1/*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 *
19 * $Id: diskonchip.c,v 1.1.1.1 2007/08/03 18:52:44 Exp $
20 */
21
22#include <linux/kernel.h>
23#include <linux/init.h>
24#include <linux/sched.h>
25#include <linux/delay.h>
26#include <linux/rslib.h>
27#include <linux/moduleparam.h>
28#include <asm/io.h>
29
30#include <linux/mtd/mtd.h>
31#include <linux/mtd/nand.h>
32#include <linux/mtd/doc2000.h>
33#include <linux/mtd/compatmac.h>
34#include <linux/mtd/partitions.h>
35#include <linux/mtd/inftl.h>
36
37/* Where to look for the devices? */
38#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
39#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
40#endif
41
42static unsigned long __initdata doc_locations[] = {
43#if defined(__alpha__) || defined(__i386__) || defined(__x86_64__)
44#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
45	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
46	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
47	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
48	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
49	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
50#else /*  CONFIG_MTD_DOCPROBE_HIGH */
51	0xc8000, 0xca000, 0xcc000, 0xce000,
52	0xd0000, 0xd2000, 0xd4000, 0xd6000,
53	0xd8000, 0xda000, 0xdc000, 0xde000,
54	0xe0000, 0xe2000, 0xe4000, 0xe6000,
55	0xe8000, 0xea000, 0xec000, 0xee000,
56#endif /*  CONFIG_MTD_DOCPROBE_HIGH */
57#elif defined(__PPC__)
58	0xe4000000,
59#elif defined(CONFIG_MOMENCO_OCELOT)
60	0x2f000000,
61	0xff000000,
62#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined(CONFIG_MOMENCO_OCELOT_C)
63	0xff000000,
64#else
65#warning Unknown architecture for DiskOnChip. No default probe locations defined
66#endif
67	0xffffffff };
68
69static struct mtd_info *doclist = NULL;
70
71struct doc_priv {
72	void __iomem *virtadr;
73	unsigned long physadr;
74	u_char ChipID;
75	u_char CDSNControl;
76	int chips_per_floor;	/* The number of chips detected on each floor */
77	int curfloor;
78	int curchip;
79	int mh0_page;
80	int mh1_page;
81	struct mtd_info *nextdoc;
82};
83
84/* This is the syndrome computed by the HW ecc generator upon reading an empty
85   page, one with all 0xff for data and stored ecc code. */
86static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
87
88/* This is the ecc value computed by the HW ecc generator upon writing an empty
89   page, one with all 0xff for data. */
90static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
91
92#define INFTL_BBT_RESERVED_BLOCKS 4
93
94#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
95#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
96#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
97
98static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
99			      unsigned int bitmask);
100static void doc200x_select_chip(struct mtd_info *mtd, int chip);
101
102static int debug = 0;
103module_param(debug, int, 0);
104
105static int try_dword = 1;
106module_param(try_dword, int, 0);
107
108static int no_ecc_failures = 0;
109module_param(no_ecc_failures, int, 0);
110
111static int no_autopart = 0;
112module_param(no_autopart, int, 0);
113
114static int show_firmware_partition = 0;
115module_param(show_firmware_partition, int, 0);
116
117#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
118static int inftl_bbt_write = 1;
119#else
120static int inftl_bbt_write = 0;
121#endif
122module_param(inftl_bbt_write, int, 0);
123
124static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
125module_param(doc_config_location, ulong, 0);
126MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
127
128/* Sector size for HW ECC */
129#define SECTOR_SIZE 512
130/* The sector bytes are packed into NB_DATA 10 bit words */
131#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
132/* Number of roots */
133#define NROOTS 4
134/* First consective root */
135#define FCR 510
136/* Number of symbols */
137#define NN 1023
138
139/* the Reed Solomon control structure */
140static struct rs_control *rs_decoder;
141
142/*
143 * The HW decoder in the DoC ASIC's provides us a error syndrome,
144 * which we must convert to a standard syndrom usable by the generic
145 * Reed-Solomon library code.
146 *
147 * Fabrice Bellard figured this out in the old docecc code. I added
148 * some comments, improved a minor bit and converted it to make use
149 * of the generic Reed-Solomon libary. tglx
150 */
151static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
152{
153	int i, j, nerr, errpos[8];
154	uint8_t parity;
155	uint16_t ds[4], s[5], tmp, errval[8], syn[4];
156
157	/* Convert the ecc bytes into words */
158	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
159	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
160	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
161	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
162	parity = ecc[1];
163
164	/* Initialize the syndrom buffer */
165	for (i = 0; i < NROOTS; i++)
166		s[i] = ds[0];
167	/*
168	 *  Evaluate
169	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
170	 *  where x = alpha^(FCR + i)
171	 */
172	for (j = 1; j < NROOTS; j++) {
173		if (ds[j] == 0)
174			continue;
175		tmp = rs->index_of[ds[j]];
176		for (i = 0; i < NROOTS; i++)
177			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
178	}
179
180	/* Calc s[i] = s[i] / alpha^(v + i) */
181	for (i = 0; i < NROOTS; i++) {
182		if (syn[i])
183			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
184	}
185	/* Call the decoder library */
186	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
187
188	/* Incorrectable errors ? */
189	if (nerr < 0)
190		return nerr;
191
192	/*
193	 * Correct the errors. The bitpositions are a bit of magic,
194	 * but they are given by the design of the de/encoder circuit
195	 * in the DoC ASIC's.
