer list, and response queue descriptors.
96 */
97#if defined(__BIG_ENDIAN_BITFIELD)
98struct cmdQ_e {
99	u32 addr_lo;
100	u32 len_gen;
101	u32 flags;
102	u32 addr_hi;
103};
104
105struct freelQ_e {
106	u32 addr_lo;
107	u32 len_gen;
108	u32 gen2;
109	u32 addr_hi;
110};
111
112struct respQ_e {
113	u32 Qsleeping		: 4;
114	u32 Cmdq1CreditReturn	: 5;
115	u32 Cmdq1DmaComplete	: 5;
116	u32 Cmdq0CreditReturn	: 5;
117	u32 Cmdq0DmaComplete	: 5;
118	u32 FreelistQid		: 2;
119	u32 CreditValid		: 1;
120	u32 DataValid		: 1;
121	u32 Offload		: 1;
122	u32 Eop			: 1;
123	u32 Sop			: 1;
124	u32 GenerationBit	: 1;
125	u32 BufferLength;
126};
127#elif defined(__LITTLE_ENDIAN_BITFIELD)
128struct cmdQ_e {
129	u32 len_gen;
130	u32 addr_lo;
131	u32 addr_hi;
132	u32 flags;
133};
134
135struct freelQ_e {
136	u32 len_gen;
137	u32 addr_lo;
138	u32 addr_hi;
139	u32 gen2;
140};
141
142struct respQ_e {
143	u32 BufferLength;
144	u32 GenerationBit	: 1;
145	u32 Sop			: 1;
146	u32 Eop			: 1;
147	u32 Offload		: 1;
148	u32 DataValid		: 1;
149	u32 CreditValid		: 1;
150	u32 FreelistQid		: 2;
151	u32 Cmdq0DmaComplete	: 5;
152	u32 Cmdq0CreditReturn	: 5;
153	u32 Cmdq1DmaComplete	: 5;
154	u32 Cmdq1CreditReturn	: 5;
155	u32 Qsleeping		: 4;
156} ;
157#endif
158
159/*
160 * SW Context Command and Freelist Queue Descriptors
161 */
162struct cmdQ_ce {
163	struct sk_buff *skb;
164	DECLARE_PCI_UNMAP_ADDR(dma_addr);
165	DECLARE_PCI_UNMAP_LEN(dma_len);
166};
167
168struct freelQ_ce {
169	struct sk_buff *skb;
170	DECLARE_PCI_UNMAP_ADDR(dma_addr);
171	DECLARE_PCI_UNMAP_LEN(dma_len);
172};
173
174/*
175 * SW command, freelist and response rings
176 */
177struct cmdQ {
178	unsigned long   status;         /* HW DMA fetch status */
179	unsigned int    in_use;         /* # of in-use command descriptors */
180	unsigned int	size;	        /* # of descriptors */
181	unsigned int    processed;      /* total # of descs HW has processed */
182	unsigned int    cleaned;        /* total # of descs SW has reclaimed */
183	unsigned int    stop_thres;     /* SW TX queue suspend threshold */
184	u16		pidx;           /* producer index (SW) */
185	u16		cidx;           /* consumer index (HW) */
186	u8		genbit;         /* current generation (=valid) bit */
187	u8              sop;            /* is next entry start of packet? */
188	struct cmdQ_e  *entries;        /* HW command descriptor Q */
189	struct cmdQ_ce *centries;       /* SW command context descriptor Q */
190	dma_addr_t	dma_addr;       /* DMA addr HW command descriptor Q */
191	spinlock_t	lock;           /* Lock to protect cmdQ enqueuing */
192};
193
194struct freelQ {
195	unsigned int	credits;        /* # of available RX buffers */
196	unsigned int	size;	        /* free list capacity */
197	u16		pidx;           /* producer index (SW) */
198	u16		cidx;           /* consumer index (HW) */
199	u16		rx_buffer_size; /* Buffer size on this free list */
200	u16             dma_offset;     /* DMA offset to align IP headers */
201	u16             recycleq_idx;   /* skb recycle q to use */
202	u8		genbit;	        /* current generation (=valid) bit */
203	struct freelQ_e	*entries;       /* HW freelist descriptor Q */
204	struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
205	dma_addr_t	dma_addr;       /* DMA addr HW freelist descriptor Q */
206};
207
208struct respQ {
209	unsigned int	credits;        /* credits to be returned to SGE */
210	unsigned int	size;	        /* # of response Q descriptors */
211	u16		cidx;	        /* consumer index (SW) */
212	u8		genbit;	        /* current generation(=valid) bit */
213	struct respQ_e *entries;        /* HW response descriptor Q */
214	dma_addr_t	dma_addr;       /* DMA addr HW response descriptor Q */
215};
216
217/* Bit flags for cmdQ.status */
218enum {
219	CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
220	CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
221};
222
223/* T204 TX SW scheduler */
224
225/* Per T204 TX port */
226struct sched_port {
227	unsigned int	avail;		/* available bits - quota */
228	unsigned int	drain_bits_per_1024ns; /* drain rate */
229	unsigned int	speed;		/* drain rate, mbps */
230	unsigned int	mtu;		/* mtu size */
231	struct sk_buff_head skbq;	/* pending skbs */
232};
233
234/* Per T204 device */
235struct sched {
236	ktime_t         last_updated;   /* last time quotas were computed */
237	unsigned int	max_avail;	/* max bits to be sent to any port */
238	unsigned int	port;		/* port index (round robin ports) */
239	unsigned int	num;		/* num skbs in per port queues */
240	struct sched_port p[MAX_NPORTS];
241	struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
242};
243static void restart_sched(unsigned long);
244
245
246/*
247 * Main SGE data structure
248 *
249 * Interrupts are handled by a single CPU and it is likely that on a MP system
250 * the application is migrated to another CPU. In that scenario, we try to
251 * seperate the RX(in irq context) and TX state in order to decrease memory
252 * contention.
253 */
254struct sge {
255	struct adapter *adapter;	/* adapter backpointer */
256	struct net_device *netdev;      /* netdevice backpointer */
257	struct freelQ	freelQ[SGE_FREELQ_N]; /* buffer free lists */
258	struct respQ	respQ;		/* response Q */
259	unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
260	unsigned int	rx_pkt_pad;     /* RX padding for L2 packets */
261	unsigned int	jumbo_fl;       /* jumbo freelist Q index */
262	unsigned int	intrtimer_nres;	/* no-resource interrupt timer */
263	unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
264	struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
265	struct timer_list espibug_timer;
266	unsigned long	espibug_timeout;
267	struct sk_buff	*espibug_skb[MAX_NPORTS];
268	u32		sge_control;	/* shadow value of sge control reg */
269	struct sge_intr_counts stats;
270	struct sge_port_stats *port_stats[MAX_NPORTS];
271	struct sched	*tx_sched;
272	struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
273};
274
275/*
276 * stop tasklet and free all pending skb's
277 */
278static void tx_sched_stop(struct sge *sge)
279{
280	struct sched *s = sge->tx_sched;
281	int i;
282
283	tasklet_kill(&s->sched_tsk);
284
285	for (i = 0; i < MAX_NPORTS; i++)
286		__skb_queue_purge(&s->p[s->port].skbq);
287}
288
289/*
290 * t1_sched_update_parms() is called when the MTU or link speed changes. It
291 * re-computes scheduler parameters to scope with the change.
292 */
293unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
294				   unsigned int mtu, unsigned int speed)
295{
296	struct sched *s = sge->tx_sched;
297	struct sched_port *p = &s->p[port];
298	unsigned int max_avail_segs;
299
300	pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
301	if (speed)
302		p->speed = speed;
303	if (mtu)
304		p->mtu = mtu;
305
306	if (speed || mtu) {
307		unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
308		do_div(drain, (p->mtu + 50) * 1000);
309		p->drain_bits_per_1024ns = (unsigned int) drain;
310
311		if (p->speed < 1000)
312			p->drain_bits_per_1024ns =
313				90 * p->drain_bits_per_1024ns / 100;
314	}
315
316	if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
317		p->drain_bits_per_1024ns -= 16;
318		s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
319		max_avail_segs = max(1U, 4096 / (p->mtu - 40));
320	} else {
321		s->max_avail = 16384;
322		max_avail_segs = max(1U, 9000 / (p->mtu - 40));
323	}
324
325	pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
326		 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
327		 p->speed, s->max_avail, max_avail_segs,
328		 p->drain_bits_per_1024ns);
329
330	return max_avail_segs * (p->mtu - 40);
331}
332
333/*
334 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
335 * data that can be pushed per port.
