1/*
2 * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3 *
4 * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5 *               2000 Bonin Franck <boninf@free.fr>
6 *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7 *
8 * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 */
24
25/*
26 * This driver intends to support RFC 2734, which describes a method for
27 * transporting IPv4 datagrams over IEEE-1394 serial busses.
28 *
29 * TODO:
30 * RFC 2734 related:
31 * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32 *
33 * Non-RFC 2734 related:
34 * - Handle fragmented skb's coming from the networking layer.
35 * - Move generic GASP reception to core 1394 code
36 * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37 * - Stability improvements
38 * - Performance enhancements
39 * - Consider garbage collecting old partial datagrams after X amount of time
40 */
41
42#include <linux/module.h>
43
44#include <linux/kernel.h>
45#include <linux/slab.h>
46#include <linux/errno.h>
47#include <linux/types.h>
48#include <linux/delay.h>
49#include <linux/init.h>
50#include <linux/workqueue.h>
51
52#include <linux/netdevice.h>
53#include <linux/inetdevice.h>
54#include <linux/if_arp.h>
55#include <linux/if_ether.h>
56#include <linux/ip.h>
57#include <linux/in.h>
58#include <linux/tcp.h>
59#include <linux/skbuff.h>
60#include <linux/bitops.h>
61#include <linux/ethtool.h>
62#include <asm/uaccess.h>
63#include <asm/delay.h>
64#include <asm/unaligned.h>
65#include <net/arp.h>
66
67#include "config_roms.h"
68#include "csr1212.h"
69#include "eth1394.h"
70#include "highlevel.h"
71#include "ieee1394.h"
72#include "ieee1394_core.h"
73#include "ieee1394_hotplug.h"
74#include "ieee1394_transactions.h"
75#include "ieee1394_types.h"
76#include "iso.h"
77#include "nodemgr.h"
78
79#define ETH1394_PRINT_G(level, fmt, args...) \
80	printk(level "%s: " fmt, driver_name, ## args)
81
82#define ETH1394_PRINT(level, dev_name, fmt, args...) \
83	printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85struct fragment_info {
86	struct list_head list;
87	int offset;
88	int len;
89};
90
91struct partial_datagram {
92	struct list_head list;
93	u16 dgl;
94	u16 dg_size;
95	u16 ether_type;
96	struct sk_buff *skb;
97	char *pbuf;
98	struct list_head frag_info;
99};
100
101struct pdg_list {
102	struct list_head list;	/* partial datagram list per node	*/
103	unsigned int sz;	/* partial datagram list size per node	*/
104	spinlock_t lock;	/* partial datagram lock		*/
105};
106
107struct eth1394_host_info {
108	struct hpsb_host *host;
109	struct net_device *dev;
110};
111
112struct eth1394_node_ref {
113	struct unit_directory *ud;
114	struct list_head list;
115};
116
117struct eth1394_node_info {
118	u16 maxpayload;		/* max payload			*/
119	u8 sspd;		/* max speed			*/
120	u64 fifo;		/* FIFO address			*/
121	struct pdg_list pdg;	/* partial RX datagram lists	*/
122	int dgl;		/* outgoing datagram label	*/
123};
124
125static const char driver_name[] = "eth1394";
126
127static struct kmem_cache *packet_task_cache;
128
129static struct hpsb_highlevel eth1394_highlevel;
130
131/* Use common.lf to determine header len */
132static const int hdr_type_len[] = {
133	sizeof(struct eth1394_uf_hdr),
134	sizeof(struct eth1394_ff_hdr),
135	sizeof(struct eth1394_sf_hdr),
136	sizeof(struct eth1394_sf_hdr)
137};
138
139static const u16 eth1394_speedto_maxpayload[] = {
140/*     S100, S200, S400, S800, S1600, S3200 */
141	512, 1024, 2048, 4096,  4096,  4096
142};
143
144MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146MODULE_LICENSE("GPL");
147
148/*
149 * The max_partial_datagrams parameter is the maximum number of fragmented
150 * datagrams per node that eth1394 will keep in memory.  Providing an upper
151 * bound allows us to limit the amount of memory that partial datagrams
152 * consume in the event that some partial datagrams are never completed.
153 */
154static int max_partial_datagrams = 25;
155module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156MODULE_PARM_DESC(max_partial_datagrams,
157		 "Maximum number of partially received fragmented datagrams "
158		 "(default = 25).");
159
160
161static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162			    unsigned short type, void *daddr, void *saddr,
163			    unsigned len);
164static int ether1394_rebuild_header(struct sk_buff *skb);
165static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr);
166static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
167static void ether1394_header_cache_update(struct hh_cache *hh,
168					  struct net_device *dev,
169					  unsigned char *haddr);
170static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
171static void ether1394_iso(struct hpsb_iso *iso);
172
173static struct ethtool_ops ethtool_ops;
174
175static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
176			   quadlet_t *data, u64 addr, size_t len, u16 flags);
177static void ether1394_add_host(struct hpsb_host *host);
178static void ether1394_remove_host(struct hpsb_host *host);
179static void ether1394_host_reset(struct hpsb_host *host);
180
181/* Function for incoming 1394 packets */
182static struct hpsb_address_ops addr_ops = {
183	.write =	ether1394_write,
184};
185
186/* Ieee1394 highlevel driver functions */
187static struct hpsb_highlevel eth1394_highlevel = {
188	.name =		driver_name,
189	.add_host =	ether1394_add_host,
190	.remove_host =	ether1394_remove_host,
191	.host_reset =	ether1394_host_reset,
192};
193
194static int ether1394_recv_init(struct eth1394_priv *priv)
195{
196	unsigned int iso_buf_size;
197
198	iso_buf_size = min((unsigned int)PAGE_SIZE,
199			   2 * (1U << (priv->host->csr.max_rec + 1)));
200
201	priv->iso = hpsb_iso_recv_init(priv->host,
202				       ETHER1394_GASP_BUFFERS * iso_buf_size,
203				       ETHER1394_GASP_BUFFERS,
204				       priv->broadcast_channel,
205				       HPSB_ISO_DMA_PACKET_PER_BUFFER,
206				       1, ether1394_iso);
207	if (priv->iso == NULL) {
208		ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
209		priv->bc_state = ETHER1394_BC_ERROR;
210		return -EAGAIN;
211	}
212
213	if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
214		priv->bc_state = ETHER1394_BC_STOPPED;
215	else
216		priv->bc_state = ETHER1394_BC_RUNNING;
217	return 0;
218}
219
220/* This is called after an "ifup" */
221static int ether1394_open(struct net_device *dev)
222{
223	struct eth1394_priv *priv = netdev_priv(dev);
224	int ret;
225
226	if (priv->bc_state == ETHER1394_BC_ERROR) {
227		ret = ether1394_recv_init(priv);
228		if (ret)
229			return ret;
230	}
231	netif_start_queue(dev);
