1/*
2    asb100.c - Part of lm_sensors, Linux kernel modules for hardware
3	        monitoring
4
5    Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
6
7	(derived from w83781d.c)
8
9    Copyright (C) 1998 - 2003  Frodo Looijaard <frodol@dds.nl>,
10    Philip Edelbrock <phil@netroedge.com>, and
11    Mark Studebaker <mdsxyz123@yahoo.com>
12
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 2 of the License, or
16    (at your option) any later version.
17
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26*/
27
28/*
29    This driver supports the hardware sensor chips: Asus ASB100 and
30    ASB100-A "BACH".
31
32    ASB100-A supports pwm1, while plain ASB100 does not.  There is no known
33    way for the driver to tell which one is there.
34
35    Chip	#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
36    asb100	7	3	1	4	0x31	0x0694	yes	no
37*/
38
39#include <linux/module.h>
40#include <linux/slab.h>
41#include <linux/i2c.h>
42#include <linux/hwmon.h>
43#include <linux/hwmon-vid.h>
44#include <linux/err.h>
45#include <linux/init.h>
46#include <linux/jiffies.h>
47#include <linux/mutex.h>
48#include "lm75.h"
49
50/*
51	HISTORY:
52	2003-12-29	1.0.0	Ported from lm_sensors project for kernel 2.6
53*/
54#define ASB100_VERSION "1.0.0"
55
56/* I2C addresses to scan */
57static unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
58
59/* Insmod parameters */
60I2C_CLIENT_INSMOD_1(asb100);
61I2C_CLIENT_MODULE_PARM(force_subclients, "List of subclient addresses: "
62	"{bus, clientaddr, subclientaddr1, subclientaddr2}");
63
64/* Voltage IN registers 0-6 */
65#define ASB100_REG_IN(nr)	(0x20 + (nr))
66#define ASB100_REG_IN_MAX(nr)	(0x2b + (nr * 2))
67#define ASB100_REG_IN_MIN(nr)	(0x2c + (nr * 2))
68
69/* FAN IN registers 1-3 */
70#define ASB100_REG_FAN(nr)	(0x28 + (nr))
71#define ASB100_REG_FAN_MIN(nr)	(0x3b + (nr))
72
73/* TEMPERATURE registers 1-4 */
74static const u16 asb100_reg_temp[]	= {0, 0x27, 0x150, 0x250, 0x17};
75static const u16 asb100_reg_temp_max[]	= {0, 0x39, 0x155, 0x255, 0x18};
76static const u16 asb100_reg_temp_hyst[]	= {0, 0x3a, 0x153, 0x253, 0x19};
77
78#define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
79#define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
80#define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
81
82#define ASB100_REG_TEMP2_CONFIG	0x0152
83#define ASB100_REG_TEMP3_CONFIG	0x0252
84
85
86#define ASB100_REG_CONFIG	0x40
87#define ASB100_REG_ALARM1	0x41
88#define ASB100_REG_ALARM2	0x42
89#define ASB100_REG_SMIM1	0x43
90#define ASB100_REG_SMIM2	0x44
91#define ASB100_REG_VID_FANDIV	0x47
92#define ASB100_REG_I2C_ADDR	0x48
93#define ASB100_REG_CHIPID	0x49
94#define ASB100_REG_I2C_SUBADDR	0x4a
95#define ASB100_REG_PIN		0x4b
96#define ASB100_REG_IRQ		0x4c
97#define ASB100_REG_BANK		0x4e
98#define ASB100_REG_CHIPMAN	0x4f
99
100#define ASB100_REG_WCHIPID	0x58
101
102/* bit 7 -> enable, bits 0-3 -> duty cycle */
103#define ASB100_REG_PWM1		0x59
104
105/* CONVERSIONS
106   Rounding and limit checking is only done on the TO_REG variants. */
107
108/* These constants are a guess, consistent w/ w83781d */
109#define ASB100_IN_MIN (   0)
110#define ASB100_IN_MAX (4080)
111
112/* IN: 1/1000 V (0V to 4.08V)
113   REG: 16mV/bit */
114static u8 IN_TO_REG(unsigned val)
115{
116	unsigned nval = SENSORS_LIMIT(val, ASB100_IN_MIN, ASB100_IN_MAX);
117	return (nval + 8) / 16;
118}
119
120static unsigned IN_FROM_REG(u8 reg)
121{
122	return reg * 16;
123}
124
125static u8 FAN_TO_REG(long rpm, int div)
126{
127	if (rpm == -1)
128		return 0;
129	if (rpm == 0)
130		return 255;
131	rpm = SENSORS_LIMIT(rpm, 1, 1000000);
132	return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
133}
134
135static int FAN_FROM_REG(u8 val, int div)
136{
137	return val==0 ? -1 : val==255 ? 0 : 1350000/(val*div);
138}
139