336 */
337void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
338{
339	struct sched *s = sge->tx_sched;
340	unsigned int i;
341
342	s->max_avail = val;
343	for (i = 0; i < MAX_NPORTS; i++)
344		t1_sched_update_parms(sge, i, 0, 0);
345}
346
347/*
348 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
349 * is draining.
350 */
351void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
352					 unsigned int val)
353{
354	struct sched *s = sge->tx_sched;
355	struct sched_port *p = &s->p[port];
356	p->drain_bits_per_1024ns = val * 1024 / 1000;
357	t1_sched_update_parms(sge, port, 0, 0);
358}
359
360
361/*
362 * get_clock() implements a ns clock (see ktime_get)
363 */
364static inline ktime_t get_clock(void)
365{
366	struct timespec ts;
367
368	ktime_get_ts(&ts);
369	return timespec_to_ktime(ts);
370}
371
372/*
373 * tx_sched_init() allocates resources and does basic initialization.
374 */
375static int tx_sched_init(struct sge *sge)
376{
377	struct sched *s;
378	int i;
379
380	s = kzalloc(sizeof (struct sched), GFP_KERNEL);
381	if (!s)
382		return -ENOMEM;
383
384	pr_debug("tx_sched_init\n");
385	tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
386	sge->tx_sched = s;
387
388	for (i = 0; i < MAX_NPORTS; i++) {
389		skb_queue_head_init(&s->p[i].skbq);
390		t1_sched_update_parms(sge, i, 1500, 1000);
391	}
392
393	return 0;
394}
395
396/*
397 * sched_update_avail() computes the delta since the last time it was called
398 * and updates the per port quota (number of bits that can be sent to the any
399 * port).
400 */
401static inline int sched_update_avail(struct sge *sge)
402{
403	struct sched *s = sge->tx_sched;
404	ktime_t now = get_clock();
405	unsigned int i;
406	long long delta_time_ns;
407
408	delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
409
410	pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
411	if (delta_time_ns < 15000)
412		return 0;
413
414	for (i = 0; i < MAX_NPORTS; i++) {
415		struct sched_port *p = &s->p[i];
416		unsigned int delta_avail;
417
418		delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
419		p->avail = min(p->avail + delta_avail, s->max_avail);
420	}
421
422	s->last_updated = now;
423
424	return 1;
425}
426
427/*
428 * sched_skb() is called from two different places. In the tx path, any
429 * packet generating load on an output port will call sched_skb()
430 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
431 * context (skb == NULL).
432 * The scheduler only returns a skb (which will then be sent) if the
433 * length of the skb is <= the current quota of the output port.
434 */
435static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
436				unsigned int credits)
437{
438	struct sched *s = sge->tx_sched;
439	struct sk_buff_head *skbq;
440	unsigned int i, len, update = 1;
441
442	pr_debug("sched_skb %p\n", skb);
443	if (!skb) {
444		if (!s->num)
445			return NULL;
446	} else {
447		skbq = &s->p[skb->dev->if_port].skbq;
448		__skb_queue_tail(skbq, skb);
449		s->num++;
450		skb = NULL;
451	}
452
453	if (credits < MAX_SKB_FRAGS + 1)
454		goto out;
455
456again:
457	for (i = 0; i < MAX_NPORTS; i++) {
458		s->port = ++s->port & (MAX_NPORTS - 1);
459		skbq = &s->p[s->port].skbq;
460
461		skb = skb_peek(skbq);
462
463		if (!skb)
464			continue;
465
466		len = skb->len;
467		if (len <= s->p[s->port].avail) {
468			s->p[s->port].avail -= len;
469			s->num--;
470			__skb_unlink(skb, skbq);
471			goto out;
472		}
473		skb = NULL;
474	}
475
476	if (update-- && sched_update_avail(sge))
477		goto again;
478
479out:
480	/* If there are more pending skbs, we use the hardware to schedule us
481	 * again.
482	 */
483	if (s->num && !skb) {
484		struct cmdQ *q = &sge->cmdQ[0];
485		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
486		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
487			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
488			writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
489		}
490	}
491	pr_debug("sched_skb ret %p\n", skb);
492
493	return skb;
494}
495
496/*
497 * PIO to indicate that memory mapped Q contains valid descriptor(s).
498 */
499static inline void doorbell_pio(struct adapter *adapter, u32 val)
500{
501	wmb();
502	writel(val, adapter->regs + A_SG_DOORBELL);
503}
504
505/*
506 * Frees all RX buffers on the freelist Q. The caller must make sure that
507 * the SGE is turned off before calling this function.
508 */
509static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
510{
511	unsigned int cidx = q->cidx;
512
513	while (q->credits--) {
514		struct freelQ_ce *ce = &q->centries[cidx];
515
516		pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
517				 pci_unmap_len(ce, dma_len),
518				 PCI_DMA_FROMDEVICE);
519		dev_kfree_skb(ce->skb);
520		ce->skb = NULL;
521		if (++cidx == q->size)
522			cidx = 0;
523	}
524}
525
526/*
527 * Free RX free list and response queue resources.
528 */
529static void free_rx_resources(struct sge *sge)
530{
531	struct pci_dev *pdev = sge->adapter->pdev;
532	unsigned int size, i;
533
534	if (sge->respQ.entries) {
535		size = sizeof(struct respQ_e) * sge->respQ.size;
536		pci_free_consistent(pdev, size, sge->respQ.entries,
537				    sge->respQ.dma_addr);
538	}
539
540	for (i = 0; i < SGE_FREELQ_N; i++) {
541		struct freelQ *q = &sge->freelQ[i];
542
543		if (q->centries) {
544			free_freelQ_buffers(pdev, q);
545			kfree(q->centries);
546		}
547		if (q->entries) {
548			size = sizeof(struct freelQ_e) * q->size;
549			pci_free_consistent(pdev, size, q->entries,
550					    q->dma_addr);
551		}
552	}
553}
554
555/*
556 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
557 * response queue.
558 */
559static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
560{
561	struct pci_dev *pdev = sge->adapter->pdev;
562	unsigned int size, i;
563
564	for (i = 0; i < SGE_FREELQ_N; i++) {
565		struct freelQ *q = &sge->freelQ[i];
566
567		q->genbit = 1;
568		q->size = p->freelQ_size[i];
569		q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
570		size = sizeof(struct freelQ_e) * q->size;
571		q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
572		if (!q->entries)
573			goto err_no_mem;
574
575		size = sizeof(struct freelQ_ce) * q->size;
576		q->centries = kzalloc(size, GFP_KERNEL);
577		if (!q->centries)
578			goto err_no_mem;
579	}
580
581	/*
582	 * Calculate the buffer sizes for the two free lists.  FL0 accommodates
583	 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
584	 * including all the sk_buff overhead.
585	 *
586	 * Note: For T2 FL0 and FL1 are reversed.
587	 */
588	sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
589		sizeof(struct cpl_rx_data) +
590		sge->freelQ[!sge->jumbo_fl].dma_offset;
591
592		size = (16 * 1024) -
593		    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
594
595	sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
596
597	/*
598	 * Setup which skb recycle Q should be used when recycling buffers from
599	 * each free list.
600	 */
601	sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
602	sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
603
604	sge->respQ.genbit = 1;
605	sge->respQ.size = SGE_RESPQ_E_N;
606	sge->respQ.credits = 0;
607	size = sizeof(struct respQ_e) * sge->respQ.size;
608	sge->respQ.entries =
609		pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
610	if (!sge->respQ.entries)
611		goto err_no_mem;
612	return 0;
613
614err_no_mem:
615	free_rx_resources(sge);
616	return -ENOMEM;
617}
618
619/*
620 * Reclaims n TX descriptors and frees the buffers associated with them.