196	 */
197	for (i = 0; i < nerr; i++) {
198		int index, bitpos, pos = 1015 - errpos[i];
199		uint8_t val;
200		if (pos >= NB_DATA && pos < 1019)
201			continue;
202		if (pos < NB_DATA) {
203			/* extract bit position (MSB first) */
204			pos = 10 * (NB_DATA - 1 - pos) - 6;
205			/* now correct the following 10 bits. At most two bytes
206			   can be modified since pos is even */
207			index = (pos >> 3) ^ 1;
208			bitpos = pos & 7;
209			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
210				val = (uint8_t) (errval[i] >> (2 + bitpos));
211				parity ^= val;
212				if (index < SECTOR_SIZE)
213					data[index] ^= val;
214			}
215			index = ((pos >> 3) + 1) ^ 1;
216			bitpos = (bitpos + 10) & 7;
217			if (bitpos == 0)
218				bitpos = 8;
219			if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
220				val = (uint8_t) (errval[i] << (8 - bitpos));
221				parity ^= val;
222				if (index < SECTOR_SIZE)
223					data[index] ^= val;
224			}
225		}
226	}
227	/* If the parity is wrong, no rescue possible */
228	return parity ? -1 : nerr;
229}
230
231static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
232{
233	volatile char dummy;
234	int i;
235
236	for (i = 0; i < cycles; i++) {
237		if (DoC_is_Millennium(doc))
238			dummy = ReadDOC(doc->virtadr, NOP);
239		else if (DoC_is_MillenniumPlus(doc))
240			dummy = ReadDOC(doc->virtadr, Mplus_NOP);
241		else
242			dummy = ReadDOC(doc->virtadr, DOCStatus);
243	}
244
245}
246
247#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
248
249/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
250static int _DoC_WaitReady(struct doc_priv *doc)
251{
252	void __iomem *docptr = doc->virtadr;
253	unsigned long timeo = jiffies + (HZ * 10);
254
255	if (debug)
256		printk("_DoC_WaitReady...\n");
257	/* Out-of-line routine to wait for chip response */
258	if (DoC_is_MillenniumPlus(doc)) {
259		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
260			if (time_after(jiffies, timeo)) {
261				printk("_DoC_WaitReady timed out.\n");
262				return -EIO;
263			}
264			udelay(1);
265			cond_resched();
266		}
267	} else {
268		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
269			if (time_after(jiffies, timeo)) {
270				printk("_DoC_WaitReady timed out.\n");
271				return -EIO;
272			}
273			udelay(1);
274			cond_resched();
275		}
276	}
277
278	return 0;
279}
280
281static inline int DoC_WaitReady(struct doc_priv *doc)
282{
283	void __iomem *docptr = doc->virtadr;
284	int ret = 0;
285
286	if (DoC_is_MillenniumPlus(doc)) {
287		DoC_Delay(doc, 4);
288
289		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
290			/* Call the out-of-line routine to wait */
291			ret = _DoC_WaitReady(doc);
292	} else {
293		DoC_Delay(doc, 4);
294
295		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
296			/* Call the out-of-line routine to wait */
297			ret = _DoC_WaitReady(doc);
298		DoC_Delay(doc, 2);
299	}
300
301	if (debug)
302		printk("DoC_WaitReady OK\n");
303	return ret;
304}
305
306static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
307{
308	struct nand_chip *this = mtd->priv;
309	struct doc_priv *doc = this->priv;
310	void __iomem *docptr = doc->virtadr;
311
312	if (debug)
313		printk("write_byte %02x\n", datum);
314	WriteDOC(datum, docptr, CDSNSlowIO);
315	WriteDOC(datum, docptr, 2k_CDSN_IO);
316}
317
318static u_char doc2000_read_byte(struct mtd_info *mtd)
319{
320	struct nand_chip *this = mtd->priv;
321	struct doc_priv *doc = this->priv;
322	void __iomem *docptr = doc->virtadr;
323	u_char ret;
324
325	ReadDOC(docptr, CDSNSlowIO);
326	DoC_Delay(doc, 2);
327	ret = ReadDOC(docptr, 2k_CDSN_IO);
328	if (debug)
329		printk("read_byte returns %02x\n", ret);
330	return ret;
331}
332
333static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
334{
335	struct nand_chip *this = mtd->priv;
336	struct doc_priv *doc = this->priv;
337	void __iomem *docptr = doc->virtadr;
338	int i;
339	if (debug)
340		printk("writebuf of %d bytes: ", len);
341	for (i = 0; i < len; i++) {
342		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
343		if (debug && i < 16)
344			printk("%02x ", buf[i]);
345	}
346	if (debug)
347		printk("\n");
348}
349
350static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
351{
352	struct nand_chip *this = mtd->priv;
353	struct doc_priv *doc = this->priv;
354	void __iomem *docptr = doc->virtadr;
355	int i;
356
357	if (debug)
358		printk("readbuf of %d bytes: ", len);
359
360	for (i = 0; i < len; i++) {
361		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
362	}
363}
364
365static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
366{
367	struct nand_chip *this = mtd->priv;
368	struct doc_priv *doc = this->priv;
369	void __iomem *docptr = doc->virtadr;
370	int i;
371
372	if (debug)
373		printk("readbuf_dword of %d bytes: ", len);
374
375	if (unlikely((((unsigned long)buf) | len) & 3)) {
376		for (i = 0; i < len; i++) {
377			*(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
378		}
379	} else {
380		for (i = 0; i < len; i += 4) {
381			*(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
382		}
383	}
384}
385
386static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
387{
388	struct nand_chip *this = mtd->priv;
389	struct doc_priv *doc = this->priv;
390	void __iomem *docptr = doc->virtadr;
391	int i;
392
393	for (i = 0; i < len; i++)
394		if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
395			return -EFAULT;
396	return 0;
397}
398
399static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
400{
401	struct nand_chip *this = mtd->priv;
402	struct doc_priv *doc = this->priv;
403	uint16_t ret;
404
405	doc200x_select_chip(mtd, nr);
406	doc200x_hwcontrol(mtd, NAND_CMD_READID,
407			  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
408	doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
409	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
410
411	/* We cant' use dev_ready here, but at least we wait for the
412	 * command to complete
413	 */
414	udelay(50);
415
416	ret = this->read_byte(mtd) << 8;
417	ret |= this->read_byte(mtd);
418
419	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
420		/* First chip probe. See if we get same results by 32-bit access */
421		union {
422			uint32_t dword;
423			uint8_t byte[4];
424		} ident;
425		void __iomem *docptr = doc->virtadr;
426
427		doc200x_hwcontrol(mtd, NAND_CMD_READID,
428				  NAND_CTRL_CLE | NAND_CTRL_CHANGE);
429		doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
430		doc200x_hwcontrol(mtd, NAND_CMD_NONE,
431				  NAND_NCE | NAND_CTRL_CHANGE);
432
433		udelay(50);
434
435		ident.dword = readl(docptr + DoC_2k_CDSN_IO);
436		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
437			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
438			this->read_buf = &doc2000_readbuf_dword;
439		}
440	}
441
442	return ret;
443}
444
445static void __init doc2000_count_chips(struct mtd_info *mtd)
446{
447	struct nand_chip *this = mtd->priv;
448	struct doc_priv *doc = this->priv;
449	uint16_t mfrid;
450	int i;
451
452	/* Max 4 chips per floor on DiskOnChip 2000 */
453	doc->chips_per_floor = 4;
454
455	/* Find out what the first chip is */
456	mfrid = doc200x_ident_chip(mtd, 0);
457
458	/* Find how many chips in each floor. */
459	for (i = 1; i < 4; i++) {
460		if (doc200x_ident_chip(mtd, i) != mfrid)
461			break;
462	}
463	doc->chips_per_floor = i;
464	printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
465}
466
467static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
468{
469	struct doc_priv *doc = this->priv;
470
471	int status;
472
473	DoC_WaitReady(doc);