232	return 0;
233}
234
235/* This is called after an "ifdown" */
236static int ether1394_stop(struct net_device *dev)
237{
238	/* flush priv->wake */
239	flush_scheduled_work();
240
241	netif_stop_queue(dev);
242	return 0;
243}
244
245/* Return statistics to the caller */
246static struct net_device_stats *ether1394_stats(struct net_device *dev)
247{
248	return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
249}
250
251static void ether1394_tx_timeout(struct net_device *dev)
252{
253	struct hpsb_host *host =
254			((struct eth1394_priv *)netdev_priv(dev))->host;
255
256	ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
257	ether1394_host_reset(host);
258}
259
260static inline int ether1394_max_mtu(struct hpsb_host* host)
261{
262	return (1 << (host->csr.max_rec + 1))
263			- sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
264}
265
266static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
267{
268	int max_mtu;
269
270	if (new_mtu < 68)
271		return -EINVAL;
272
273	max_mtu = ether1394_max_mtu(
274			((struct eth1394_priv *)netdev_priv(dev))->host);
275	if (new_mtu > max_mtu) {
276		ETH1394_PRINT(KERN_INFO, dev->name,
277			      "Local node constrains MTU to %d\n", max_mtu);
278		return -ERANGE;
279	}
280
281	dev->mtu = new_mtu;
282	return 0;
283}
284
285static void purge_partial_datagram(struct list_head *old)
286{
287	struct partial_datagram *pd;
288	struct list_head *lh, *n;
289	struct fragment_info *fi;
290
291	pd = list_entry(old, struct partial_datagram, list);
292
293	list_for_each_safe(lh, n, &pd->frag_info) {
294		fi = list_entry(lh, struct fragment_info, list);
295		list_del(lh);
296		kfree(fi);
297	}
298	list_del(old);
299	kfree_skb(pd->skb);
300	kfree(pd);
301}
302
303/******************************************
304 * 1394 bus activity functions
305 ******************************************/
306
307static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
308						  struct unit_directory *ud)
309{
310	struct eth1394_node_ref *node;
311
312	list_for_each_entry(node, inl, list)
313		if (node->ud == ud)
314			return node;
315
316	return NULL;
317}
318
319static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
320						       u64 guid)
321{
322	struct eth1394_node_ref *node;
323
324	list_for_each_entry(node, inl, list)
325		if (node->ud->ne->guid == guid)
326			return node;
327
328	return NULL;
329}
330
331static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
332							 nodeid_t nodeid)
333{
334	struct eth1394_node_ref *node;
335
336	list_for_each_entry(node, inl, list)
337		if (node->ud->ne->nodeid == nodeid)
338			return node;
339
340	return NULL;
341}
342
343static int eth1394_new_node(struct eth1394_host_info *hi,
344			    struct unit_directory *ud)
345{
346	struct eth1394_priv *priv;
347	struct eth1394_node_ref *new_node;
348	struct eth1394_node_info *node_info;
349
350	new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
351	if (!new_node)
352		return -ENOMEM;
353
354	node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
355	if (!node_info) {
356		kfree(new_node);
357		return -ENOMEM;
358	}
359
360	spin_lock_init(&node_info->pdg.lock);
361	INIT_LIST_HEAD(&node_info->pdg.list);
362	node_info->pdg.sz = 0;
363	node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
364
365	ud->device.driver_data = node_info;
366	new_node->ud = ud;
367
368	priv = netdev_priv(hi->dev);
369	list_add_tail(&new_node->list, &priv->ip_node_list);
370	return 0;
371}
372
373static int eth1394_probe(struct device *dev)
374{
375	struct unit_directory *ud;
376	struct eth1394_host_info *hi;
377
378	ud = container_of(dev, struct unit_directory, device);
379	hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
380	if (!hi)
381		return -ENOENT;
382
383	return eth1394_new_node(hi, ud);
384}
385
386static int eth1394_remove(struct device *dev)
387{
388	struct unit_directory *ud;
389	struct eth1394_host_info *hi;
390	struct eth1394_priv *priv;
391	struct eth1394_node_ref *old_node;
392	struct eth1394_node_info *node_info;
393	struct list_head *lh, *n;
394	unsigned long flags;
395
396	ud = container_of(dev, struct unit_directory, device);
397	hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
398	if (!hi)
399		return -ENOENT;
400
401	priv = netdev_priv(hi->dev);
402
403	old_node = eth1394_find_node(&priv->ip_node_list, ud);
404	if (!old_node)
405		return 0;
406
407	list_del(&old_node->list);
408	kfree(old_node);
409
410	node_info = (struct eth1394_node_info*)ud->device.driver_data;
411
412	spin_lock_irqsave(&node_info->pdg.lock, flags);
413	/* The partial datagram list should be empty, but we'll just
414	 * make sure anyway... */
415	list_for_each_safe(lh, n, &node_info->pdg.list)
416		purge_partial_datagram(lh);
417	spin_unlock_irqrestore(&node_info->pdg.lock, flags);
418
419	kfree(node_info);
420	ud->device.driver_data = NULL;
421	return 0;
422}
423
424static int eth1394_update(struct unit_directory *ud)
425{
426	struct eth1394_host_info *hi;
427	struct eth1394_priv *priv;
428	struct eth1394_node_ref *node;
429
430	hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
431	if (!hi)
432		return -ENOENT;
433
434	priv = netdev_priv(hi->dev);
435	node = eth1394_find_node(&priv->ip_node_list, ud);
436	if (node)
437		return 0;
438
439	return eth1394_new_node(hi, ud);
440}
441
442static struct ieee1394_device_id eth1394_id_table[] = {
443	{
444		.match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
445				IEEE1394_MATCH_VERSION),
446		.specifier_id =	ETHER1394_GASP_SPECIFIER_ID,
447		.version = ETHER1394_GASP_VERSION,
448	},
449	{}
450};
451
452MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
453
454static struct hpsb_protocol_driver eth1394_proto_driver = {
455	.name		= driver_name,
456	.id_table	= eth1394_id_table,
457	.update		= eth1394_update,
458	.driver		= {
459		.probe		= eth1394_probe,
460		.remove		= eth1394_remove,
461	},
462};
463
464static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
465{
466	unsigned long flags;
467	int i;
468	struct eth1394_priv *priv = netdev_priv(dev);
469	struct hpsb_host *host = priv->host;
470	u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
471	int max_speed = IEEE1394_SPEED_MAX;
472
473	spin_lock_irqsave(&priv->lock, flags);
474
475	memset(priv->ud_list, 0, sizeof(priv->ud_list));
476	priv->bc_maxpayload = 512;
477
478	/* Determine speed limit */
479	for (i = 0; i < host->node_count; i++) {
480		/* take care of S100B...S400B PHY ports */
481		if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
482			max_speed = IEEE1394_SPEED_100;
483			break;
484		}