621 */
622static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
623{
624	struct cmdQ_ce *ce;
625	struct pci_dev *pdev = sge->adapter->pdev;
626	unsigned int cidx = q->cidx;
627
628	q->in_use -= n;
629	ce = &q->centries[cidx];
630	while (n--) {
631		if (likely(pci_unmap_len(ce, dma_len))) {
632			pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
633					 pci_unmap_len(ce, dma_len),
634					 PCI_DMA_TODEVICE);
635			if (q->sop)
636				q->sop = 0;
637		}
638		if (ce->skb) {
639			dev_kfree_skb_any(ce->skb);
640			q->sop = 1;
641		}
642		ce++;
643		if (++cidx == q->size) {
644			cidx = 0;
645			ce = q->centries;
646		}
647	}
648	q->cidx = cidx;
649}
650
651/*
652 * Free TX resources.
653 *
654 * Assumes that SGE is stopped and all interrupts are disabled.
655 */
656static void free_tx_resources(struct sge *sge)
657{
658	struct pci_dev *pdev = sge->adapter->pdev;
659	unsigned int size, i;
660
661	for (i = 0; i < SGE_CMDQ_N; i++) {
662		struct cmdQ *q = &sge->cmdQ[i];
663
664		if (q->centries) {
665			if (q->in_use)
666				free_cmdQ_buffers(sge, q, q->in_use);
667			kfree(q->centries);
668		}
669		if (q->entries) {
670			size = sizeof(struct cmdQ_e) * q->size;
671			pci_free_consistent(pdev, size, q->entries,
672					    q->dma_addr);
673		}
674	}
675}
676
677/*
678 * Allocates basic TX resources, consisting of memory mapped command Qs.
679 */
680static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
681{
682	struct pci_dev *pdev = sge->adapter->pdev;
683	unsigned int size, i;
684
685	for (i = 0; i < SGE_CMDQ_N; i++) {
686		struct cmdQ *q = &sge->cmdQ[i];
687
688		q->genbit = 1;
689		q->sop = 1;
690		q->size = p->cmdQ_size[i];
691		q->in_use = 0;
692		q->status = 0;
693		q->processed = q->cleaned = 0;
694		q->stop_thres = 0;
695		spin_lock_init(&q->lock);
696		size = sizeof(struct cmdQ_e) * q->size;
697		q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
698		if (!q->entries)
699			goto err_no_mem;
700
701		size = sizeof(struct cmdQ_ce) * q->size;
702		q->centries = kzalloc(size, GFP_KERNEL);
703		if (!q->centries)
704			goto err_no_mem;
705	}
706
707	/*
708	 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
709	 * only.  For queue 0 set the stop threshold so we can handle one more
710	 * packet from each port, plus reserve an additional 24 entries for
711	 * Ethernet packets only.  Queue 1 never suspends nor do we reserve
712	 * space for Ethernet packets.
713	 */
714	sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
715		(MAX_SKB_FRAGS + 1);
716	return 0;
717
718err_no_mem:
719	free_tx_resources(sge);
720	return -ENOMEM;
721}
722
723static inline void setup_ring_params(struct adapter *adapter, u64 addr,
724				     u32 size, int base_reg_lo,
725				     int base_reg_hi, int size_reg)
726{
727	writel((u32)addr, adapter->regs + base_reg_lo);
728	writel(addr >> 32, adapter->regs + base_reg_hi);
729	writel(size, adapter->regs + size_reg);
730}
731
732/*
733 * Enable/disable VLAN acceleration.
734 */
735void t1_set_vlan_accel(struct adapter *adapter, int on_off)
736{
737	struct sge *sge = adapter->sge;
738
739	sge->sge_control &= ~F_VLAN_XTRACT;
740	if (on_off)
741		sge->sge_control |= F_VLAN_XTRACT;
742	if (adapter->open_device_map) {
743		writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
744		readl(adapter->regs + A_SG_CONTROL);   /* flush */
745	}
746}
747
748/*
749 * Programs the various SGE registers. However, the engine is not yet enabled,
750 * but sge->sge_control is setup and ready to go.
751 */
752static void configure_sge(struct sge *sge, struct sge_params *p)
753{
754	struct adapter *ap = sge->adapter;
755
756	writel(0, ap->regs + A_SG_CONTROL);
757	setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
758			  A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
759	setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
760			  A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
761	setup_ring_params(ap, sge->freelQ[0].dma_addr,
762			  sge->freelQ[0].size, A_SG_FL0BASELWR,
763			  A_SG_FL0BASEUPR, A_SG_FL0SIZE);
764	setup_ring_params(ap, sge->freelQ[1].dma_addr,
765			  sge->freelQ[1].size, A_SG_FL1BASELWR,
766			  A_SG_FL1BASEUPR, A_SG_FL1SIZE);
767
768	/* The threshold comparison uses <. */
769	writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
770
771	setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
772			  A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
773	writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
774
775	sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
776		F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
777		V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
778		V_RX_PKT_OFFSET(sge->rx_pkt_pad);
779
780#if defined(__BIG_ENDIAN_BITFIELD)
781	sge->sge_control |= F_ENABLE_BIG_ENDIAN;
782#endif
783
784	/* Initialize no-resource timer */
785	sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
786
787	t1_sge_set_coalesce_params(sge, p);
788}
789
790/*
791 * Return the payload capacity of the jumbo free-list buffers.
792 */
793static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
794{
795	return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
796		sge->freelQ[sge->jumbo_fl].dma_offset -
797		sizeof(struct cpl_rx_data);
798}
799
800/*
801 * Frees all SGE related resources and the sge structure itself
802 */
803void t1_sge_destroy(struct sge *sge)
804{
805	int i;
806
807	for_each_port(sge->adapter, i)
808		free_percpu(sge->port_stats[i]);
809
810	kfree(sge->tx_sched);
811	free_tx_resources(sge);
812	free_rx_resources(sge);
813	kfree(sge);
814}
815
816/*
817 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
818 * context Q) until the Q is full or alloc_skb fails.
819 *
820 * It is possible that the generation bits already match, indicating that the
821 * buffer is already valid and nothing needs to be done. This happens when we
822 * copied a received buffer into a new sk_buff during the interrupt processing.
823 *
824 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
825 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
826 * aligned.
827 */
828static void refill_free_list(struct sge *sge, struct freelQ *q)
829{
830	struct pci_dev *pdev = sge->adapter->pdev;
831	struct freelQ_ce *ce = &q->centries[q->pidx];
832	struct freelQ_e *e = &q->entries[q->pidx];
833	unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
834
835	while (q->credits < q->size) {
836		struct sk_buff *skb;
837		dma_addr_t mapping;
838
839		skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
840		if (!skb)
841			break;
842
843		skb_reserve(skb, q->dma_offset);
844		mapping = pci_map_single(pdev, skb->data, dma_len,
845					 PCI_DMA_FROMDEVICE);
846		skb_reserve(skb, sge->rx_pkt_pad);
847
848		ce->skb = skb;
849		pci_unmap_addr_set(ce, dma_addr, mapping);
850		pci_unmap_len_set(ce, dma_len, dma_len);
851		e->addr_lo = (u32)mapping;
852		e->addr_hi = (u64)mapping >> 32;
853		e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
854		wmb();
855		e->gen2 = V_CMD_GEN2(q->genbit);
856
857		e++;
858		ce++;
859		if (++q->pidx == q->size) {
860			q->pidx = 0;
861			q->genbit ^= 1;
862			ce = q->centries;
863			e = q->entries;
864		}
865		q->credits++;
866	}
867}
868
869/*
870 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
871 * of both rings, we go into 'few interrupt mode' in order to give the system
872 * time to free up resources.
873 */
874static void freelQs_empty(struct sge *sge)
875{
876	struct adapter *adapter = sge->adapter;
877	u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
878	u32 irqholdoff_reg;
879
880	refill_free_list(sge, &sge->freelQ[0]);
881	refill_free_list(sge, &sge->freelQ[1]);
882
883	if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
884	    sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
885		irq_reg |= F_FL_EXHAUSTED;
886		irqholdoff_reg = sge->fixed_intrtimer;
887	} else {
888		/* Clear the F_FL_EXHAUSTED interrupts for now */
889		irq_reg &= ~F_FL_EXHAUSTED;
890		irqholdoff_reg = sge->intrtimer_nres;
891	}
892	writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
893	writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
894
895	/* We reenable the Qs to force a freelist GTS interrupt later */
896	doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
897}
898
899#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
900#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
901#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
902			F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
903
904/*
905 * Disable SGE Interrupts
906 */
907void t1_sge_intr_disable(struct sge *sge)
908{
909	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
910
911	writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
912	writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
913}
914
915/*
916 * Enable SGE interrupts.