474	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
475	DoC_WaitReady(doc);
476	status = (int)this->read_byte(mtd);
477
478	return status;
479}
480
481static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
482{
483	struct nand_chip *this = mtd->priv;
484	struct doc_priv *doc = this->priv;
485	void __iomem *docptr = doc->virtadr;
486
487	WriteDOC(datum, docptr, CDSNSlowIO);
488	WriteDOC(datum, docptr, Mil_CDSN_IO);
489	WriteDOC(datum, docptr, WritePipeTerm);
490}
491
492static u_char doc2001_read_byte(struct mtd_info *mtd)
493{
494	struct nand_chip *this = mtd->priv;
495	struct doc_priv *doc = this->priv;
496	void __iomem *docptr = doc->virtadr;
497
498	//ReadDOC(docptr, CDSNSlowIO);
499	/* 11.4.5 -- delay twice to allow extended length cycle */
500	DoC_Delay(doc, 2);
501	ReadDOC(docptr, ReadPipeInit);
502	//return ReadDOC(docptr, Mil_CDSN_IO);
503	return ReadDOC(docptr, LastDataRead);
504}
505
506static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
507{
508	struct nand_chip *this = mtd->priv;
509	struct doc_priv *doc = this->priv;
510	void __iomem *docptr = doc->virtadr;
511	int i;
512
513	for (i = 0; i < len; i++)
514		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
515	/* Terminate write pipeline */
516	WriteDOC(0x00, docptr, WritePipeTerm);
517}
518
519static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
520{
521	struct nand_chip *this = mtd->priv;
522	struct doc_priv *doc = this->priv;
523	void __iomem *docptr = doc->virtadr;
524	int i;
525
526	/* Start read pipeline */
527	ReadDOC(docptr, ReadPipeInit);
528
529	for (i = 0; i < len - 1; i++)
530		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
531
532	/* Terminate read pipeline */
533	buf[i] = ReadDOC(docptr, LastDataRead);
534}
535
536static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
537{
538	struct nand_chip *this = mtd->priv;
539	struct doc_priv *doc = this->priv;
540	void __iomem *docptr = doc->virtadr;
541	int i;
542
543	/* Start read pipeline */
544	ReadDOC(docptr, ReadPipeInit);
545
546	for (i = 0; i < len - 1; i++)
547		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
548			ReadDOC(docptr, LastDataRead);
549			return i;
550		}
551	if (buf[i] != ReadDOC(docptr, LastDataRead))
552		return i;
553	return 0;
554}
555
556static u_char doc2001plus_read_byte(struct mtd_info *mtd)
557{
558	struct nand_chip *this = mtd->priv;
559	struct doc_priv *doc = this->priv;
560	void __iomem *docptr = doc->virtadr;
561	u_char ret;
562
563	ReadDOC(docptr, Mplus_ReadPipeInit);
564	ReadDOC(docptr, Mplus_ReadPipeInit);
565	ret = ReadDOC(docptr, Mplus_LastDataRead);
566	if (debug)
567		printk("read_byte returns %02x\n", ret);
568	return ret;
569}
570
571static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
572{
573	struct nand_chip *this = mtd->priv;
574	struct doc_priv *doc = this->priv;
575	void __iomem *docptr = doc->virtadr;
576	int i;
577
578	if (debug)
579		printk("writebuf of %d bytes: ", len);
580	for (i = 0; i < len; i++) {
581		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
582		if (debug && i < 16)
583			printk("%02x ", buf[i]);
584	}
585	if (debug)
586		printk("\n");
587}
588
589static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
590{
591	struct nand_chip *this = mtd->priv;
592	struct doc_priv *doc = this->priv;
593	void __iomem *docptr = doc->virtadr;
594	int i;
595
596	if (debug)
597		printk("readbuf of %d bytes: ", len);
598
599	/* Start read pipeline */
600	ReadDOC(docptr, Mplus_ReadPipeInit);
601	ReadDOC(docptr, Mplus_ReadPipeInit);
602
603	for (i = 0; i < len - 2; i++) {
604		buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
605		if (debug && i < 16)
606			printk("%02x ", buf[i]);
607	}
608
609	/* Terminate read pipeline */
610	buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
611	if (debug && i < 16)
612		printk("%02x ", buf[len - 2]);
613	buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
614	if (debug && i < 16)
615		printk("%02x ", buf[len - 1]);
616	if (debug)
617		printk("\n");
618}
619
620static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
621{
622	struct nand_chip *this = mtd->priv;
623	struct doc_priv *doc = this->priv;
624	void __iomem *docptr = doc->virtadr;
625	int i;
626
627	if (debug)
628		printk("verifybuf of %d bytes: ", len);
629
630	/* Start read pipeline */
631	ReadDOC(docptr, Mplus_ReadPipeInit);
632	ReadDOC(docptr, Mplus_ReadPipeInit);
633
634	for (i = 0; i < len - 2; i++)
635		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
636			ReadDOC(docptr, Mplus_LastDataRead);
637			ReadDOC(docptr, Mplus_LastDataRead);
638			return i;
639		}
640	if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
641		return len - 2;
642	if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
643		return len - 1;
644	return 0;
645}
646
647static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
648{
649	struct nand_chip *this = mtd->priv;
650	struct doc_priv *doc = this->priv;
651	void __iomem *docptr = doc->virtadr;
652	int floor = 0;
653
654	if (debug)
655		printk("select chip (%d)\n", chip);
656
657	if (chip == -1) {
658		/* Disable flash internally */
659		WriteDOC(0, docptr, Mplus_FlashSelect);
660		return;
661	}
662
663	floor = chip / doc->chips_per_floor;
664	chip -= (floor * doc->chips_per_floor);
665
666	/* Assert ChipEnable and deassert WriteProtect */
667	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
668	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
669
670	doc->curchip = chip;
671	doc->curfloor = floor;
672}
673
674static void doc200x_select_chip(struct mtd_info *mtd, int chip)
675{
676	struct nand_chip *this = mtd->priv;
677	struct doc_priv *doc = this->priv;
678	void __iomem *docptr = doc->virtadr;
679	int floor = 0;
680
681	if (debug)
682		printk("select chip (%d)\n", chip);
683
684	if (chip == -1)
685		return;
686
687	floor = chip / doc->chips_per_floor;
688	chip -= (floor * doc->chips_per_floor);
689
690	/* 11.4.4 -- deassert CE before changing chip */
691	doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
692
693	WriteDOC(floor, docptr, FloorSelect);
694	WriteDOC(chip, docptr, CDSNDeviceSelect);
695
696	doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
697
698	doc->curchip = chip;
699	doc->curfloor = floor;
700}
701
702#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
703
704static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
705			      unsigned int ctrl)
706{
707	struct nand_chip *this = mtd->priv;
708	struct doc_priv *doc = this->priv;
709	void __iomem *docptr = doc->virtadr;
710
711	if (ctrl & NAND_CTRL_CHANGE) {
712		doc->CDSNControl &= ~CDSN_CTRL_MSK;
713		doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
714		if (debug)
715			printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
716		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
717		/* 11.4.3 -- 4 NOPs after CSDNControl write */
718		DoC_Delay(doc, 4);
719	}
720	if (cmd != NAND_CMD_NONE) {
721		if (DoC_is_2000(doc))
722			doc2000_write_byte(mtd, cmd);
723		else
724			doc2001_write_byte(mtd, cmd);
725	}
726}
727
728static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
729{
730	struct nand_chip *this = mtd->priv;
731	struct doc_priv *doc = this->priv;
732	void __iomem *docptr = doc->virtadr;
733
734	/*
735	 * Must terminate write pipeline before sending any commands
736	 * to the device.
737	 */
738	if (command == NAND_CMD_PAGEPROG) {
739		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
740		WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
741	}
742
743	/*
744	 * Write out the command to the device.