485		if (max_speed > host->speed[i])
486			max_speed = host->speed[i];
487	}
488	priv->bc_sspd = max_speed;
489
490	if (set_mtu) {
491		/* Use the RFC 2734 default 1500 octets or the maximum payload
492		 * as initial MTU */
493		dev->mtu = min(1500, ether1394_max_mtu(host));
494
495		/* Set our hardware address while we're at it */
496		memcpy(dev->dev_addr, &guid, sizeof(u64));
497		memset(dev->broadcast, 0xff, sizeof(u64));
498	}
499
500	spin_unlock_irqrestore(&priv->lock, flags);
501}
502
503static void ether1394_init_dev(struct net_device *dev)
504{
505	dev->open		= ether1394_open;
506	dev->stop		= ether1394_stop;
507	dev->hard_start_xmit	= ether1394_tx;
508	dev->get_stats		= ether1394_stats;
509	dev->tx_timeout		= ether1394_tx_timeout;
510	dev->change_mtu		= ether1394_change_mtu;
511
512	dev->hard_header	= ether1394_header;
513	dev->rebuild_header	= ether1394_rebuild_header;
514	dev->hard_header_cache	= ether1394_header_cache;
515	dev->header_cache_update= ether1394_header_cache_update;
516	dev->hard_header_parse	= ether1394_header_parse;
517
518	SET_ETHTOOL_OPS(dev, &ethtool_ops);
519
520	dev->watchdog_timeo	= ETHER1394_TIMEOUT;
521	dev->flags		= IFF_BROADCAST | IFF_MULTICAST;
522	dev->features		= NETIF_F_HIGHDMA;
523	dev->addr_len		= ETH1394_ALEN;
524	dev->hard_header_len 	= ETH1394_HLEN;
525	dev->type		= ARPHRD_IEEE1394;
526
527	dev->tx_queue_len	= 1000;
528}
529
530/*
531 * Wake the queue up after commonly encountered transmit failure conditions are
532 * hopefully over.  Currently only tlabel exhaustion is accounted for.
533 */
534static void ether1394_wake_queue(struct work_struct *work)
535{
536	struct eth1394_priv *priv;
537	struct hpsb_packet *packet;
538
539	priv = container_of(work, struct eth1394_priv, wake);
540	packet = hpsb_alloc_packet(0);
541
542	/* This is really bad, but unjam the queue anyway. */
543	if (!packet)
544		goto out;
545
546	packet->host = priv->host;
547	packet->node_id = priv->wake_node;
548	/*
549	 * A transaction label is all we really want.  If we get one, it almost
550	 * always means we can get a lot more because the ieee1394 core recycled
551	 * a whole batch of tlabels, at last.
552	 */
553	if (hpsb_get_tlabel(packet) == 0)
554		hpsb_free_tlabel(packet);
555
556	hpsb_free_packet(packet);
557out:
558	netif_wake_queue(priv->wake_dev);
559}
560
561/*
562 * This function is called every time a card is found. It is generally called
563 * when the module is installed. This is where we add all of our ethernet
564 * devices. One for each host.
565 */
566static void ether1394_add_host(struct hpsb_host *host)
567{
568	struct eth1394_host_info *hi = NULL;
569	struct net_device *dev = NULL;
570	struct eth1394_priv *priv;
571	u64 fifo_addr;
572
573	if (hpsb_config_rom_ip1394_add(host) != 0) {
574		ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
575		return;
576	}
577
578	fifo_addr = hpsb_allocate_and_register_addrspace(
579			&eth1394_highlevel, host, &addr_ops,
580			ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
581			CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
582	if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
583		ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
584		hpsb_config_rom_ip1394_remove(host);
585		return;
586	}
587
588	dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
589	if (dev == NULL) {
590		ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
591		goto out;
592	}
593
594	SET_MODULE_OWNER(dev);
595
596	/* This used to be &host->device in Linux 2.6.20 and before. */
597	SET_NETDEV_DEV(dev, host->device.parent);
598
599	priv = netdev_priv(dev);
600	INIT_LIST_HEAD(&priv->ip_node_list);
601	spin_lock_init(&priv->lock);
602	priv->host = host;
603	priv->local_fifo = fifo_addr;
604	INIT_WORK(&priv->wake, ether1394_wake_queue);
605	priv->wake_dev = dev;
606
607	hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
608	if (hi == NULL) {
609		ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
610		goto out;
611	}
612
613	ether1394_reset_priv(dev, 1);
614
615	if (register_netdev(dev)) {
616		ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
617		goto out;
618	}
619
620	ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
621		      host->id);
622
623	hi->host = host;
624	hi->dev = dev;
625
626	/* Ignore validity in hopes that it will be set in the future.  It'll
627	 * be checked when the eth device is opened. */
628	priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
629
630	ether1394_recv_init(priv);
631	return;
632out:
633	if (dev)
634		free_netdev(dev);
635	if (hi)
636		hpsb_destroy_hostinfo(&eth1394_highlevel, host);
637	hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
638	hpsb_config_rom_ip1394_remove(host);
639}
640
641/* Remove a card from our list */
642static void ether1394_remove_host(struct hpsb_host *host)
643{
644	struct eth1394_host_info *hi;
645	struct eth1394_priv *priv;
646
647	hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
648	if (!hi)
649		return;
650	priv = netdev_priv(hi->dev);
651	hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
652	hpsb_config_rom_ip1394_remove(host);
653	if (priv->iso)
654		hpsb_iso_shutdown(priv->iso);
655	unregister_netdev(hi->dev);
656	free_netdev(hi->dev);
657}
658
659/* A bus reset happened */
660static void ether1394_host_reset(struct hpsb_host *host)
661{
662	struct eth1394_host_info *hi;
663	struct eth1394_priv *priv;
664	struct net_device *dev;
665	struct list_head *lh, *n;
666	struct eth1394_node_ref *node;
667	struct eth1394_node_info *node_info;
668	unsigned long flags;
669
670	hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
671
672	/* This can happen for hosts that we don't use */
673	if (!hi)
674		return;
675
676	dev = hi->dev;
677	priv = netdev_priv(dev);
678
679	/* Reset our private host data, but not our MTU */
680	netif_stop_queue(dev);
681	ether1394_reset_priv(dev, 0);
682
683	list_for_each_entry(node, &priv->ip_node_list, list) {
684		node_info = node->ud->device.driver_data;
685
686		spin_lock_irqsave(&node_info->pdg.lock, flags);
687
688		list_for_each_safe(lh, n, &node_info->pdg.list)
689			purge_partial_datagram(lh);
690
691		INIT_LIST_HEAD(&(node_info->pdg.list));
692		node_info->pdg.sz = 0;
693
694		spin_unlock_irqrestore(&node_info->pdg.lock, flags);
695	}
696
697	netif_wake_queue(dev);
698}
699
700/******************************************
701 * HW Header net device functions
702 ******************************************/
703/* These functions have been adapted from net/ethernet/eth.c */
704
705/* Create a fake MAC header for an arbitrary protocol layer.