140/* These constants are a guess, consistent w/ w83781d */
141#define ASB100_TEMP_MIN (-128000)
142#define ASB100_TEMP_MAX ( 127000)
143
144/* TEMP: 0.001C/bit (-128C to +127C)
145   REG: 1C/bit, two's complement */
146static u8 TEMP_TO_REG(int temp)
147{
148	int ntemp = SENSORS_LIMIT(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
149	ntemp += (ntemp<0 ? -500 : 500);
150	return (u8)(ntemp / 1000);
151}
152
153static int TEMP_FROM_REG(u8 reg)
154{
155	return (s8)reg * 1000;
156}
157
158/* PWM: 0 - 255 per sensors documentation
159   REG: (6.25% duty cycle per bit) */
160static u8 ASB100_PWM_TO_REG(int pwm)
161{
162	pwm = SENSORS_LIMIT(pwm, 0, 255);
163	return (u8)(pwm / 16);
164}
165
166static int ASB100_PWM_FROM_REG(u8 reg)
167{
168	return reg * 16;
169}
170
171#define DIV_FROM_REG(val) (1 << (val))
172
173/* FAN DIV: 1, 2, 4, or 8 (defaults to 2)
174   REG: 0, 1, 2, or 3 (respectively) (defaults to 1) */
175static u8 DIV_TO_REG(long val)
176{
177	return val==8 ? 3 : val==4 ? 2 : val==1 ? 0 : 1;
178}
179
180/* For each registered client, we need to keep some data in memory. That
181   data is pointed to by client->data. The structure itself is
182   dynamically allocated, at the same time the client itself is allocated. */
183struct asb100_data {
184	struct i2c_client client;
185	struct class_device *class_dev;
186	struct mutex lock;
187	enum chips type;
188
189	struct mutex update_lock;
190	unsigned long last_updated;	/* In jiffies */
191
192	/* array of 2 pointers to subclients */
193	struct i2c_client *lm75[2];
194
195	char valid;		/* !=0 if following fields are valid */
196	u8 in[7];		/* Register value */
197	u8 in_max[7];		/* Register value */
198	u8 in_min[7];		/* Register value */
199	u8 fan[3];		/* Register value */
200	u8 fan_min[3];		/* Register value */
201	u16 temp[4];		/* Register value (0 and 3 are u8 only) */
202	u16 temp_max[4];	/* Register value (0 and 3 are u8 only) */
203	u16 temp_hyst[4];	/* Register value (0 and 3 are u8 only) */
204	u8 fan_div[3];		/* Register encoding, right justified */
205	u8 pwm;			/* Register encoding */
206	u8 vid;			/* Register encoding, combined */
207	u32 alarms;		/* Register encoding, combined */
208	u8 vrm;
209};
210
211static int asb100_read_value(struct i2c_client *client, u16 reg);
212static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
213
214static int asb100_attach_adapter(struct i2c_adapter *adapter);
215static int asb100_detect(struct i2c_adapter *adapter, int address, int kind);
216static int asb100_detach_client(struct i2c_client *client);
217static struct asb100_data *asb100_update_device(struct device *dev);
218static void asb100_init_client(struct i2c_client *client);
219
220static struct i2c_driver asb100_driver = {
221	.driver = {
222		.name	= "asb100",
223	},
224	.id		= I2C_DRIVERID_ASB100,
225	.attach_adapter	= asb100_attach_adapter,
226	.detach_client	= asb100_detach_client,
227};
228
229/* 7 Voltages */
230#define show_in_reg(reg) \
231static ssize_t show_##reg (struct device *dev, char *buf, int nr) \
232{ \
233	struct asb100_data *data = asb100_update_device(dev); \
234	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
235}
236
237show_in_reg(in)
238show_in_reg(in_min)
239show_in_reg(in_max)
240
241#define set_in_reg(REG, reg) \
242static ssize_t set_in_##reg(struct device *dev, const char *buf, \
243		size_t count, int nr) \
244{ \
245	struct i2c_client *client = to_i2c_client(dev); \
246	struct asb100_data *data = i2c_get_clientdata(client); \
247	unsigned long val = simple_strtoul(buf, NULL, 10); \
248 \
249	mutex_lock(&data->update_lock); \
250	data->in_##reg[nr] = IN_TO_REG(val); \
251	asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
252		data->in_##reg[nr]); \
253	mutex_unlock(&data->update_lock); \
254	return count; \
255}
256
257set_in_reg(MIN, min)