745	 */
746	if (command == NAND_CMD_SEQIN) {
747		int readcmd;
748
749		if (column >= mtd->writesize) {
750			/* OOB area */
751			column -= mtd->writesize;
752			readcmd = NAND_CMD_READOOB;
753		} else if (column < 256) {
754			/* First 256 bytes --> READ0 */
755			readcmd = NAND_CMD_READ0;
756		} else {
757			column -= 256;
758			readcmd = NAND_CMD_READ1;
759		}
760		WriteDOC(readcmd, docptr, Mplus_FlashCmd);
761	}
762	WriteDOC(command, docptr, Mplus_FlashCmd);
763	WriteDOC(0, docptr, Mplus_WritePipeTerm);
764	WriteDOC(0, docptr, Mplus_WritePipeTerm);
765
766	if (column != -1 || page_addr != -1) {
767		/* Serially input address */
768		if (column != -1) {
769			/* Adjust columns for 16 bit buswidth */
770			if (this->options & NAND_BUSWIDTH_16)
771				column >>= 1;
772			WriteDOC(column, docptr, Mplus_FlashAddress);
773		}
774		if (page_addr != -1) {
775			WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
776			WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
777			/* One more address cycle for higher density devices */
778			if (this->chipsize & 0x0c000000) {
779				WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
780				printk("high density\n");
781			}
782		}
783		WriteDOC(0, docptr, Mplus_WritePipeTerm);
784		WriteDOC(0, docptr, Mplus_WritePipeTerm);
785		/* deassert ALE */
786		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
787		    command == NAND_CMD_READOOB || command == NAND_CMD_READID)
788			WriteDOC(0, docptr, Mplus_FlashControl);
789	}
790
791	/*
792	 * program and erase have their own busy handlers
793	 * status and sequential in needs no delay
794	 */
795	switch (command) {
796
797	case NAND_CMD_PAGEPROG:
798	case NAND_CMD_ERASE1:
799	case NAND_CMD_ERASE2:
800	case NAND_CMD_SEQIN:
801	case NAND_CMD_STATUS:
802		return;
803
804	case NAND_CMD_RESET:
805		if (this->dev_ready)
806			break;
807		udelay(this->chip_delay);
808		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
809		WriteDOC(0, docptr, Mplus_WritePipeTerm);
810		WriteDOC(0, docptr, Mplus_WritePipeTerm);
811		while (!(this->read_byte(mtd) & 0x40)) ;
812		return;
813
814		/* This applies to read commands */
815	default:
816		/*
817		 * If we don't have access to the busy pin, we apply the given
818		 * command delay
819		 */
820		if (!this->dev_ready) {
821			udelay(this->chip_delay);
822			return;
823		}
824	}
825
826	/* Apply this short delay always to ensure that we do wait tWB in
827	 * any case on any machine. */
828	ndelay(100);
829	/* wait until command is processed */
830	while (!this->dev_ready(mtd)) ;
831}
832
833static int doc200x_dev_ready(struct mtd_info *mtd)
834{
835	struct nand_chip *this = mtd->priv;
836	struct doc_priv *doc = this->priv;
837	void __iomem *docptr = doc->virtadr;
838
839	if (DoC_is_MillenniumPlus(doc)) {
840		/* 11.4.2 -- must NOP four times before checking FR/B# */
841		DoC_Delay(doc, 4);
842		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
843			if (debug)
844				printk("not ready\n");
845			return 0;
846		}
847		if (debug)
848			printk("was ready\n");
849		return 1;
850	} else {
851		/* 11.4.2 -- must NOP four times before checking FR/B# */
852		DoC_Delay(doc, 4);
853		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
854			if (debug)
855				printk("not ready\n");
856			return 0;
857		}
858		/* 11.4.2 -- Must NOP twice if it's ready */
859		DoC_Delay(doc, 2);
860		if (debug)
861			printk("was ready\n");
862		return 1;
863	}
864}
865
866static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
867{
868	/* This is our last resort if we couldn't find or create a BBT.  Just
869	   pretend all blocks are good. */
870	return 0;
871}
872
873static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
874{
875	struct nand_chip *this = mtd->priv;
876	struct doc_priv *doc = this->priv;
877	void __iomem *docptr = doc->virtadr;
878
879	/* Prime the ECC engine */
880	switch (mode) {
881	case NAND_ECC_READ:
882		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
883		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
884		break;
885	case NAND_ECC_WRITE:
886		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
887		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
888		break;
889	}
890}
891
892static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
893{
894	struct nand_chip *this = mtd->priv;
895	struct doc_priv *doc = this->priv;
896	void __iomem *docptr = doc->virtadr;
897
898	/* Prime the ECC engine */
899	switch (mode) {
900	case NAND_ECC_READ:
901		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
902		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
903		break;
904	case NAND_ECC_WRITE:
905		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
906		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
907		break;
908	}
909}
910
911/* This code is only called on write */
912static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
913{
914	struct nand_chip *this = mtd->priv;
915	struct doc_priv *doc = this->priv;
916	void __iomem *docptr = doc->virtadr;
917	int i;
918	int emptymatch = 1;
919
920	/* flush the pipeline */
921	if (DoC_is_2000(doc)) {
922		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
923		WriteDOC(0, docptr, 2k_CDSN_IO);
924		WriteDOC(0, docptr, 2k_CDSN_IO);
925		WriteDOC(0, docptr, 2k_CDSN_IO);
926		WriteDOC(doc->CDSNControl, docptr, CDSNControl);
927	} else if (DoC_is_MillenniumPlus(doc)) {
928		WriteDOC(0, docptr, Mplus_NOP);
929		WriteDOC(0, docptr, Mplus_NOP);
930		WriteDOC(0, docptr, Mplus_NOP);
931	} else {
932		WriteDOC(0, docptr, NOP);
933		WriteDOC(0, docptr, NOP);
934		WriteDOC(0, docptr, NOP);
935	}
936
937	for (i = 0; i < 6; i++) {
938		if (DoC_is_MillenniumPlus(doc))
939			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
940		else
941			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
942		if (ecc_code[i] != empty_write_ecc[i])
943			emptymatch = 0;
944	}
945	if (DoC_is_MillenniumPlus(doc))
946		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
947	else
948		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
949	return 0;
950}
951
952static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
953				u_char *read_ecc, u_char *isnull)
954{
955	int i, ret = 0;
956	struct nand_chip *this = mtd->priv;
957	struct doc_priv *doc = this->priv;
958	void __iomem *docptr = doc->virtadr;
959	uint8_t calc_ecc[6];
960	volatile u_char dummy;
961	int emptymatch = 1;
962
963	/* flush the pipeline */
964	if (DoC_is_2000(doc)) {
965		dummy = ReadDOC(docptr, 2k_ECCStatus);
966		dummy = ReadDOC(docptr, 2k_ECCStatus);
967		dummy = ReadDOC(docptr, 2k_ECCStatus);
968	} else if (DoC_is_MillenniumPlus(doc)) {
969		dummy = ReadDOC(docptr, Mplus_ECCConf);
970		dummy = ReadDOC(docptr, Mplus_ECCConf);
971		dummy = ReadDOC(docptr, Mplus_ECCConf);
972	} else {
973		dummy = ReadDOC(docptr, ECCConf);
974		dummy = ReadDOC(docptr, ECCConf);
975		dummy = ReadDOC(docptr, ECCConf);
976	}
977
978	/* Error occured ? */
979	if (dummy & 0x80) {
980		for (i = 0; i < 6; i++) {
981			if (DoC_is_MillenniumPlus(doc))
982				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
983			else
984				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
985			if (calc_ecc[i] != empty_read_syndrome[i])
986				emptymatch = 0;
987		}
988		/* If emptymatch=1, the read syndrome is consistent with an
989		   all-0xff data and stored ecc block.  Check the stored ecc. */
990		if (emptymatch) {
991			for (i = 0; i < 6; i++) {
992				if (read_ecc[i] == 0xff)
993					continue;
994				emptymatch = 0;
995				break;
996			}
997		}
998		/* If emptymatch still =1, check the data block. */
999		if (emptymatch) {
1000			/* Note: this somewhat expensive test should not be triggered
1001			   often.  It could be optimized away by examining the data in
1002			   the readbuf routine, and remembering the result. */
1003			for (i = 0; i < 512; i++) {
1004				if (dat[i] == 0xff)
1005					continue;
1006				emptymatch = 0;
1007				break;
1008			}
1009		}
1010		/* If emptymatch still =1, this is almost certainly a freshly-
1011		   erased block, in which case the ECC will not come out right.