706 * saddr=NULL means use device source address
707 * daddr=NULL means leave destination address (eg unresolved arp). */
708static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
709			    unsigned short type, void *daddr, void *saddr,
710			    unsigned len)
711{
712	struct eth1394hdr *eth =
713			(struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
714
715	eth->h_proto = htons(type);
716
717	if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
718		memset(eth->h_dest, 0, dev->addr_len);
719		return dev->hard_header_len;
720	}
721
722	if (daddr) {
723		memcpy(eth->h_dest, daddr, dev->addr_len);
724		return dev->hard_header_len;
725	}
726
727	return -dev->hard_header_len;
728}
729
730/* Rebuild the faked MAC header. This is called after an ARP
731 * (or in future other address resolution) has completed on this
732 * sk_buff. We now let ARP fill in the other fields.
733 *
734 * This routine CANNOT use cached dst->neigh!
735 * Really, it is used only when dst->neigh is wrong.
736 */
737static int ether1394_rebuild_header(struct sk_buff *skb)
738{
739	struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
740
741	if (eth->h_proto == htons(ETH_P_IP))
742		return arp_find((unsigned char *)&eth->h_dest, skb);
743
744	ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
745		      "unable to resolve type %04x addresses\n",
746		      ntohs(eth->h_proto));
747	return 0;
748}
749
750static int ether1394_header_parse(struct sk_buff *skb, unsigned char *haddr)
751{
752	struct net_device *dev = skb->dev;
753
754	memcpy(haddr, dev->dev_addr, ETH1394_ALEN);
755	return ETH1394_ALEN;
756}
757
758static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
759{
760	unsigned short type = hh->hh_type;
761	struct net_device *dev = neigh->dev;
762	struct eth1394hdr *eth =
763		(struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
764
765	if (type == htons(ETH_P_802_3))
766		return -1;
767
768	eth->h_proto = type;
769	memcpy(eth->h_dest, neigh->ha, dev->addr_len);
770
771	hh->hh_len = ETH1394_HLEN;
772	return 0;
773}
774
775/* Called by Address Resolution module to notify changes in address. */
776static void ether1394_header_cache_update(struct hh_cache *hh,
777					  struct net_device *dev,
778					  unsigned char * haddr)
779{
780	memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
781}
782
783/******************************************
784 * Datagram reception code
785 ******************************************/
786
787/* Copied from net/ethernet/eth.c */
788static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
789{
790	struct eth1394hdr *eth;
791	unsigned char *rawp;
792
793	skb_reset_mac_header(skb);
794	skb_pull(skb, ETH1394_HLEN);
795	eth = eth1394_hdr(skb);
796
797	if (*eth->h_dest & 1) {
798		if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
799			skb->pkt_type = PACKET_BROADCAST;
800	} else {
801		if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
802			skb->pkt_type = PACKET_OTHERHOST;
803	}
804
805	if (ntohs(eth->h_proto) >= 1536)
806		return eth->h_proto;
807
808	rawp = skb->data;
809
810	if (*(unsigned short *)rawp == 0xFFFF)
811		return htons(ETH_P_802_3);
812
813	return htons(ETH_P_802_2);
814}
815
816/* Parse an encapsulated IP1394 header into an ethernet frame packet.
817 * We also perform ARP translation here, if need be.  */
818static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
819				 nodeid_t srcid, nodeid_t destid,
820				 u16 ether_type)
821{
822	struct eth1394_priv *priv = netdev_priv(dev);
823	u64 dest_hw;
824	unsigned short ret = 0;
825
826	/* Setup our hw addresses. We use these to build the ethernet header. */
827	if (destid == (LOCAL_BUS | ALL_NODES))
828		dest_hw = ~0ULL;  /* broadcast */
829	else
830		dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
831				      priv->host->csr.guid_lo);
832
833	/* If this is an ARP packet, convert it. First, we want to make
834	 * use of some of the fields, since they tell us a little bit
835	 * about the sending machine.  */
836	if (ether_type == htons(ETH_P_ARP)) {
837		struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
838		struct arphdr *arp = (struct arphdr *)skb->data;
839		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
840		u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
841					   ntohl(arp1394->fifo_lo);
842		u8 max_rec = min(priv->host->csr.max_rec,
843				 (u8)(arp1394->max_rec));
844		int sspd = arp1394->sspd;
845		u16 maxpayload;
846		struct eth1394_node_ref *node;
847		struct eth1394_node_info *node_info;
848		__be64 guid;
849
850		/* Sanity check. MacOSX seems to be sending us 131 in this
851		 * field (atleast on my Panther G5). Not sure why. */
852		if (sspd > 5 || sspd < 0)
853			sspd = 0;
854
855		maxpayload = min(eth1394_speedto_maxpayload[sspd],
856				 (u16)(1 << (max_rec + 1)));
857
858		guid = get_unaligned(&arp1394->s_uniq_id);
859		node = eth1394_find_node_guid(&priv->ip_node_list,
860					      be64_to_cpu(guid));
861		if (!node)
862			return 0;
863
864		node_info =
865		    (struct eth1394_node_info *)node->ud->device.driver_data;
866
867		/* Update our speed/payload/fifo_offset table */
868		node_info->maxpayload =	maxpayload;
869		node_info->sspd =	sspd;
870		node_info->fifo =	fifo_addr;
871
872		/* Now that we're done with the 1394 specific stuff, we'll
873		 * need to alter some of the data.  Believe it or not, all
874		 * that needs to be done is sender_IP_address needs to be
875		 * moved, the destination hardware address get stuffed
876		 * in and the hardware address length set to 8.