917 */
918void t1_sge_intr_enable(struct sge *sge)
919{
920	u32 en = SGE_INT_ENABLE;
921	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
922
923	if (sge->adapter->flags & TSO_CAPABLE)
924		en &= ~F_PACKET_TOO_BIG;
925	writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
926	writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
927}
928
929/*
930 * Clear SGE interrupts.
931 */
932void t1_sge_intr_clear(struct sge *sge)
933{
934	writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
935	writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
936}
937
938/*
939 * SGE 'Error' interrupt handler
940 */
941int t1_sge_intr_error_handler(struct sge *sge)
942{
943	struct adapter *adapter = sge->adapter;
944	u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
945
946	if (adapter->flags & TSO_CAPABLE)
947		cause &= ~F_PACKET_TOO_BIG;
948	if (cause & F_RESPQ_EXHAUSTED)
949		sge->stats.respQ_empty++;
950	if (cause & F_RESPQ_OVERFLOW) {
951		sge->stats.respQ_overflow++;
952		CH_ALERT("%s: SGE response queue overflow\n",
953			 adapter->name);
954	}
955	if (cause & F_FL_EXHAUSTED) {
956		sge->stats.freelistQ_empty++;
957		freelQs_empty(sge);
958	}
959	if (cause & F_PACKET_TOO_BIG) {
960		sge->stats.pkt_too_big++;
961		CH_ALERT("%s: SGE max packet size exceeded\n",
962			 adapter->name);
963	}
964	if (cause & F_PACKET_MISMATCH) {
965		sge->stats.pkt_mismatch++;
966		CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
967	}
968	if (cause & SGE_INT_FATAL)
969		t1_fatal_err(adapter);
970
971	writel(cause, adapter->regs + A_SG_INT_CAUSE);
972	return 0;
973}
974
975const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
976{
977	return &sge->stats;
978}
979
980void t1_sge_get_port_stats(const struct sge *sge, int port,
981			   struct sge_port_stats *ss)
982{
983	int cpu;
984
985	memset(ss, 0, sizeof(*ss));
986	for_each_possible_cpu(cpu) {
987		struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
988
989		ss->rx_packets += st->rx_packets;
990		ss->rx_cso_good += st->rx_cso_good;
991		ss->tx_packets += st->tx_packets;
992		ss->tx_cso += st->tx_cso;
993		ss->tx_tso += st->tx_tso;
994		ss->vlan_xtract += st->vlan_xtract;
995		ss->vlan_insert += st->vlan_insert;
996	}
997}
998
999/**
1000 *	recycle_fl_buf - recycle a free list buffer
1001 *	@fl: the free list
1002 *	@idx: index of buffer to recycle
1003 *
1004 *	Recycles the specified buffer on the given free list by adding it at
1005 *	the next available slot on the list.
1006 */
1007static void recycle_fl_buf(struct freelQ *fl, int idx)
1008{
1009	struct freelQ_e *from = &fl->entries[idx];
1010	struct freelQ_e *to = &fl->entries[fl->pidx];
1011
1012	fl->centries[fl->pidx] = fl->centries[idx];
1013	to->addr_lo = from->addr_lo;
1014	to->addr_hi = from->addr_hi;
1015	to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1016	wmb();
1017	to->gen2 = V_CMD_GEN2(fl->genbit);
1018	fl->credits++;
1019
1020	if (++fl->pidx == fl->size) {
1021		fl->pidx = 0;
1022		fl->genbit ^= 1;
1023	}
1024}
1025
1026static int copybreak __read_mostly = 256;
1027module_param(copybreak, int, 0);
1028MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1029
1030/**
1031 *	get_packet - return the next ingress packet buffer
1032 *	@pdev: the PCI device that received the packet
1033 *	@fl: the SGE free list holding the packet
1034 *	@len: the actual packet length, excluding any SGE padding
1035 *	@dma_pad: padding at beginning of buffer left by SGE DMA
1036 *	@skb_pad: padding to be used if the packet is copied
1037 *	@copy_thres: length threshold under which a packet should be copied
1038 *	@drop_thres: # of remaining buffers before we start dropping packets
1039 *
1040 *	Get the next packet from a free list and complete setup of the
1041 *	sk_buff.  If the packet is small we make a copy and recycle the
1042 *	original buffer, otherwise we use the original buffer itself.  If a
1043 *	positive drop threshold is supplied packets are dropped and their
1044 *	buffers recycled if (a) the number of remaining buffers is under the
1045 *	threshold and the packet is too big to copy, or (b) the packet should
1046 *	be copied but there is no memory for the copy.
1047 */
1048static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1049					 struct freelQ *fl, unsigned int len)
1050{
1051	struct sk_buff *skb;
1052	const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1053
1054	if (len < copybreak) {
1055		skb = alloc_skb(len + 2, GFP_ATOMIC);
1056		if (!skb)
1057			goto use_orig_buf;
1058
1059		skb_reserve(skb, 2);	/* align IP header */
1060		skb_put(skb, len);
1061		pci_dma_sync_single_for_cpu(pdev,
1062					    pci_unmap_addr(ce, dma_addr),
1063					    pci_unmap_len(ce, dma_len),
1064					    PCI_DMA_FROMDEVICE);
1065		skb_copy_from_linear_data(ce->skb, skb->data, len);
1066		pci_dma_sync_single_for_device(pdev,
1067					       pci_unmap_addr(ce, dma_addr),
1068					       pci_unmap_len(ce, dma_len),
1069					       PCI_DMA_FROMDEVICE);
1070		recycle_fl_buf(fl, fl->cidx);
1071		return skb;
1072	}
1073
1074use_orig_buf:
1075	if (fl->credits < 2) {
1076		recycle_fl_buf(fl, fl->cidx);
1077		return NULL;
1078	}
1079
1080	pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1081			 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1082	skb = ce->skb;
1083	prefetch(skb->data);
1084
1085	skb_put(skb, len);
1086	return skb;
1087}
1088
1089/**
1090 *	unexpected_offload - handle an unexpected offload packet
1091 *	@adapter: the adapter
1092 *	@fl: the free list that received the packet
1093 *
1094 *	Called when we receive an unexpected offload packet (e.g., the TOE
1095 *	function is disabled or the card is a NIC).  Prints a message and
1096 *	recycles the buffer.
1097 */
1098static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1099{
1100	struct freelQ_ce *ce = &fl->centries[fl->cidx];
1101	struct sk_buff *skb = ce->skb;
1102
1103	pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1104			    pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1105	CH_ERR("%s: unexpected offload packet, cmd %u\n",
1106	       adapter->name, *skb->data);
1107	recycle_fl_buf(fl, fl->cidx);
1108}
1109
1110/*
1111 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1112 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1113 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1114 * Note that the *_large_page_tx_descs stuff will be optimized out when
1115 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1116 *
1117 * compute_large_page_descs() computes how many additional descriptors are
1118 * required to break down the stack's request.
1119 */
1120static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1121{
1122	unsigned int count = 0;
1123
1124	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1125		unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1126		unsigned int i, len = skb->len - skb->data_len;
1127		while (len > SGE_TX_DESC_MAX_PLEN) {
1128			count++;
1129			len -= SGE_TX_DESC_MAX_PLEN;
1130		}
1131		for (i = 0; nfrags--; i++) {
1132			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133			len = frag->size;
1134			while (len > SGE_TX_DESC_MAX_PLEN) {
1135				count++;
1136				len -= SGE_TX_DESC_MAX_PLEN;
1137			}
1138		}
1139	}
1140	return count;
1141}
1142
1143/*
1144 * Write a cmdQ entry.
1145 *
1146 * Since this function writes the 'flags' field, it must not be used to
1147 * write the first cmdQ entry.
1148 */
1149static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1150				 unsigned int len, unsigned int gen,
1151				 unsigned int eop)
1152{
1153	if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1154		BUG();
1155	e->addr_lo = (u32)mapping;
1156	e->addr_hi = (u64)mapping >> 32;
1157	e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1158	e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1159}
1160
1161/*
1162 * See comment for previous function.
1163 *
1164 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1165 * *desc_len exceeds HW's capability.