1012		   We'll suppress the error and tell the caller everything's
1013		   OK.  Because it is. */
1014		if (!emptymatch)
1015			ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
1016		if (ret > 0)
1017			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
1018	}
1019	if (DoC_is_MillenniumPlus(doc))
1020		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
1021	else
1022		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
1023	if (no_ecc_failures && (ret == -1)) {
1024		printk(KERN_ERR "suppressing ECC failure\n");
1025		ret = 0;
1026	}
1027	return ret;
1028}
1029
1030//u_char mydatabuf[528];
1031
1032/* The strange out-of-order .oobfree list below is a (possibly unneeded)
1033 * attempt to retain compatibility.  It used to read:
1034 * 	.oobfree = { {8, 8} }
1035 * Since that leaves two bytes unusable, it was changed.  But the following
1036 * scheme might affect existing jffs2 installs by moving the cleanmarker:
1037 * 	.oobfree = { {6, 10} }
1038 * jffs2 seems to handle the above gracefully, but the current scheme seems
1039 * safer.  The only problem with it is that any code that parses oobfree must
1040 * be able to handle out-of-order segments.
1041 */
1042static struct nand_ecclayout doc200x_oobinfo = {
1043	.eccbytes = 6,
1044	.eccpos = {0, 1, 2, 3, 4, 5},
1045	.oobfree = {{8, 8}, {6, 2}}
1046};
1047
1048/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1049   On sucessful return, buf will contain a copy of the media header for
1050   further processing.  id is the string to scan for, and will presumably be
1051   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media
1052   header.  The page #s of the found media headers are placed in mh0_page and
1053   mh1_page in the DOC private structure. */
1054static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1055{
1056	struct nand_chip *this = mtd->priv;
1057	struct doc_priv *doc = this->priv;
1058	unsigned offs;
1059	int ret;
1060	size_t retlen;
1061
1062	for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1063		ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1064		if (retlen != mtd->writesize)
1065			continue;
1066		if (ret) {
1067			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1068		}
1069		if (memcmp(buf, id, 6))
1070			continue;
1071		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1072		if (doc->mh0_page == -1) {
1073			doc->mh0_page = offs >> this->page_shift;
1074			if (!findmirror)
1075				return 1;
1076			continue;
1077		}
1078		doc->mh1_page = offs >> this->page_shift;
1079		return 2;
1080	}
1081	if (doc->mh0_page == -1) {
1082		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1083		return 0;
1084	}
1085	/* Only one mediaheader was found.  We want buf to contain a
1086	   mediaheader on return, so we'll have to re-read the one we found. */
1087	offs = doc->mh0_page << this->page_shift;
1088	ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
1089	if (retlen != mtd->writesize) {
1090		/* Insanity.  Give up. */
1091		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1092		return 0;
1093	}
1094	return 1;
1095}
1096
1097static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1098{
1099	struct nand_chip *this = mtd->priv;
1100	struct doc_priv *doc = this->priv;
1101	int ret = 0;
1102	u_char *buf;
1103	struct NFTLMediaHeader *mh;
1104	const unsigned psize = 1 << this->page_shift;
1105	int numparts = 0;
1106	unsigned blocks, maxblocks;
1107	int offs, numheaders;
1108
1109	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1110	if (!buf) {
1111		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1112		return 0;
1113	}
1114	if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1115		goto out;
1116	mh = (struct NFTLMediaHeader *)buf;
1117
1118	mh->NumEraseUnits = le16_to_cpu(mh->NumEraseUnits);
1119	mh->FirstPhysicalEUN = le16_to_cpu(mh->FirstPhysicalEUN);
1120	mh->FormattedSize = le32_to_cpu(mh->FormattedSize);
1121
1122	printk(KERN_INFO "    DataOrgID        = %s\n"
1123			 "    NumEraseUnits    = %d\n"
1124			 "    FirstPhysicalEUN = %d\n"
1125			 "    FormattedSize    = %d\n"
1126			 "    UnitSizeFactor   = %d\n",
1127		mh->DataOrgID, mh->NumEraseUnits,
1128		mh->FirstPhysicalEUN, mh->FormattedSize,
1129		mh->UnitSizeFactor);
1130
1131	blocks = mtd->size >> this->phys_erase_shift;
1132	maxblocks = min(32768U, mtd->erasesize - psize);
1133
1134	if (mh->UnitSizeFactor == 0x00) {
1135		/* Auto-determine UnitSizeFactor.  The constraints are:
1136		   - There can be at most 32768 virtual blocks.
1137		   - There can be at most (virtual block size - page size)
1138		   virtual blocks (because MediaHeader+BBT must fit in 1).
1139		 */
1140		mh->UnitSizeFactor = 0xff;
1141		while (blocks > maxblocks) {
1142			blocks >>= 1;
1143			maxblocks = min(32768U, (maxblocks << 1) + psize);
1144			mh->UnitSizeFactor--;
1145		}
1146		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1147	}
1148
1149	/* NOTE: The lines below modify internal variables of the NAND and MTD
1150	   layers; variables with have already been configured by nand_scan.