877		 *
878		 * IMPORTANT: The code below overwrites 1394 specific data
879		 * needed above so keep the munging of the data for the
880		 * higher level IP stack last. */
881
882		arp->ar_hln = 8;
883		arp_ptr += arp->ar_hln;		/* skip over sender unique id */
884		*(u32 *)arp_ptr = arp1394->sip;	/* move sender IP addr */
885		arp_ptr += arp->ar_pln;		/* skip over sender IP addr */
886
887		if (arp->ar_op == htons(ARPOP_REQUEST))
888			memset(arp_ptr, 0, sizeof(u64));
889		else
890			memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
891	}
892
893	/* Now add the ethernet header. */
894	if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
895			     skb->len) >= 0)
896		ret = ether1394_type_trans(skb, dev);
897
898	return ret;
899}
900
901static int fragment_overlap(struct list_head *frag_list, int offset, int len)
902{
903	struct fragment_info *fi;
904	int end = offset + len;
905
906	list_for_each_entry(fi, frag_list, list)
907		if (offset < fi->offset + fi->len && end > fi->offset)
908			return 1;
909
910	return 0;
911}
912
913static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
914{
915	struct partial_datagram *pd;
916
917	list_for_each_entry(pd, pdgl, list)
918		if (pd->dgl == dgl)
919			return &pd->list;
920
921	return NULL;
922}
923
924/* Assumes that new fragment does not overlap any existing fragments */
925static int new_fragment(struct list_head *frag_info, int offset, int len)
926{
927	struct list_head *lh;
928	struct fragment_info *fi, *fi2, *new;
929
930	list_for_each(lh, frag_info) {
931		fi = list_entry(lh, struct fragment_info, list);
932		if (fi->offset + fi->len == offset) {
933			/* The new fragment can be tacked on to the end */
934			fi->len += len;
935			/* Did the new fragment plug a hole? */
936			fi2 = list_entry(lh->next, struct fragment_info, list);
937			if (fi->offset + fi->len == fi2->offset) {
938				/* glue fragments together */
939				fi->len += fi2->len;
940				list_del(lh->next);
941				kfree(fi2);
942			}
943			return 0;
944		} else if (offset + len == fi->offset) {
945			/* The new fragment can be tacked on to the beginning */
946			fi->offset = offset;
947			fi->len += len;
948			/* Did the new fragment plug a hole? */
949			fi2 = list_entry(lh->prev, struct fragment_info, list);
950			if (fi2->offset + fi2->len == fi->offset) {
951				/* glue fragments together */
952				fi2->len += fi->len;
953				list_del(lh);
954				kfree(fi);
955			}
956			return 0;
957		} else if (offset > fi->offset + fi->len) {
958			break;
959		} else if (offset + len < fi->offset) {
960			lh = lh->prev;
961			break;
962		}
963	}
964
965	new = kmalloc(sizeof(*new), GFP_ATOMIC);
966	if (!new)
967		return -ENOMEM;
968
969	new->offset = offset;
970	new->len = len;
971
972	list_add(&new->list, lh);
973	return 0;
974}
975
976static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
977				int dgl, int dg_size, char *frag_buf,
978				int frag_off, int frag_len)
979{
980	struct partial_datagram *new;
981
982	new = kmalloc(sizeof(*new), GFP_ATOMIC);
983	if (!new)
984		return -ENOMEM;
985
986	INIT_LIST_HEAD(&new->frag_info);
987
988	if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
989		kfree(new);
990		return -ENOMEM;
991	}
992
993	new->dgl = dgl;
994	new->dg_size = dg_size;
995
996	new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
997	if (!new->skb) {
998		struct fragment_info *fi = list_entry(new->frag_info.next,
999						      struct fragment_info,
1000						      list);
1001		kfree(fi);
1002		kfree(new);
1003		return -ENOMEM;
1004	}
1005
1006	skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1007	new->pbuf = skb_put(new->skb, dg_size);
1008	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1009
1010	list_add(&new->list, pdgl);
1011	return 0;
1012}
1013
1014static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1015				   char *frag_buf, int frag_off, int frag_len)
1016{
1017	struct partial_datagram *pd =
1018			list_entry(lh, struct partial_datagram, list);
1019
1020	if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1021		return -ENOMEM;
1022
1023	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1024
1025	/* Move list entry to beginnig of list so that oldest partial
1026	 * datagrams percolate to the end of the list */
1027	list_move(lh, pdgl);
1028	return 0;
1029}
1030
1031static int is_datagram_complete(struct list_head *lh, int dg_size)
1032{
1033	struct partial_datagram *pd;
1034	struct fragment_info *fi;
1035
1036	pd = list_entry(lh, struct partial_datagram, list);
1037	fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1038
1039	return (fi->len == dg_size);
1040}
1041
1042/* Packet reception. We convert the IP1394 encapsulation header to an
1043 * ethernet header, and fill it with some of our other fields. This is
1044 * an incoming packet from the 1394 bus.  */
1045static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1046				  char *buf, int len)
1047{
1048	struct sk_buff *skb;
1049	unsigned long flags;
1050	struct eth1394_priv *priv = netdev_priv(dev);
1051	union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1052	u16 ether_type = 0;  /* initialized to clear warning */
1053	int hdr_len;
1054	struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1055	struct eth1394_node_info *node_info;
1056
1057	if (!ud) {
1058		struct eth1394_node_ref *node;
1059		node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1060		if (unlikely(!node)) {
1061			HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1062				   "lookup failure: " NODE_BUS_FMT,
1063				   NODE_BUS_ARGS(priv->host, srcid));
1064			priv->stats.rx_dropped++;
1065			return -1;
1066		}
1067		ud = node->ud;
1068
1069		priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1070	}
1071
1072	node_info = (struct eth1394_node_info *)ud->device.driver_data;
1073
1074	/* First, did we receive a fragmented or unfragmented datagram? */
1075	hdr->words.word1 = ntohs(hdr->words.word1);
1076
1077	hdr_len = hdr_type_len[hdr->common.lf];
1078
1079	if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1080		/* An unfragmented datagram has been received by the ieee1394
1081		 * bus. Build an skbuff around it so we can pass it to the
1082		 * high level network layer. */
1083
1084		skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1085		if (unlikely(!skb)) {
1086			ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1087			priv->stats.rx_dropped++;
1088			return -1;
1089		}
1090		skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1091		memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1092		       len - hdr_len);
1093		ether_type = hdr->uf.ether_type;
1094	} else {
1095		/* A datagram fragment has been received, now the fun begins. */
1096
1097		struct list_head *pdgl, *lh;