1166 */
1167static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1168						     struct cmdQ_e **e,
1169						     struct cmdQ_ce **ce,
1170						     unsigned int *gen,
1171						     dma_addr_t *desc_mapping,
1172						     unsigned int *desc_len,
1173						     unsigned int nfrags,
1174						     struct cmdQ *q)
1175{
1176	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1177		struct cmdQ_e *e1 = *e;
1178		struct cmdQ_ce *ce1 = *ce;
1179
1180		while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1181			*desc_len -= SGE_TX_DESC_MAX_PLEN;
1182			write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1183				      *gen, nfrags == 0 && *desc_len == 0);
1184			ce1->skb = NULL;
1185			pci_unmap_len_set(ce1, dma_len, 0);
1186			*desc_mapping += SGE_TX_DESC_MAX_PLEN;
1187			if (*desc_len) {
1188				ce1++;
1189				e1++;
1190				if (++pidx == q->size) {
1191					pidx = 0;
1192					*gen ^= 1;
1193					ce1 = q->centries;
1194					e1 = q->entries;
1195				}
1196			}
1197		}
1198		*e = e1;
1199		*ce = ce1;
1200	}
1201	return pidx;
1202}
1203
1204/*
1205 * Write the command descriptors to transmit the given skb starting at
1206 * descriptor pidx with the given generation.
1207 */
1208static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1209				  unsigned int pidx, unsigned int gen,
1210				  struct cmdQ *q)
1211{
1212	dma_addr_t mapping, desc_mapping;
1213	struct cmdQ_e *e, *e1;
1214	struct cmdQ_ce *ce;
1215	unsigned int i, flags, first_desc_len, desc_len,
1216	    nfrags = skb_shinfo(skb)->nr_frags;
1217
1218	e = e1 = &q->entries[pidx];
1219	ce = &q->centries[pidx];
1220
1221	mapping = pci_map_single(adapter->pdev, skb->data,
1222				skb->len - skb->data_len, PCI_DMA_TODEVICE);
1223
1224	desc_mapping = mapping;
1225	desc_len = skb->len - skb->data_len;
1226
1227	flags = F_CMD_DATAVALID | F_CMD_SOP |
1228	    V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1229	    V_CMD_GEN2(gen);
1230	first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1231	    desc_len : SGE_TX_DESC_MAX_PLEN;
1232	e->addr_lo = (u32)desc_mapping;
1233	e->addr_hi = (u64)desc_mapping >> 32;
1234	e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1235	ce->skb = NULL;
1236	pci_unmap_len_set(ce, dma_len, 0);
1237
1238	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1239	    desc_len > SGE_TX_DESC_MAX_PLEN) {
1240		desc_mapping += first_desc_len;
1241		desc_len -= first_desc_len;
1242		e1++;
1243		ce++;
1244		if (++pidx == q->size) {
1245			pidx = 0;
1246			gen ^= 1;
1247			e1 = q->entries;
1248			ce = q->centries;
1249		}
1250		pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1251						 &desc_mapping, &desc_len,
1252						 nfrags, q);
1253
1254		if (likely(desc_len))
1255			write_tx_desc(e1, desc_mapping, desc_len, gen,
1256				      nfrags == 0);
1257	}
1258
1259	ce->skb = NULL;
1260	pci_unmap_addr_set(ce, dma_addr, mapping);
1261	pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
1262
1263	for (i = 0; nfrags--; i++) {
1264		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1265		e1++;
1266		ce++;
1267		if (++pidx == q->size) {
1268			pidx = 0;
1269			gen ^= 1;
1270			e1 = q->entries;
1271			ce = q->centries;
1272		}
1273
1274		mapping = pci_map_page(adapter->pdev, frag->page,
1275				       frag->page_offset, frag->size,
1276				       PCI_DMA_TODEVICE);
1277		desc_mapping = mapping;
1278		desc_len = frag->size;
1279
1280		pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1281						 &desc_mapping, &desc_len,
1282						 nfrags, q);
1283		if (likely(desc_len))
1284			write_tx_desc(e1, desc_mapping, desc_len, gen,
1285				      nfrags == 0);
1286		ce->skb = NULL;
1287		pci_unmap_addr_set(ce, dma_addr, mapping);
1288		pci_unmap_len_set(ce, dma_len, frag->size);
1289	}
1290	ce->skb = skb;
1291	wmb();
1292	e->flags = flags;
1293}
1294
1295/*
1296 * Clean up completed Tx buffers.
1297 */
1298static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1299{
1300	unsigned int reclaim = q->processed - q->cleaned;
1301
1302	if (reclaim) {
1303		pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1304			 q->processed, q->cleaned);
1305		free_cmdQ_buffers(sge, q, reclaim);
1306		q->cleaned += reclaim;
1307	}
1308}
1309
1310/*
1311 * Called from tasklet. Checks the scheduler for any
1312 * pending skbs that can be sent.
1313 */
1314static void restart_sched(unsigned long arg)
1315{
1316	struct sge *sge = (struct sge *) arg;
1317	struct adapter *adapter = sge->adapter;
1318	struct cmdQ *q = &sge->cmdQ[0];
1319	struct sk_buff *skb;
1320	unsigned int credits, queued_skb = 0;
1321
1322	spin_lock(&q->lock);
1323	reclaim_completed_tx(sge, q);
1324
1325	credits = q->size - q->in_use;
1326	pr_debug("restart_sched credits=%d\n", credits);
1327	while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1328		unsigned int genbit, pidx, count;
1329	        count = 1 + skb_shinfo(skb)->nr_frags;
1330		count += compute_large_page_tx_descs(skb);
1331		q->in_use += count;
1332		genbit = q->genbit;
1333		pidx = q->pidx;
1334		q->pidx += count;
1335		if (q->pidx >= q->size) {
1336			q->pidx -= q->size;
1337			q->genbit ^= 1;
1338		}
1339		write_tx_descs(adapter, skb, pidx, genbit, q);
1340	        credits = q->size - q->in_use;
1341		queued_skb = 1;
1342	}
1343
1344	if (queued_skb) {
1345		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1347			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1349		}
1350	}
1351	spin_unlock(&q->lock);
1352}
1353
1354/**
1355 *	sge_rx - process an ingress ethernet packet
1356 *	@sge: the sge structure
1357 *	@fl: the free list that contains the packet buffer
1358 *	@len: the packet length
1359 *
1360 *	Process an ingress ethernet pakcet and deliver it to the stack.
1361 */
1362static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1363{
1364	struct sk_buff *skb;
1365	const struct cpl_rx_pkt *p;
1366	struct adapter *adapter = sge->adapter;
1367	struct sge_port_stats *st;
1368
1369	skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1370	if (unlikely(!skb)) {
1371		sge->stats.rx_drops++;
1372		return;
1373	}
1374
1375	p = (const struct cpl_rx_pkt *) skb->data;
1376	if (p->iff >= adapter->params.nports) {
1377		kfree_skb(skb);
1378		return;
1379	}
1380	__skb_pull(skb, sizeof(*p));
1381
1382	skb->dev->last_rx = jiffies;
1383	st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1384	st->rx_packets++;
1385
1386	skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
1387	if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1388	    skb->protocol == htons(ETH_P_IP) &&
1389	    (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1390		++st->rx_cso_good;
1391		skb->ip_summed = CHECKSUM_UNNECESSARY;
1392	} else
1393		skb->ip_summed = CHECKSUM_NONE;
1394
1395	if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
1396		st->vlan_xtract++;
1397#ifdef CONFIG_CHELSIO_T1_NAPI
1398			vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1399						 ntohs(p->vlan));
1400#else
1401			vlan_hwaccel_rx(skb, adapter->vlan_grp,
1402					ntohs(p->vlan));
1403#endif
1404	} else {
1405#ifdef CONFIG_CHELSIO_T1_NAPI
1406		netif_receive_skb(skb);
1407#else
1408		netif_rx(skb);
1409#endif
1410	}
1411}
1412
1413/*
1414 * Returns true if a command queue has enough available descriptors that
1415 * we can resume Tx operation after temporarily disabling its packet queue.
1416 */
1417static inline int enough_free_Tx_descs(const struct cmdQ *q)
1418{
1419	unsigned int r = q->processed - q->cleaned;
1420
1421	return q->in_use - r < (q->size >> 1);
1422}
1423
1424/*
1425 * Called when sufficient space has become available in the SGE command queues
1426 * after the Tx packet schedulers have been suspended to restart the Tx path.