258set_in_reg(MAX, max)
259
260#define sysfs_in(offset) \
261static ssize_t \
262	show_in##offset (struct device *dev, struct device_attribute *attr, char *buf) \
263{ \
264	return show_in(dev, buf, offset); \
265} \
266static DEVICE_ATTR(in##offset##_input, S_IRUGO, \
267		show_in##offset, NULL); \
268static ssize_t \
269	show_in##offset##_min (struct device *dev, struct device_attribute *attr, char *buf) \
270{ \
271	return show_in_min(dev, buf, offset); \
272} \
273static ssize_t \
274	show_in##offset##_max (struct device *dev, struct device_attribute *attr, char *buf) \
275{ \
276	return show_in_max(dev, buf, offset); \
277} \
278static ssize_t set_in##offset##_min (struct device *dev, struct device_attribute *attr, \
279		const char *buf, size_t count) \
280{ \
281	return set_in_min(dev, buf, count, offset); \
282} \
283static ssize_t set_in##offset##_max (struct device *dev, struct device_attribute *attr, \
284		const char *buf, size_t count) \
285{ \
286	return set_in_max(dev, buf, count, offset); \
287} \
288static DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
289		show_in##offset##_min, set_in##offset##_min); \
290static DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
291		show_in##offset##_max, set_in##offset##_max);
292
293sysfs_in(0);
294sysfs_in(1);
295sysfs_in(2);
296sysfs_in(3);
297sysfs_in(4);
298sysfs_in(5);
299sysfs_in(6);
300
301/* 3 Fans */
302static ssize_t show_fan(struct device *dev, char *buf, int nr)
303{
304	struct asb100_data *data = asb100_update_device(dev);
305	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
306		DIV_FROM_REG(data->fan_div[nr])));
307}
308
309static ssize_t show_fan_min(struct device *dev, char *buf, int nr)
310{
311	struct asb100_data *data = asb100_update_device(dev);
312	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
313		DIV_FROM_REG(data->fan_div[nr])));
314}
315
316static ssize_t show_fan_div(struct device *dev, char *buf, int nr)
317{
318	struct asb100_data *data = asb100_update_device(dev);
319	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
320}
321
322static ssize_t set_fan_min(struct device *dev, const char *buf,
323				size_t count, int nr)
324{
325	struct i2c_client *client = to_i2c_client(dev);
326	struct asb100_data *data = i2c_get_clientdata(client);
327	u32 val = simple_strtoul(buf, NULL, 10);
328
329	mutex_lock(&data->update_lock);
330	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
331	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
332	mutex_unlock(&data->update_lock);
333	return count;
334}
335
336/* Note: we save and restore the fan minimum here, because its value is
337   determined in part by the fan divisor.  This follows the principle of
338   least surprise; the user doesn't expect the fan minimum to change just
339   because the divisor changed. */
340static ssize_t set_fan_div(struct device *dev, const char *buf,
341				size_t count, int nr)
342{
343	struct i2c_client *client = to_i2c_client(dev);
344	struct asb100_data *data = i2c_get_clientdata(client);
345	unsigned long min;
346	unsigned long val = simple_strtoul(buf, NULL, 10);
347	int reg;
348
349	mutex_lock(&data->update_lock);
350
351	min = FAN_FROM_REG(data->fan_min[nr],
352			DIV_FROM_REG(data->fan_div[nr]));
353	data->fan_div[nr] = DIV_TO_REG(val);
354
355	switch(nr) {
356	case 0:	/* fan 1 */
357		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
358		reg = (reg & 0xcf) | (data->fan_div[0] << 4);
359		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
360		break;
361
362	case 1:	/* fan 2 */
363		reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
364		reg = (reg & 0x3f) | (data->fan_div[1] << 6);
365		asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
366		break;
367
368	case 2:	/* fan 3 */
369		reg = asb100_read_value(client, ASB100_REG_PIN);