1098		struct partial_datagram *pd;
1099		int fg_off;
1100		int fg_len = len - hdr_len;
1101		int dg_size;
1102		int dgl;
1103		int retval;
1104		struct pdg_list *pdg = &(node_info->pdg);
1105
1106		hdr->words.word3 = ntohs(hdr->words.word3);
1107		/* The 4th header word is reserved so no need to do ntohs() */
1108
1109		if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1110			ether_type = hdr->ff.ether_type;
1111			dgl = hdr->ff.dgl;
1112			dg_size = hdr->ff.dg_size + 1;
1113			fg_off = 0;
1114		} else {
1115			hdr->words.word2 = ntohs(hdr->words.word2);
1116			dgl = hdr->sf.dgl;
1117			dg_size = hdr->sf.dg_size + 1;
1118			fg_off = hdr->sf.fg_off;
1119		}
1120		spin_lock_irqsave(&pdg->lock, flags);
1121
1122		pdgl = &(pdg->list);
1123		lh = find_partial_datagram(pdgl, dgl);
1124
1125		if (lh == NULL) {
1126			while (pdg->sz >= max_partial_datagrams) {
1127				/* remove the oldest */
1128				purge_partial_datagram(pdgl->prev);
1129				pdg->sz--;
1130			}
1131
1132			retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1133						      buf + hdr_len, fg_off,
1134						      fg_len);
1135			if (retval < 0) {
1136				spin_unlock_irqrestore(&pdg->lock, flags);
1137				goto bad_proto;
1138			}
1139			pdg->sz++;
1140			lh = find_partial_datagram(pdgl, dgl);
1141		} else {
1142			struct partial_datagram *pd;
1143
1144			pd = list_entry(lh, struct partial_datagram, list);
1145
1146			if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1147				/* Overlapping fragments, obliterate old
1148				 * datagram and start new one. */
1149				purge_partial_datagram(lh);
1150				retval = new_partial_datagram(dev, pdgl, dgl,
1151							      dg_size,
1152							      buf + hdr_len,
1153							      fg_off, fg_len);
1154				if (retval < 0) {
1155					pdg->sz--;
1156					spin_unlock_irqrestore(&pdg->lock, flags);
1157					goto bad_proto;
1158				}
1159			} else {
1160				retval = update_partial_datagram(pdgl, lh,
1161								 buf + hdr_len,
1162								 fg_off, fg_len);
1163				if (retval < 0) {
1164					/* Couldn't save off fragment anyway
1165					 * so might as well obliterate the
1166					 * datagram now. */
1167					purge_partial_datagram(lh);
1168					pdg->sz--;
1169					spin_unlock_irqrestore(&pdg->lock, flags);
1170					goto bad_proto;
1171				}
1172			} /* fragment overlap */
1173		} /* new datagram or add to existing one */
1174
1175		pd = list_entry(lh, struct partial_datagram, list);
1176
1177		if (hdr->common.lf == ETH1394_HDR_LF_FF)
1178			pd->ether_type = ether_type;
1179
1180		if (is_datagram_complete(lh, dg_size)) {
1181			ether_type = pd->ether_type;
1182			pdg->sz--;
1183			skb = skb_get(pd->skb);
1184			purge_partial_datagram(lh);
1185			spin_unlock_irqrestore(&pdg->lock, flags);
1186		} else {
1187			/* Datagram is not complete, we're done for the
1188			 * moment. */
1189			spin_unlock_irqrestore(&pdg->lock, flags);
1190			return 0;
1191		}
1192	} /* unframgented datagram or fragmented one */
1193
1194	/* Write metadata, and then pass to the receive level */
1195	skb->dev = dev;
1196	skb->ip_summed = CHECKSUM_UNNECESSARY;	/* don't check it */
1197
1198	/* Parse the encapsulation header. This actually does the job of
1199	 * converting to an ethernet frame header, aswell as arp
1200	 * conversion if needed. ARP conversion is easier in this
1201	 * direction, since we are using ethernet as our backend.  */
1202	skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1203					      ether_type);
1204
1205	spin_lock_irqsave(&priv->lock, flags);
1206
1207	if (!skb->protocol) {
1208		priv->stats.rx_errors++;
1209		priv->stats.rx_dropped++;
1210		dev_kfree_skb_any(skb);
1211		goto bad_proto;
1212	}
1213
1214	if (netif_rx(skb) == NET_RX_DROP) {
1215		priv->stats.rx_errors++;
1216		priv->stats.rx_dropped++;
1217		goto bad_proto;
1218	}
1219
1220	/* Statistics */
1221	priv->stats.rx_packets++;
1222	priv->stats.rx_bytes += skb->len;
1223
1224bad_proto:
1225	if (netif_queue_stopped(dev))
1226		netif_wake_queue(dev);
1227	spin_unlock_irqrestore(&priv->lock, flags);
1228
1229	dev->last_rx = jiffies;
1230
1231	return 0;
1232}
1233
1234static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1235			   quadlet_t *data, u64 addr, size_t len, u16 flags)
1236{
1237	struct eth1394_host_info *hi;
1238
1239	hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1240	if (unlikely(!hi)) {
1241		ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1242				host->id);
1243		return RCODE_ADDRESS_ERROR;
1244	}
1245
1246	if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1247		return RCODE_ADDRESS_ERROR;
1248	else
1249		return RCODE_COMPLETE;
1250}
1251
1252static void ether1394_iso(struct hpsb_iso *iso)
1253{
1254	quadlet_t *data;
1255	char *buf;
1256	struct eth1394_host_info *hi;
1257	struct net_device *dev;
1258	struct eth1394_priv *priv;
1259	unsigned int len;
1260	u32 specifier_id;
1261	u16 source_id;
1262	int i;
1263	int nready;
1264
1265	hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1266	if (unlikely(!hi)) {
1267		ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1268				iso->host->id);
1269		return;
1270	}
1271
1272	dev = hi->dev;
1273
1274	nready = hpsb_iso_n_ready(iso);
1275	for (i = 0; i < nready; i++) {
1276		struct hpsb_iso_packet_info *info =
1277			&iso->infos[(iso->first_packet + i) % iso->buf_packets];
1278		data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1279
1280		/* skip over GASP header */
1281		buf = (char *)data + 8;
1282		len = info->len - 8;
1283
1284		specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1285			       (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1286		source_id = be32_to_cpu(data[0]) >> 16;
1287
1288		priv = netdev_priv(dev);
1289
1290		if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1291		    || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1292			/* This packet is not for us */
1293			continue;
1294		}
1295		ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1296				       buf, len);
1297	}
1298
1299	hpsb_iso_recv_release_packets(iso, i);
1300
1301	dev->last_rx = jiffies;
1302}
1303
1304/******************************************
1305 * Datagram transmission code
1306 ******************************************/
1307
1308/* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1309 * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1310 * needs to be munged a bit.  The remainder of the arphdr is formatted based
1311 * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1312 * judge.
1313 *
1314 * Now that the EUI is used for the hardware address all we need to do to make
1315 * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1316 * speed, and unicast FIFO address information between the sender_unique_id
1317 * and the IP addresses.