1151	   Unfortunately, we didn't know before this point what these values
1152	   should be.  Thus, this code is somewhat dependant on the exact
1153	   implementation of the NAND layer.  */
1154	if (mh->UnitSizeFactor != 0xff) {
1155		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1156		mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1157		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1158		blocks = mtd->size >> this->bbt_erase_shift;
1159		maxblocks = min(32768U, mtd->erasesize - psize);
1160	}
1161
1162	if (blocks > maxblocks) {
1163		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor);
1164		goto out;
1165	}
1166
1167	/* Skip past the media headers. */
1168	offs = max(doc->mh0_page, doc->mh1_page);
1169	offs <<= this->page_shift;
1170	offs += mtd->erasesize;
1171
1172	if (show_firmware_partition == 1) {
1173		parts[0].name = " DiskOnChip Firmware / Media Header partition";
1174		parts[0].offset = 0;
1175		parts[0].size = offs;
1176		numparts = 1;
1177	}
1178
1179	parts[numparts].name = " DiskOnChip BDTL partition";
1180	parts[numparts].offset = offs;
1181	parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1182
1183	offs += parts[numparts].size;
1184	numparts++;
1185
1186	if (offs < mtd->size) {
1187		parts[numparts].name = " DiskOnChip Remainder partition";
1188		parts[numparts].offset = offs;
1189		parts[numparts].size = mtd->size - offs;
1190		numparts++;
1191	}
1192
1193	ret = numparts;
1194 out:
1195	kfree(buf);
1196	return ret;
1197}
1198
1199/* This is a stripped-down copy of the code in inftlmount.c */
1200static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1201{
1202	struct nand_chip *this = mtd->priv;
1203	struct doc_priv *doc = this->priv;
1204	int ret = 0;
1205	u_char *buf;
1206	struct INFTLMediaHeader *mh;
1207	struct INFTLPartition *ip;
1208	int numparts = 0;
1209	int blocks;
1210	int vshift, lastvunit = 0;
1211	int i;
1212	int end = mtd->size;
1213
1214	if (inftl_bbt_write)
1215		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1216
1217	buf = kmalloc(mtd->writesize, GFP_KERNEL);
1218	if (!buf) {
1219		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1220		return 0;
1221	}
1222
1223	if (!find_media_headers(mtd, buf, "BNAND", 0))
1224		goto out;
1225	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1226	mh = (struct INFTLMediaHeader *)buf;
1227
1228	mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
1229	mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
1230	mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
1231	mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
1232	mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
1233	mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
1234
1235	printk(KERN_INFO "    bootRecordID          = %s\n"
1236			 "    NoOfBootImageBlocks   = %d\n"
1237			 "    NoOfBinaryPartitions  = %d\n"
1238			 "    NoOfBDTLPartitions    = %d\n"
1239			 "    BlockMultiplerBits    = %d\n"
1240			 "    FormatFlgs            = %d\n"
1241			 "    OsakVersion           = %d.%d.%d.%d\n"
1242			 "    PercentUsed           = %d\n",
1243		mh->bootRecordID, mh->NoOfBootImageBlocks,
1244		mh->NoOfBinaryPartitions,
1245		mh->NoOfBDTLPartitions,
1246		mh->BlockMultiplierBits, mh->FormatFlags,
1247		((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1248		((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1249		((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1250		((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1251		mh->PercentUsed);
1252
1253	vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1254
1255	blocks = mtd->size >> vshift;
1256	if (blocks > 32768) {
1257		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits);
1258		goto out;
1259	}
1260
1261	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1262	if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1263		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n");
1264		goto out;
1265	}
1266
1267	/* Scan the partitions */
1268	for (i = 0; (i < 4); i++) {
1269		ip = &(mh->Partitions[i]);
1270		ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
1271		ip->firstUnit = le32_to_cpu(ip->firstUnit);
1272		ip->lastUnit = le32_to_cpu(ip->lastUnit);
1273		ip->flags = le32_to_cpu(ip->flags);
1274		ip->spareUnits = le32_to_cpu(ip->spareUnits);
1275		ip->Reserved0 = le32_to_cpu(ip->Reserved0);
1276
1277		printk(KERN_INFO	"    PARTITION[%d] ->\n"
1278			"        virtualUnits    = %d\n"
1279			"        firstUnit       = %d\n"
1280			"        lastUnit        = %d\n"
1281			"        flags           = 0x%x\n"
1282			"        spareUnits      = %d\n",
1283			i, ip->virtualUnits, ip->firstUnit,
1284			ip->lastUnit, ip->flags,
1285			ip->spareUnits);
1286
1287		if ((show_firmware_partition == 1) &&
1288		    (i == 0) && (ip->firstUnit > 0)) {
1289			parts[0].name = " DiskOnChip IPL / Media Header partition";
1290			parts[0].offset = 0;
1291			parts[0].size = mtd->erasesize * ip->firstUnit;
1292			numparts = 1;
1293		}
1294
1295		if (ip->flags & INFTL_BINARY)
1296			parts[numparts].name = " DiskOnChip BDK partition";
1297		else
1298			parts[numparts].name = " DiskOnChip BDTL partition";
1299		parts[numparts].offset = ip->firstUnit << vshift;
1300		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1301		numparts++;
1302		if (ip->lastUnit > lastvunit)
1303			lastvunit = ip->lastUnit;
1304		if (ip->flags & INFTL_LAST)
1305			break;
1306	}
1307	lastvunit++;
1308	if ((lastvunit << vshift) < end) {
1309		parts[numparts].name = " DiskOnChip Remainder partition";
1310		parts[numparts].offset = lastvunit << vshift;
1311		parts[numparts].size = end - parts[numparts].offset;
1312		numparts++;
1313	}
1314	ret = numparts;
1315 out:
1316	kfree(buf);
1317	return ret;
1318}
1319
1320static int __init nftl_scan_bbt(struct mtd_info *mtd)
1321{
1322	int ret, numparts;
1323	struct nand_chip *this = mtd->priv;
1324	struct doc_priv *doc = this->priv;
1325	struct mtd_partition parts[2];
1326
1327	memset((char *)parts, 0, sizeof(parts));
1328	/* On NFTL, we have to find the media headers before we can read the
1329	   BBTs, since they're stored in the media header eraseblocks. */
1330	numparts = nftl_partscan(mtd, parts);