1427 */
1428static void restart_tx_queues(struct sge *sge)
1429{
1430	struct adapter *adap = sge->adapter;
1431	int i;
1432
1433	if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1434		return;
1435
1436	for_each_port(adap, i) {
1437		struct net_device *nd = adap->port[i].dev;
1438
1439		if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1440		    netif_running(nd)) {
1441			sge->stats.cmdQ_restarted[2]++;
1442			netif_wake_queue(nd);
1443		}
1444	}
1445}
1446
1447/*
1448 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1449 * information.
1450 */
1451static unsigned int update_tx_info(struct adapter *adapter,
1452					  unsigned int flags,
1453					  unsigned int pr0)
1454{
1455	struct sge *sge = adapter->sge;
1456	struct cmdQ *cmdq = &sge->cmdQ[0];
1457
1458	cmdq->processed += pr0;
1459	if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1460		freelQs_empty(sge);
1461		flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1462	}
1463	if (flags & F_CMDQ0_ENABLE) {
1464		clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1465
1466		if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1467		    !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1468			set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1469			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1470		}
1471		if (sge->tx_sched)
1472			tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1473
1474		flags &= ~F_CMDQ0_ENABLE;
1475	}
1476
1477	if (unlikely(sge->stopped_tx_queues != 0))
1478		restart_tx_queues(sge);
1479
1480	return flags;
1481}
1482
1483/*
1484 * Process SGE responses, up to the supplied budget.  Returns the number of
1485 * responses processed.  A negative budget is effectively unlimited.
1486 */
1487static int process_responses(struct adapter *adapter, int budget)
1488{
1489	struct sge *sge = adapter->sge;
1490	struct respQ *q = &sge->respQ;
1491	struct respQ_e *e = &q->entries[q->cidx];
1492	int done = 0;
1493	unsigned int flags = 0;
1494	unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1495
1496	while (done < budget && e->GenerationBit == q->genbit) {
1497		flags |= e->Qsleeping;
1498
1499		cmdq_processed[0] += e->Cmdq0CreditReturn;
1500		cmdq_processed[1] += e->Cmdq1CreditReturn;
1501
1502		/* We batch updates to the TX side to avoid cacheline
1503		 * ping-pong of TX state information on MP where the sender
1504		 * might run on a different CPU than this function...
1505		 */
1506		if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1507			flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1508			cmdq_processed[0] = 0;
1509		}
1510
1511		if (unlikely(cmdq_processed[1] > 16)) {
1512			sge->cmdQ[1].processed += cmdq_processed[1];
1513			cmdq_processed[1] = 0;
1514		}
1515
1516		if (likely(e->DataValid)) {
1517			struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1518
1519			BUG_ON(!e->Sop || !e->Eop);
1520			if (unlikely(e->Offload))
1521				unexpected_offload(adapter, fl);
1522			else
1523				sge_rx(sge, fl, e->BufferLength);
1524
1525			++done;
1526
1527			/*
1528			 * Note: this depends on each packet consuming a
1529			 * single free-list buffer; cf. the BUG above.
1530			 */
1531			if (++fl->cidx == fl->size)
1532				fl->cidx = 0;
1533			prefetch(fl->centries[fl->cidx].skb);
1534
1535			if (unlikely(--fl->credits <
1536				     fl->size - SGE_FREEL_REFILL_THRESH))
1537				refill_free_list(sge, fl);
1538		} else
1539			sge->stats.pure_rsps++;
1540
1541		e++;
1542		if (unlikely(++q->cidx == q->size)) {
1543			q->cidx = 0;
1544			q->genbit ^= 1;
1545			e = q->entries;
1546		}
1547		prefetch(e);
1548
1549		if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1550			writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1551			q->credits = 0;
1552		}
1553	}
1554
1555	flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1556	sge->cmdQ[1].processed += cmdq_processed[1];
1557
1558	return done;
1559}
1560
1561static inline int responses_pending(const struct adapter *adapter)
1562{
1563	const struct respQ *Q = &adapter->sge->respQ;
1564	const struct respQ_e *e = &Q->entries[Q->cidx];
1565
1566	return (e->GenerationBit == Q->genbit);
1567}
1568
1569#ifdef CONFIG_CHELSIO_T1_NAPI
1570/*
1571 * A simpler version of process_responses() that handles only pure (i.e.,
1572 * non data-carrying) responses.  Such respones are too light-weight to justify
1573 * calling a softirq when using NAPI, so we handle them specially in hard
1574 * interrupt context.  The function is called with a pointer to a response,
1575 * which the caller must ensure is a valid pure response.  Returns 1 if it
1576 * encounters a valid data-carrying response, 0 otherwise.
1577 */
1578static int process_pure_responses(struct adapter *adapter)
1579{
1580	struct sge *sge = adapter->sge;
1581	struct respQ *q = &sge->respQ;
1582	struct respQ_e *e = &q->entries[q->cidx];
1583	const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1584	unsigned int flags = 0;
1585	unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1586
1587	prefetch(fl->centries[fl->cidx].skb);
1588	if (e->DataValid)
1589		return 1;
1590
1591	do {
1592		flags |= e->Qsleeping;
1593
1594		cmdq_processed[0] += e->Cmdq0CreditReturn;
1595		cmdq_processed[1] += e->Cmdq1CreditReturn;
1596
1597		e++;
1598		if (unlikely(++q->cidx == q->size)) {
1599			q->cidx = 0;
1600			q->genbit ^= 1;
1601			e = q->entries;
1602		}
1603		prefetch(e);
1604
1605		if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1606			writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1607			q->credits = 0;
1608		}
1609		sge->stats.pure_rsps++;
1610	} while (e->GenerationBit == q->genbit && !e->DataValid);
1611
1612	flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1613	sge->cmdQ[1].processed += cmdq_processed[1];
1614
1615	return e->GenerationBit == q->genbit;
1616}
1617
1618/*
1619 * Handler for new data events when using NAPI.  This does not need any locking
1620 * or protection from interrupts as data interrupts are off at this point and
1621 * other adapter interrupts do not interfere.
1622 */
1623int t1_poll(struct net_device *dev, int *budget)
1624{
1625	struct adapter *adapter = dev->priv;
1626	int work_done;
1627
1628	work_done = process_responses(adapter, min(*budget, dev->quota));
1629	*budget -= work_done;
1630	dev->quota -= work_done;
1631
1632	if (unlikely(responses_pending(adapter)))
1633		return 1;
1634
1635	netif_rx_complete(dev);
1636	writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1637
1638	return 0;
1639
1640}
1641
1642/*
1643 * NAPI version of the main interrupt handler.
1644 */
1645irqreturn_t t1_interrupt(int irq, void *data)
1646{
1647	struct adapter *adapter = data;
1648	struct sge *sge = adapter->sge;
1649	int handled;
1650
1651	if (likely(responses_pending(adapter))) {
1652		struct net_device *dev = sge->netdev;
1653
1654		writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1655
1656		if (__netif_rx_schedule_prep(dev)) {
1657			if (process_pure_responses(adapter))
1658				__netif_rx_schedule(dev);
1659			else {
1660				/* no data, no NAPI needed */
1661				writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1662				netif_poll_enable(dev);	/* undo schedule_prep */
1663			}
1664		}
1665		return IRQ_HANDLED;
1666	}
1667
1668	spin_lock(&adapter->async_lock);
1669	handled = t1_slow_intr_handler(adapter);
1670	spin_unlock(&adapter->async_lock);
1671
1672	if (!handled)
1673		sge->stats.unhandled_irqs++;
1674
1675	return IRQ_RETVAL(handled != 0);
1676}
1677
1678#else
1679/*
1680 * Main interrupt handler, optimized assuming that we took a 'DATA'
1681 * interrupt.
1682 *
1683 * 1. Clear the interrupt
1684 * 2. Loop while we find valid descriptors and process them; accumulate
1685 *      information that can be processed after the loop
1686 * 3. Tell the SGE at which index we stopped processing descriptors
1687 * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1688 *      outstanding TX buffers waiting, replenish RX buffers, potentially
1689 *      reenable upper layers if they were turned off due to lack of TX
1690 *      resources which are available again.
1691 * 5. If we took an interrupt, but no valid respQ descriptors was found we
1692 *      let the slow_intr_handler run and do error handling.