1318 */
1319static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1320				     struct net_device *dev)
1321{
1322	struct eth1394_priv *priv = netdev_priv(dev);
1323	struct arphdr *arp = (struct arphdr *)skb->data;
1324	unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1325	struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1326
1327	arp1394->hw_addr_len	= 16;
1328	arp1394->sip		= *(u32*)(arp_ptr + ETH1394_ALEN);
1329	arp1394->max_rec	= priv->host->csr.max_rec;
1330	arp1394->sspd		= priv->host->csr.lnk_spd;
1331	arp1394->fifo_hi	= htons(priv->local_fifo >> 32);
1332	arp1394->fifo_lo	= htonl(priv->local_fifo & ~0x0);
1333}
1334
1335/* We need to encapsulate the standard header with our own. We use the
1336 * ethernet header's proto for our own. */
1337static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1338					       __be16 proto,
1339					       union eth1394_hdr *hdr,
1340					       u16 dg_size, u16 dgl)
1341{
1342	unsigned int adj_max_payload =
1343				max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1344
1345	/* Does it all fit in one packet? */
1346	if (dg_size <= adj_max_payload) {
1347		hdr->uf.lf = ETH1394_HDR_LF_UF;
1348		hdr->uf.ether_type = proto;
1349	} else {
1350		hdr->ff.lf = ETH1394_HDR_LF_FF;
1351		hdr->ff.ether_type = proto;
1352		hdr->ff.dg_size = dg_size - 1;
1353		hdr->ff.dgl = dgl;
1354		adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1355	}
1356	return (dg_size + adj_max_payload - 1) / adj_max_payload;
1357}
1358
1359static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1360					  unsigned int max_payload,
1361					  union eth1394_hdr *hdr)
1362{
1363	union eth1394_hdr *bufhdr;
1364	int ftype = hdr->common.lf;
1365	int hdrsz = hdr_type_len[ftype];
1366	unsigned int adj_max_payload = max_payload - hdrsz;
1367
1368	switch (ftype) {
1369	case ETH1394_HDR_LF_UF:
1370		bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1371		bufhdr->words.word1 = htons(hdr->words.word1);
1372		bufhdr->words.word2 = hdr->words.word2;
1373		break;
1374
1375	case ETH1394_HDR_LF_FF:
1376		bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1377		bufhdr->words.word1 = htons(hdr->words.word1);
1378		bufhdr->words.word2 = hdr->words.word2;
1379		bufhdr->words.word3 = htons(hdr->words.word3);
1380		bufhdr->words.word4 = 0;
1381
1382		/* Set frag type here for future interior fragments */
1383		hdr->common.lf = ETH1394_HDR_LF_IF;
1384		hdr->sf.fg_off = 0;
1385		break;
1386
1387	default:
1388		hdr->sf.fg_off += adj_max_payload;
1389		bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1390		if (max_payload >= skb->len)
1391			hdr->common.lf = ETH1394_HDR_LF_LF;
1392		bufhdr->words.word1 = htons(hdr->words.word1);
1393		bufhdr->words.word2 = htons(hdr->words.word2);
1394		bufhdr->words.word3 = htons(hdr->words.word3);
1395		bufhdr->words.word4 = 0;
1396	}
1397	return min(max_payload, skb->len);
1398}
1399
1400static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1401{
1402	struct hpsb_packet *p;
1403
1404	p = hpsb_alloc_packet(0);
1405	if (p) {
1406		p->host = host;
1407		p->generation = get_hpsb_generation(host);
1408		p->type = hpsb_async;
1409	}
1410	return p;
1411}
1412
1413static int ether1394_prep_write_packet(struct hpsb_packet *p,
1414				       struct hpsb_host *host, nodeid_t node,
1415				       u64 addr, void *data, int tx_len)
1416{
1417	p->node_id = node;
1418
1419	if (hpsb_get_tlabel(p))
1420		return -EAGAIN;
1421
1422	p->tcode = TCODE_WRITEB;
1423	p->header_size = 16;
1424	p->expect_response = 1;
1425	p->header[0] =
1426		p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1427	p->header[1] = host->node_id << 16 | addr >> 32;
1428	p->header[2] = addr & 0xffffffff;
1429	p->header[3] = tx_len << 16;
1430	p->data_size = (tx_len + 3) & ~3;
1431	p->data = data;
1432
1433	return 0;
1434}
1435
1436static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1437				       struct eth1394_priv *priv,
1438				       struct sk_buff *skb, int length)
1439{
1440	p->header_size = 4;
1441	p->tcode = TCODE_STREAM_DATA;
1442
1443	p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1444		       TCODE_STREAM_DATA << 4;
1445	p->data_size = length;
1446	p->data = (quadlet_t *)skb->data - 2;
1447	p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1448				 ETHER1394_GASP_SPECIFIER_ID_HI);
1449	p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1450				 ETHER1394_GASP_VERSION);
1451
1452	p->speed_code = priv->bc_sspd;
1453
1454	/* prevent hpsb_send_packet() from overriding our speed code */
1455	p->node_id = LOCAL_BUS | ALL_NODES;
1456}
1457
1458static void ether1394_free_packet(struct hpsb_packet *packet)
1459{
1460	if (packet->tcode != TCODE_STREAM_DATA)
1461		hpsb_free_tlabel(packet);
1462	hpsb_free_packet(packet);
1463}
1464
1465static void ether1394_complete_cb(void *__ptask);
1466
1467static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1468{
1469	struct eth1394_priv *priv = ptask->priv;
1470	struct hpsb_packet *packet = NULL;
1471
1472	packet = ether1394_alloc_common_packet(priv->host);
1473	if (!packet)
1474		return -ENOMEM;
1475
1476	if (ptask->tx_type == ETH1394_GASP) {
1477		int length = tx_len + 2 * sizeof(quadlet_t);
1478
1479		ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1480	} else if (ether1394_prep_write_packet(packet, priv->host,
1481					       ptask->dest_node,
1482					       ptask->addr, ptask->skb->data,
1483					       tx_len)) {
1484		hpsb_free_packet(packet);
1485		return -EAGAIN;
1486	}
1487
1488	ptask->packet = packet;
1489	hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1490				      ptask);
1491
1492	if (hpsb_send_packet(packet) < 0) {
1493		ether1394_free_packet(packet);
1494		return -EIO;
1495	}
1496
1497	return 0;
1498}
1499
1500/* Task function to be run when a datagram transmission is completed */
1501static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1502{
1503	struct sk_buff *skb = ptask->skb;
1504	struct eth1394_priv *priv = netdev_priv(skb->dev);
1505	unsigned long flags;
1506
1507	/* Statistics */
1508	spin_lock_irqsave(&priv->lock, flags);
1509	if (fail) {
1510		priv->stats.tx_dropped++;
1511		priv->stats.tx_errors++;
1512	} else {
1513		priv->stats.tx_bytes += skb->len;
1514		priv->stats.tx_packets++;
1515	}
1516	spin_unlock_irqrestore(&priv->lock, flags);
1517
1518	dev_kfree_skb_any(skb);
1519	kmem_cache_free(packet_task_cache, ptask);
1520}
1521
1522/* Callback for when a packet has been sent and the status of that packet is
1523 * known */
1524static void ether1394_complete_cb(void *__ptask)
1525{
1526	struct packet_task *ptask = (struct packet_task *)__ptask;
1527	struct hpsb_packet *packet = ptask->packet;
1528	int fail = 0;
1529
1530	if (packet->tcode != TCODE_STREAM_DATA)
1531		fail = hpsb_packet_success(packet);
1532
1533	ether1394_free_packet(packet);
1534
1535	ptask->outstanding_pkts--;
1536	if (ptask->outstanding_pkts > 0 && !fail) {
1537		int tx_len, err;
1538
1539		/* Add the encapsulation header to the fragment */
1540		tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1541					       &ptask->hdr);
1542		err = ether1394_send_packet(ptask, tx_len);
1543		if (err) {
1544			if (err == -EAGAIN)
1545				ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1546
1547			ether1394_dg_complete(ptask, 1);
1548		}
1549	} else {
1550		ether1394_dg_complete(ptask, fail);
1551	}
1552}
1553
1554/* Transmit a packet (called by kernel) */
1555static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1556{
1557	struct eth1394hdr hdr_buf;
1558	struct eth1394_priv *priv = netdev_priv(dev);
1559	__be16 proto;
1560	unsigned long flags;
1561	nodeid_t dest_node;
1562	eth1394_tx_type tx_type;
1563	unsigned int tx_len;
1564	unsigned int max_payload;
1565	u16 dg_size;
1566	u16 dgl;
1567	struct packet_task *ptask;
1568	struct eth1394_node_ref *node;
1569	struct eth1394_node_info *node_info = NULL;
1570
1571	ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1572	if (ptask == NULL)
1573		goto fail;
1574
1575
1576	skb = skb_share_check(skb, GFP_ATOMIC);
1577	if (!skb)
1578		goto fail;
1579
1580	/* Get rid of the fake eth1394 header, but first make a copy.