1331	if (!numparts)
1332		return -EIO;
1333	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1334				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1335				NAND_BBT_VERSION;
1336	this->bbt_td->veroffs = 7;
1337	this->bbt_td->pages[0] = doc->mh0_page + 1;
1338	if (doc->mh1_page != -1) {
1339		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1340					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1341					NAND_BBT_VERSION;
1342		this->bbt_md->veroffs = 7;
1343		this->bbt_md->pages[0] = doc->mh1_page + 1;
1344	} else {
1345		this->bbt_md = NULL;
1346	}
1347
1348	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1349	   At least as nand_bbt.c is currently written. */
1350	if ((ret = nand_scan_bbt(mtd, NULL)))
1351		return ret;
1352	add_mtd_device(mtd);
1353#ifdef CONFIG_MTD_PARTITIONS
1354	if (!no_autopart)
1355		add_mtd_partitions(mtd, parts, numparts);
1356#endif
1357	return 0;
1358}
1359
1360static int __init inftl_scan_bbt(struct mtd_info *mtd)
1361{
1362	int ret, numparts;
1363	struct nand_chip *this = mtd->priv;
1364	struct doc_priv *doc = this->priv;
1365	struct mtd_partition parts[5];
1366
1367	if (this->numchips > doc->chips_per_floor) {
1368		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1369		return -EIO;
1370	}
1371
1372	if (DoC_is_MillenniumPlus(doc)) {
1373		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1374		if (inftl_bbt_write)
1375			this->bbt_td->options |= NAND_BBT_WRITE;
1376		this->bbt_td->pages[0] = 2;
1377		this->bbt_md = NULL;
1378	} else {
1379		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1380		if (inftl_bbt_write)
1381			this->bbt_td->options |= NAND_BBT_WRITE;
1382		this->bbt_td->offs = 8;
1383		this->bbt_td->len = 8;
1384		this->bbt_td->veroffs = 7;
1385		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1386		this->bbt_td->reserved_block_code = 0x01;
1387		this->bbt_td->pattern = "MSYS_BBT";
1388
1389		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1390		if (inftl_bbt_write)
1391			this->bbt_md->options |= NAND_BBT_WRITE;
1392		this->bbt_md->offs = 8;
1393		this->bbt_md->len = 8;
1394		this->bbt_md->veroffs = 7;
1395		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1396		this->bbt_md->reserved_block_code = 0x01;
1397		this->bbt_md->pattern = "TBB_SYSM";
1398	}
1399
1400	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1401	   At least as nand_bbt.c is currently written. */
1402	if ((ret = nand_scan_bbt(mtd, NULL)))
1403		return ret;
1404	memset((char *)parts, 0, sizeof(parts));
1405	numparts = inftl_partscan(mtd, parts);
1406	/* At least for now, require the INFTL Media Header.  We could probably
1407	   do without it for non-INFTL use, since all it gives us is
1408	   autopartitioning, but I want to give it more thought. */
1409	if (!numparts)
1410		return -EIO;
1411	add_mtd_device(mtd);
1412#ifdef CONFIG_MTD_PARTITIONS
1413	if (!no_autopart)
1414		add_mtd_partitions(mtd, parts, numparts);
1415#endif
1416	return 0;
1417}
1418
1419static inline int __init doc2000_init(struct mtd_info *mtd)
1420{
1421	struct nand_chip *this = mtd->priv;
1422	struct doc_priv *doc = this->priv;
1423
1424	this->read_byte = doc2000_read_byte;
1425	this->write_buf = doc2000_writebuf;
1426	this->read_buf = doc2000_readbuf;
1427	this->verify_buf = doc2000_verifybuf;
1428	this->scan_bbt = nftl_scan_bbt;
1429
1430	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1431	doc2000_count_chips(mtd);
1432	mtd->name = "DiskOnChip 2000 (NFTL Model)";
1433	return (4 * doc->chips_per_floor);
1434}
1435
1436static inline int __init doc2001_init(struct mtd_info *mtd)
1437{
1438	struct nand_chip *this = mtd->priv;
1439	struct doc_priv *doc = this->priv;
1440
1441	this->read_byte = doc2001_read_byte;
1442	this->write_buf = doc2001_writebuf;
1443	this->read_buf = doc2001_readbuf;
1444	this->verify_buf = doc2001_verifybuf;
1445
1446	ReadDOC(doc->virtadr, ChipID);
1447	ReadDOC(doc->virtadr, ChipID);
1448	ReadDOC(doc->virtadr, ChipID);
1449	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1450		/* It's not a Millennium; it's one of the newer
1451		   DiskOnChip 2000 units with a similar ASIC.
1452		   Treat it like a Millennium, except that it
1453		   can have multiple chips. */
1454		doc2000_count_chips(mtd);
1455		mtd->name = "DiskOnChip 2000 (INFTL Model)";
1456		this->scan_bbt = inftl_scan_bbt;
1457		return (4 * doc->chips_per_floor);
1458	} else {
1459		/* Bog-standard Millennium */
1460		doc->chips_per_floor = 1;
1461		mtd->name = "DiskOnChip Millennium";
1462		this->scan_bbt = nftl_scan_bbt;
1463		return 1;
1464	}
1465}
1466
1467static inline int __init doc2001plus_init(struct mtd_info *mtd)
1468{
1469	struct nand_chip *this = mtd->priv;
1470	struct doc_priv *doc = this->priv;
1471
1472	this->read_byte = doc2001plus_read_byte;
1473	this->write_buf = doc2001plus_writebuf;
1474	this->read_buf = doc2001plus_readbuf;
1475	this->verify_buf = doc2001plus_verifybuf;
1476	this->scan_bbt = inftl_scan_bbt;
1477	this->cmd_ctrl = NULL;
1478	this->select_chip = doc2001plus_select_chip;
1479	this->cmdfunc = doc2001plus_command;
1480	this->ecc.hwctl = doc2001plus_enable_hwecc;
1481
1482	doc->chips_per_floor = 1;
1483	mtd->name = "DiskOnChip Millennium Plus";
1484
1485	return 1;
1486}
1487
1488static int __init doc_probe(unsigned long physadr)
1489{
1490	unsigned char ChipID;
1491	struct mtd_info *mtd;
1492	struct nand_chip *nand;
1493	struct doc_priv *doc;
1494	void __iomem *virtadr;
1495	unsigned char save_control;
1496	unsigned char tmp, tmpb, tmpc;
1497	int reg, len, numchips;
1498	int ret = 0;
1499
1500	virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1501	if (!virtadr) {
1502		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1503		return -EIO;
1504	}
1505
1506	/* It's not possible to cleanly detect the DiskOnChip - the
1507	 * bootup procedure will put the device into reset mode, and
1508	 * it's not possible to talk to it without actually writing
1509	 * to the DOCControl register. So we store the current contents
1510	 * of the DOCControl register's location, in case we later decide
1511	 * that it's not a DiskOnChip, and want to put it back how we
1512	 * found it.