1693 */
1694irqreturn_t t1_interrupt(int irq, void *cookie)
1695{
1696	int work_done;
1697	struct adapter *adapter = cookie;
1698	struct respQ *Q = &adapter->sge->respQ;
1699
1700	spin_lock(&adapter->async_lock);
1701
1702	writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1703
1704	if (likely(responses_pending(adapter)))
1705		work_done = process_responses(adapter, -1);
1706	else
1707		work_done = t1_slow_intr_handler(adapter);
1708
1709	/*
1710	 * The unconditional clearing of the PL_CAUSE above may have raced
1711	 * with DMA completion and the corresponding generation of a response
1712	 * to cause us to miss the resulting data interrupt.  The next write
1713	 * is also unconditional to recover the missed interrupt and render
1714	 * this race harmless.
1715	 */
1716	writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1717
1718	if (!work_done)
1719		adapter->sge->stats.unhandled_irqs++;
1720	spin_unlock(&adapter->async_lock);
1721	return IRQ_RETVAL(work_done != 0);
1722}
1723#endif
1724
1725/*
1726 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1727 *
1728 * The code figures out how many entries the sk_buff will require in the
1729 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1730 * has complete. Then, it doesn't access the global structure anymore, but
1731 * uses the corresponding fields on the stack. In conjuction with a spinlock
1732 * around that code, we can make the function reentrant without holding the
1733 * lock when we actually enqueue (which might be expensive, especially on
1734 * architectures with IO MMUs).
1735 *
1736 * This runs with softirqs disabled.
1737 */
1738static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1739		     unsigned int qid, struct net_device *dev)
1740{
1741	struct sge *sge = adapter->sge;
1742	struct cmdQ *q = &sge->cmdQ[qid];
1743	unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1744
1745	if (!spin_trylock(&q->lock))
1746		return NETDEV_TX_LOCKED;
1747
1748	reclaim_completed_tx(sge, q);
1749
1750	pidx = q->pidx;
1751	credits = q->size - q->in_use;
1752	count = 1 + skb_shinfo(skb)->nr_frags;
1753	count += compute_large_page_tx_descs(skb);
1754
1755	/* Ethernet packet */
1756	if (unlikely(credits < count)) {
1757		if (!netif_queue_stopped(dev)) {
1758			netif_stop_queue(dev);
1759			set_bit(dev->if_port, &sge->stopped_tx_queues);
1760			sge->stats.cmdQ_full[2]++;
1761			CH_ERR("%s: Tx ring full while queue awake!\n",
1762			       adapter->name);
1763		}
1764		spin_unlock(&q->lock);
1765		return NETDEV_TX_BUSY;
1766	}
1767
1768	if (unlikely(credits - count < q->stop_thres)) {
1769		netif_stop_queue(dev);
1770		set_bit(dev->if_port, &sge->stopped_tx_queues);
1771		sge->stats.cmdQ_full[2]++;
1772	}
1773
1774	/* T204 cmdQ0 skbs that are destined for a certain port have to go
1775	 * through the scheduler.
1776	 */
1777	if (sge->tx_sched && !qid && skb->dev) {
1778use_sched:
1779		use_sched_skb = 1;
1780		/* Note that the scheduler might return a different skb than
1781		 * the one passed in.
1782		 */
1783		skb = sched_skb(sge, skb, credits);
1784		if (!skb) {
1785			spin_unlock(&q->lock);
1786			return NETDEV_TX_OK;
1787		}
1788		pidx = q->pidx;
1789		count = 1 + skb_shinfo(skb)->nr_frags;
1790		count += compute_large_page_tx_descs(skb);
1791	}
1792
1793	q->in_use += count;
1794	genbit = q->genbit;
1795	pidx = q->pidx;
1796	q->pidx += count;
1797	if (q->pidx >= q->size) {
1798		q->pidx -= q->size;
1799		q->genbit ^= 1;
1800	}
1801	spin_unlock(&q->lock);
1802
1803	write_tx_descs(adapter, skb, pidx, genbit, q);
1804
1805	/*
1806	 * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
1807	 * the doorbell if the Q is asleep. There is a natural race, where
1808	 * the hardware is going to sleep just after we checked, however,
1809	 * then the interrupt handler will detect the outstanding TX packet
1810	 * and ring the doorbell for us.
1811	 */
1812	if (qid)
1813		doorbell_pio(adapter, F_CMDQ1_ENABLE);
1814	else {
1815		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1816		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1817			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1818			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1819		}
1820	}
1821
1822	if (use_sched_skb) {
1823		if (spin_trylock(&q->lock)) {
1824			credits = q->size - q->in_use;
1825			skb = NULL;
1826			goto use_sched;
1827		}
1828	}
1829	return NETDEV_TX_OK;
1830}
1831
1832#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1833
1834/*
1835 *	eth_hdr_len - return the length of an Ethernet header
1836 *	@data: pointer to the start of the Ethernet header
1837 *
1838 *	Returns the length of an Ethernet header, including optional VLAN tag.
1839 */
1840static inline int eth_hdr_len(const void *data)
1841{
1842	const struct ethhdr *e = data;
1843
1844	return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1845}
1846
1847/*
1848 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1849 */
1850int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1851{
1852	struct adapter *adapter = dev->priv;
1853	struct sge *sge = adapter->sge;
1854	struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], smp_processor_id());
1855	struct cpl_tx_pkt *cpl;
1856	struct sk_buff *orig_skb = skb;
1857	int ret;
1858
1859	if (skb->protocol == htons(ETH_P_CPL5))
1860		goto send;
1861
1862	if (skb_shinfo(skb)->gso_size) {
1863		int eth_type;
1864		struct cpl_tx_pkt_lso *hdr;
1865
1866		++st->tx_tso;
1867
1868		eth_type = skb_network_offset(skb) == ETH_HLEN ?
1869			CPL_ETH_II : CPL_ETH_II_VLAN;
1870
1871		hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1872		hdr->opcode = CPL_TX_PKT_LSO;
1873		hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1874		hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1875		hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1876		hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1877							  skb_shinfo(skb)->gso_size));
1878		hdr->len = htonl(skb->len - sizeof(*hdr));
1879		cpl = (struct cpl_tx_pkt *)hdr;
1880	} else {
1881		/*
1882		 * Packets shorter than ETH_HLEN can break the MAC, drop them
1883		 * early.  Also, we may get oversized packets because some
1884		 * parts of the kernel don't handle our unusual hard_header_len
1885		 * right, drop those too.
1886		 */
1887		if (unlikely(skb->len < ETH_HLEN ||
1888			     skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1889			pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1890				 skb->len, eth_hdr_len(skb->data), dev->mtu);
1891			dev_kfree_skb_any(skb);
1892			return NETDEV_TX_OK;
1893		}
1894
1895		/*
1896		 * We are using a non-standard hard_header_len and some kernel
1897		 * components, such as pktgen, do not handle it right.
1898		 * Complain when this happens but try to fix things up.
1899		 */
1900		if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1901			pr_debug("%s: headroom %d header_len %d\n", dev->name,
1902				 skb_headroom(skb), dev->hard_header_len);
1903
1904			if (net_ratelimit())
1905				printk(KERN_ERR "%s: inadequate headroom in "
1906				       "Tx packet\n", dev->name);
1907			skb = skb_realloc_headroom(skb, sizeof(*cpl));
1908			dev_kfree_skb_any(orig_skb);
1909			if (!skb)
1910				return NETDEV_TX_OK;
1911		}
1912
1913		if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
1914		    skb->ip_summed == CHECKSUM_PARTIAL &&
1915		    ip_hdr(skb)->protocol == IPPROTO_UDP) {
1916			if (unlikely(skb_checksum_help(skb))) {
1917				pr_debug("%s: unable to do udp checksum\n", dev->name);
1918				dev_kfree_skb_any(skb);
1919				return NETDEV_TX_OK;
1920			}
1921		}
1922
1923		/* Hmmm, assuming to catch the gratious arp... and we'll use
1924		 * it to flush out stuck espi packets...
1925		 */
1926		if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1927			if (skb->protocol == htons(ETH_P_ARP) &&
1928			    arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1929				adapter->sge->espibug_skb[dev->if_port] = skb;
1930				/* We want to re-use this skb later. We
1931				 * simply bump the reference count and it
1932				 * will not be freed...