1581	 * We might need to rebuild the header on tx failure. */
1582	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1583	skb_pull(skb, ETH1394_HLEN);
1584
1585	proto = hdr_buf.h_proto;
1586	dg_size = skb->len;
1587
1588	/* Set the transmission type for the packet.  ARP packets and IP
1589	 * broadcast packets are sent via GASP. */
1590	if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1591	    proto == htons(ETH_P_ARP) ||
1592	    (proto == htons(ETH_P_IP) &&
1593	     IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1594		tx_type = ETH1394_GASP;
1595		dest_node = LOCAL_BUS | ALL_NODES;
1596		max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1597		BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1598		dgl = priv->bc_dgl;
1599		if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1600			priv->bc_dgl++;
1601	} else {
1602		__be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1603
1604		node = eth1394_find_node_guid(&priv->ip_node_list,
1605					      be64_to_cpu(guid));
1606		if (!node)
1607			goto fail;
1608
1609		node_info =
1610		    (struct eth1394_node_info *)node->ud->device.driver_data;
1611		if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1612			goto fail;
1613
1614		dest_node = node->ud->ne->nodeid;
1615		max_payload = node_info->maxpayload;
1616		BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1617
1618		dgl = node_info->dgl;
1619		if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1620			node_info->dgl++;
1621		tx_type = ETH1394_WRREQ;
1622	}
1623
1624	/* If this is an ARP packet, convert it */
1625	if (proto == htons(ETH_P_ARP))
1626		ether1394_arp_to_1394arp(skb, dev);
1627
1628	ptask->hdr.words.word1 = 0;
1629	ptask->hdr.words.word2 = 0;
1630	ptask->hdr.words.word3 = 0;
1631	ptask->hdr.words.word4 = 0;
1632	ptask->skb = skb;
1633	ptask->priv = priv;
1634	ptask->tx_type = tx_type;
1635
1636	if (tx_type != ETH1394_GASP) {
1637		u64 addr;
1638
1639		spin_lock_irqsave(&priv->lock, flags);
1640		addr = node_info->fifo;
1641		spin_unlock_irqrestore(&priv->lock, flags);
1642
1643		ptask->addr = addr;
1644		ptask->dest_node = dest_node;
1645	}
1646
1647	ptask->tx_type = tx_type;
1648	ptask->max_payload = max_payload;
1649	ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1650					proto, &ptask->hdr, dg_size, dgl);
1651
1652	/* Add the encapsulation header to the fragment */
1653	tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1654	dev->trans_start = jiffies;
1655	if (ether1394_send_packet(ptask, tx_len)) {
1656		if (dest_node == (LOCAL_BUS | ALL_NODES))
1657			goto fail;
1658
1659		/* At this point we want to restore the packet.  When we return
1660		 * here with NETDEV_TX_BUSY we will get another entrance in this
1661		 * routine with the same skb and we need it to look the same.
1662		 * So we pull 4 more bytes, then build the header again. */
1663		skb_pull(skb, 4);
1664		ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1665				 hdr_buf.h_dest, NULL, 0);
1666
1667		/* Most failures of ether1394_send_packet are recoverable. */
1668		netif_stop_queue(dev);
1669		priv->wake_node = dest_node;
1670		schedule_work(&priv->wake);
1671		kmem_cache_free(packet_task_cache, ptask);
1672		return NETDEV_TX_BUSY;
1673	}
1674
1675	return NETDEV_TX_OK;
1676fail:
1677	if (ptask)
1678		kmem_cache_free(packet_task_cache, ptask);
1679
1680	if (skb != NULL)
1681		dev_kfree_skb(skb);
1682
1683	spin_lock_irqsave(&priv->lock, flags);
1684	priv->stats.tx_dropped++;
1685	priv->stats.tx_errors++;
1686	spin_unlock_irqrestore(&priv->lock, flags);
1687
1688	/* return NETDEV_TX_BUSY; */
1689	return NETDEV_TX_OK;
1690}
1691
1692static void ether1394_get_drvinfo(struct net_device *dev,
1693				  struct ethtool_drvinfo *info)
1694{
1695	strcpy(info->driver, driver_name);
1696	strcpy(info->bus_info, "ieee1394");
1697}
1698
1699static struct ethtool_ops ethtool_ops = {
1700	.get_drvinfo = ether1394_get_drvinfo
1701};
1702
1703static int __init ether1394_init_module(void)
1704{
1705	int err;
1706
1707	packet_task_cache = kmem_cache_create("packet_task",
1708					      sizeof(struct packet_task),
1709					      0, 0, NULL, NULL);
1710	if (!packet_task_cache)
1711		return -ENOMEM;
1712
1713	hpsb_register_highlevel(&eth1394_highlevel);
1714	err = hpsb_register_protocol(&eth1394_proto_driver);
1715	if (err) {
1716		hpsb_unregister_highlevel(&eth1394_highlevel);
1717		kmem_cache_destroy(packet_task_cache);
1718	}
1719	return err;
1720}
1721
1722static void __exit ether1394_exit_module(void)
1723{
1724	hpsb_unregister_protocol(&eth1394_proto_driver);
1725	hpsb_unregister_highlevel(&eth1394_highlevel);
1726	kmem_cache_destroy(packet_task_cache);
1727}
1728
1729module_init(ether1394_init_module);
1730module_exit(ether1394_exit_module);
1731