1513	 */
1514	save_control = ReadDOC(virtadr, DOCControl);
1515
1516	/* Reset the DiskOnChip ASIC */
1517	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1518	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1519
1520	/* Enable the DiskOnChip ASIC */
1521	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1522	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1523
1524	ChipID = ReadDOC(virtadr, ChipID);
1525
1526	switch (ChipID) {
1527	case DOC_ChipID_Doc2k:
1528		reg = DoC_2k_ECCStatus;
1529		break;
1530	case DOC_ChipID_DocMil:
1531		reg = DoC_ECCConf;
1532		break;
1533	case DOC_ChipID_DocMilPlus16:
1534	case DOC_ChipID_DocMilPlus32:
1535	case 0:
1536		/* Possible Millennium Plus, need to do more checks */
1537		/* Possibly release from power down mode */
1538		for (tmp = 0; (tmp < 4); tmp++)
1539			ReadDOC(virtadr, Mplus_Power);
1540
1541		/* Reset the Millennium Plus ASIC */
1542		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1543		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1544		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1545
1546		mdelay(1);
1547		/* Enable the Millennium Plus ASIC */
1548		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1549		WriteDOC(tmp, virtadr, Mplus_DOCControl);
1550		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1551		mdelay(1);
1552
1553		ChipID = ReadDOC(virtadr, ChipID);
1554
1555		switch (ChipID) {
1556		case DOC_ChipID_DocMilPlus16:
1557			reg = DoC_Mplus_Toggle;
1558			break;
1559		case DOC_ChipID_DocMilPlus32:
1560			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1561		default:
1562			ret = -ENODEV;
1563			goto notfound;
1564		}
1565		break;
1566
1567	default:
1568		ret = -ENODEV;
1569		goto notfound;
1570	}
1571	/* Check the TOGGLE bit in the ECC register */
1572	tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1573	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1574	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1575	if ((tmp == tmpb) || (tmp != tmpc)) {
1576		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1577		ret = -ENODEV;
1578		goto notfound;
1579	}
1580
1581	for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1582		unsigned char oldval;
1583		unsigned char newval;
1584		nand = mtd->priv;
1585		doc = nand->priv;
1586		/* Use the alias resolution register to determine if this is
1587		   in fact the same DOC aliased to a new address.  If writes
1588		   to one chip's alias resolution register change the value on
1589		   the other chip, they're the same chip. */
1590		if (ChipID == DOC_ChipID_DocMilPlus16) {
1591			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1592			newval = ReadDOC(virtadr, Mplus_AliasResolution);
1593		} else {
1594			oldval = ReadDOC(doc->virtadr, AliasResolution);
1595			newval = ReadDOC(virtadr, AliasResolution);
1596		}
1597		if (oldval != newval)
1598			continue;
1599		if (ChipID == DOC_ChipID_DocMilPlus16) {
1600			WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1601			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1602			WriteDOC(newval, virtadr, Mplus_AliasResolution);	// restore it
1603		} else {
1604			WriteDOC(~newval, virtadr, AliasResolution);
1605			oldval = ReadDOC(doc->virtadr, AliasResolution);
1606			WriteDOC(newval, virtadr, AliasResolution);	// restore it
1607		}
1608		newval = ~newval;
1609		if (oldval == newval) {
1610			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1611			goto notfound;
1612		}
1613	}
1614
1615	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1616
1617	len = sizeof(struct mtd_info) +
1618	    sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1619	mtd = kzalloc(len, GFP_KERNEL);
1620	if (!mtd) {
1621		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1622		ret = -ENOMEM;
1623		goto fail;
1624	}
1625
1626	nand			= (struct nand_chip *) (mtd + 1);
1627	doc			= (struct doc_priv *) (nand + 1);
1628	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1);
1629	nand->bbt_md		= nand->bbt_td + 1;
1630
1631	mtd->priv		= nand;
1632	mtd->owner		= THIS_MODULE;
1633
1634	nand->priv		= doc;
1635	nand->select_chip	= doc200x_select_chip;
1636	nand->cmd_ctrl		= doc200x_hwcontrol;
1637	nand->dev_ready		= doc200x_dev_ready;
1638	nand->waitfunc		= doc200x_wait;
1639	nand->block_bad		= doc200x_block_bad;
1640	nand->ecc.hwctl		= doc200x_enable_hwecc;
1641	nand->ecc.calculate	= doc200x_calculate_ecc;
1642	nand->ecc.correct	= doc200x_correct_data;
1643
1644	nand->ecc.layout	= &doc200x_oobinfo;
1645	nand->ecc.mode		= NAND_ECC_HW_SYNDROME;
1646	nand->ecc.size		= 512;
1647	nand->ecc.bytes		= 6;
1648	nand->options		= NAND_USE_FLASH_BBT;
1649
1650	doc->physadr		= physadr;
1651	doc->virtadr		= virtadr;
1652	doc->ChipID		= ChipID;
1653	doc->curfloor		= -1;
1654	doc->curchip		= -1;
1655	doc->mh0_page		= -1;
1656	doc->mh1_page		= -1;
1657	doc->nextdoc		= doclist;
1658
1659	if (ChipID == DOC_ChipID_Doc2k)
1660		numchips = doc2000_init(mtd);
1661	else if (ChipID == DOC_ChipID_DocMilPlus16)
1662		numchips = doc2001plus_init(mtd);
1663	else
1664		numchips = doc2001_init(mtd);
1665
1666	if ((ret = nand_scan(mtd, numchips))) {
1667		/* DBB note: i believe nand_release is necessary here, as
1668		   buffers may have been allocated in nand_base.  Check with
1669		   Thomas. FIX ME! */
1670		/* nand_release will call del_mtd_device, but we haven't yet
1671		   added it.  This is handled without incident by
1672		   del_mtd_device, as far as I can tell. */
1673		nand_release(mtd);
1674		kfree(mtd);
1675		goto fail;
1676	}
1677
1678	/* Success! */
1679	doclist = mtd;
1680	return 0;
1681
1682 notfound:
1683	/* Put back the contents of the DOCControl register, in case it's not
1684	   actually a DiskOnChip.  */
1685	WriteDOC(save_control, virtadr, DOCControl);
1686 fail:
1687	iounmap(virtadr);
1688	return ret;
1689}
1690
1691static void release_nanddoc(void)
1692{
1693	struct mtd_info *mtd, *nextmtd;
1694	struct nand_chip *nand;
1695	struct doc_priv *doc;
1696
1697	for (mtd = doclist; mtd; mtd = nextmtd) {
1698		nand = mtd->priv;
1699		doc = nand->priv;
1700
1701		nextmtd = doc->nextdoc;
1702		nand_release(mtd);
1703		iounmap(doc->virtadr);
1704		kfree(mtd);
1705	}
1706}
1707
1708static int __init init_nanddoc(void)
1709{
1710	int i, ret = 0;
1711
1712	/* We could create the decoder on demand, if memory is a concern.
1713	 * This way we have it handy, if an error happens
1714	 *
1715	 * Symbolsize is 10 (bits)
1716	 * Primitve polynomial is x^10+x^3+1
1717	 * first consecutive root is 510
1718	 * primitve element to generate roots = 1
1719	 * generator polinomial degree = 4
1720	 */
1721	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1722	if (!rs_decoder) {
1723		printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1724		return -ENOMEM;
1725	}
1726
1727	if (doc_config_location) {
1728		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1729		ret = doc_probe(doc_config_location);
1730		if (ret < 0)
1731			goto outerr;
1732	} else {
1733		for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1734			doc_probe(doc_locations[i]);
1735		}
1736	}
1737	/* No banner message any more. Print a message if no DiskOnChip
1738	   found, so the user knows we at least tried. */
1739	if (!doclist) {
1740		printk(KERN_INFO "No valid DiskOnChip devices found\n");
1741		ret = -ENODEV;
1742		goto outerr;
1743	}
1744	return 0;
1745 outerr:
1746	free_rs(rs_decoder);
1747	return ret;
1748}
1749
1750static void __exit cleanup_nanddoc(void)
1751{
1752	/* Cleanup the nand/DoC resources */
1753	release_nanddoc();
1754
1755	/* Free the reed solomon resources */
1756	if (rs_decoder) {
1757		free_rs(rs_decoder);
1758	}
1759}
1760
1761module_init(init_nanddoc);
1762module_exit(cleanup_nanddoc);
1763
1764MODULE_LICENSE("GPL");
1765MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1766MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
1767