1933				 */
1934				skb = skb_get(skb);
1935			}
1936		}
1937
1938		cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1939		cpl->opcode = CPL_TX_PKT;
1940		cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
1941		cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1942		/* the length field isn't used so don't bother setting it */
1943
1944		st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1945	}
1946	cpl->iff = dev->if_port;
1947
1948#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1949	if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1950		cpl->vlan_valid = 1;
1951		cpl->vlan = htons(vlan_tx_tag_get(skb));
1952		st->vlan_insert++;
1953	} else
1954#endif
1955		cpl->vlan_valid = 0;
1956
1957send:
1958	st->tx_packets++;
1959	dev->trans_start = jiffies;
1960	ret = t1_sge_tx(skb, adapter, 0, dev);
1961
1962	/* If transmit busy, and we reallocated skb's due to headroom limit,
1963	 * then silently discard to avoid leak.
1964	 */
1965	if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1966		dev_kfree_skb_any(skb);
1967		ret = NETDEV_TX_OK;
1968	}
1969	return ret;
1970}
1971
1972/*
1973 * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
1974 */
1975static void sge_tx_reclaim_cb(unsigned long data)
1976{
1977	int i;
1978	struct sge *sge = (struct sge *)data;
1979
1980	for (i = 0; i < SGE_CMDQ_N; ++i) {
1981		struct cmdQ *q = &sge->cmdQ[i];
1982
1983		if (!spin_trylock(&q->lock))
1984			continue;
1985
1986		reclaim_completed_tx(sge, q);
1987		if (i == 0 && q->in_use) {    /* flush pending credits */
1988			writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1989		}
1990		spin_unlock(&q->lock);
1991	}
1992	mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1993}
1994
1995/*
1996 * Propagate changes of the SGE coalescing parameters to the HW.
1997 */
1998int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1999{
2000	sge->fixed_intrtimer = p->rx_coalesce_usecs *
2001		core_ticks_per_usec(sge->adapter);
2002	writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
2003	return 0;
2004}
2005
2006/*
2007 * Allocates both RX and TX resources and configures the SGE. However,
2008 * the hardware is not enabled yet.
2009 */
2010int t1_sge_configure(struct sge *sge, struct sge_params *p)
2011{
2012	if (alloc_rx_resources(sge, p))
2013		return -ENOMEM;
2014	if (alloc_tx_resources(sge, p)) {
2015		free_rx_resources(sge);
2016		return -ENOMEM;
2017	}
2018	configure_sge(sge, p);
2019
2020	/*
2021	 * Now that we have sized the free lists calculate the payload
2022	 * capacity of the large buffers.  Other parts of the driver use
2023	 * this to set the max offload coalescing size so that RX packets
2024	 * do not overflow our large buffers.
2025	 */
2026	p->large_buf_capacity = jumbo_payload_capacity(sge);
2027	return 0;
2028}
2029
2030/*
2031 * Disables the DMA engine.
2032 */
2033void t1_sge_stop(struct sge *sge)
2034{
2035	int i;
2036	writel(0, sge->adapter->regs + A_SG_CONTROL);
2037	readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2038
2039	if (is_T2(sge->adapter))
2040		del_timer_sync(&sge->espibug_timer);
2041
2042	del_timer_sync(&sge->tx_reclaim_timer);
2043	if (sge->tx_sched)
2044		tx_sched_stop(sge);
2045
2046	for (i = 0; i < MAX_NPORTS; i++)
2047		if (sge->espibug_skb[i])
2048			kfree_skb(sge->espibug_skb[i]);
2049}
2050
2051/*
2052 * Enables the DMA engine.
2053 */
2054void t1_sge_start(struct sge *sge)
2055{
2056	refill_free_list(sge, &sge->freelQ[0]);
2057	refill_free_list(sge, &sge->freelQ[1]);
2058
2059	writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2060	doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
2061	readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2062
2063	mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2064
2065	if (is_T2(sge->adapter))
2066		mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2067}
2068
2069/*
2070 * Callback for the T2 ESPI 'stuck packet feature' workaorund
2071 */
2072static void espibug_workaround_t204(unsigned long data)
2073{
2074	struct adapter *adapter = (struct adapter *)data;
2075	struct sge *sge = adapter->sge;
2076	unsigned int nports = adapter->params.nports;
2077	u32 seop[MAX_NPORTS];
2078
2079	if (adapter->open_device_map & PORT_MASK) {
2080		int i;
2081
2082		if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2083			return;
2084
2085		for (i = 0; i < nports; i++) {
2086			struct sk_buff *skb = sge->espibug_skb[i];
2087
2088			if (!netif_running(adapter->port[i].dev) ||
2089			    netif_queue_stopped(adapter->port[i].dev) ||
2090			    !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2091				continue;
2092
2093			if (!skb->cb[0]) {
2094				u8 ch_mac_addr[ETH_ALEN] = {
2095					0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2096				};
2097
2098				skb_copy_to_linear_data_offset(skb,
2099						    sizeof(struct cpl_tx_pkt),
2100							       ch_mac_addr,
2101							       ETH_ALEN);
2102				skb_copy_to_linear_data_offset(skb,
2103							       skb->len - 10,
2104							       ch_mac_addr,
2105							       ETH_ALEN);
2106				skb->cb[0] = 0xff;
2107			}
2108
2109			/* bump the reference count to avoid freeing of
2110			 * the skb once the DMA has completed.
2111			 */
2112			skb = skb_get(skb);
2113			t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2114		}
2115	}
2116	mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2117}
2118
2119static void espibug_workaround(unsigned long data)
2120{
2121	struct adapter *adapter = (struct adapter *)data;
2122	struct sge *sge = adapter->sge;
2123
2124	if (netif_running(adapter->port[0].dev)) {
2125	        struct sk_buff *skb = sge->espibug_skb[0];
2126	        u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2127
2128	        if ((seop & 0xfff0fff) == 0xfff && skb) {
2129	                if (!skb->cb[0]) {
2130	                        u8 ch_mac_addr[ETH_ALEN] =
2131	                            {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2132	                        skb_copy_to_linear_data_offset(skb,
2133						     sizeof(struct cpl_tx_pkt),
2134							       ch_mac_addr,
2135							       ETH_ALEN);
2136	                        skb_copy_to_linear_data_offset(skb,
2137							       skb->len - 10,
2138							       ch_mac_addr,
2139							       ETH_ALEN);
2140	                        skb->cb[0] = 0xff;
2141	                }
2142
2143	                /* bump the reference count to avoid freeing of the
2144	                 * skb once the DMA has completed.
2145	                 */
2146	                skb = skb_get(skb);
2147	                t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2148	        }
2149	}
2150	mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2151}
2152
2153/*
2154 * Creates a t1_sge structure and returns suggested resource parameters.
2155 */
2156struct sge * __devinit t1_sge_create(struct adapter *adapter,
2157				     struct sge_params *p)
2158{
2159	struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2160	int i;
2161
2162	if (!sge)
2163		return NULL;
2164
2165	sge->adapter = adapter;
2166	sge->netdev = adapter->port[0].dev;
2167	sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2168	sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2169
2170	for_each_port(adapter, i) {
2171		sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2172		if (!sge->port_stats[i])
2173			goto nomem_port;
2174	}
2175
2176	init_timer(&sge->tx_reclaim_timer);
2177	sge->tx_reclaim_timer.data = (unsigned long)sge;
2178	sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2179
2180	if (is_T2(sge->adapter)) {
2181		init_timer(&sge->espibug_timer);
2182
2183		if (adapter->params.nports > 1) {
2184			tx_sched_init(sge);
2185			sge->espibug_timer.function = espibug_workaround_t204;
2186		} else
2187			sge->espibug_timer.function = espibug_workaround;
2188		sge->espibug_timer.data = (unsigned long)sge->adapter;
2189
2190		sge->espibug_timeout = 1;
2191		/* for T204, every 10ms */
2192		if (adapter->params.nports > 1)
2193			sge->espibug_timeout = HZ/100;
2194	}
2195
2196
2197	p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2198	p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2199	p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2200	p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2201	if (sge->tx_sched) {
2202		if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2203			p->rx_coalesce_usecs = 15;
2204		else
2205			p->rx_coalesce_usecs = 50;
2206	} else
2207		p->rx_coalesce_usecs = 50;
2208
2209	p->coalesce_enable = 0;
2210	p->sample_interval_usecs = 0;
2211
2212	return sge;
2213nomem_port:
2214	while (i >= 0) {
2215		free_percpu(sge->port_stats[i]);
2216		--i;
2217	}
2218	kfree(sge);
2219	return NULL;
2220
2221}
2222