370		reg = (reg & 0x3f) | (data->fan_div[2] << 6);
371		asb100_write_value(client, ASB100_REG_PIN, reg);
372		break;
373	}
374
375	data->fan_min[nr] =
376		FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
377	asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
378
379	mutex_unlock(&data->update_lock);
380
381	return count;
382}
383
384#define sysfs_fan(offset) \
385static ssize_t show_fan##offset(struct device *dev, struct device_attribute *attr, char *buf) \
386{ \
387	return show_fan(dev, buf, offset - 1); \
388} \
389static ssize_t show_fan##offset##_min(struct device *dev, struct device_attribute *attr, char *buf) \
390{ \
391	return show_fan_min(dev, buf, offset - 1); \
392} \
393static ssize_t show_fan##offset##_div(struct device *dev, struct device_attribute *attr, char *buf) \
394{ \
395	return show_fan_div(dev, buf, offset - 1); \
396} \
397static ssize_t set_fan##offset##_min(struct device *dev, struct device_attribute *attr, const char *buf, \
398					size_t count) \
399{ \
400	return set_fan_min(dev, buf, count, offset - 1); \
401} \
402static ssize_t set_fan##offset##_div(struct device *dev, struct device_attribute *attr, const char *buf, \
403					size_t count) \
404{ \
405	return set_fan_div(dev, buf, count, offset - 1); \
406} \
407static DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
408		show_fan##offset, NULL); \
409static DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
410		show_fan##offset##_min, set_fan##offset##_min); \
411static DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
412		show_fan##offset##_div, set_fan##offset##_div);
413
414sysfs_fan(1);
415sysfs_fan(2);
416sysfs_fan(3);
417
418/* 4 Temp. Sensors */
419static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
420{
421	int ret = 0;
422
423	switch (nr) {
424	case 1: case 2:
425		ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
426		break;
427	case 0: case 3: default:
428		ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
429		break;
430	}
431	return ret;
432}
433
434#define show_temp_reg(reg) \
435static ssize_t show_##reg(struct device *dev, char *buf, int nr) \
436{ \
437	struct asb100_data *data = asb100_update_device(dev); \
438	return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
439}
440
441show_temp_reg(temp);
442show_temp_reg(temp_max);
443show_temp_reg(temp_hyst);
444
445#define set_temp_reg(REG, reg) \
446static ssize_t set_##reg(struct device *dev, const char *buf, \
447			size_t count, int nr) \
448{ \
449	struct i2c_client *client = to_i2c_client(dev); \
450	struct asb100_data *data = i2c_get_clientdata(client); \
451	unsigned long val = simple_strtoul(buf, NULL, 10); \
452 \
453	mutex_lock(&data->update_lock); \
454	switch (nr) { \
455	case 1: case 2: \
456		data->reg[nr] = LM75_TEMP_TO_REG(val); \
457		break; \
458	case 0: case 3: default: \
459		data->reg[nr] = TEMP_TO_REG(val); \
460		break; \
461	} \
462	asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
463			data->reg[nr]); \
464	mutex_unlock(&data->update_lock); \
465	return count; \
466}
467
468set_temp_reg(MAX, temp_max);
469set_temp_reg(HYST, temp_hyst);
470
471#define sysfs_temp(num) \
472static ssize_t show_temp##num(struct device *dev, struct device_attribute *attr, char *buf) \
473{ \
474	return show_temp(dev, buf, num-1); \
475} \
476static DEVICE_ATTR(temp##num##_input, S_IRUGO, show_temp##num, NULL); \
477static ssize_t show_temp_max##num(struct device *dev, struct device_attribute *attr, char *buf) \
478{ \
479	return show_temp_max(dev, buf, num-1); \
480} \
481static ssize_t set_temp_max##num(struct device *dev, struct device_attribute *attr, const char *buf, \
482					size_t count) \
483{ \
484	return set_temp_max(dev, buf, count, num-1); \
485} \
486static DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
487		show_temp_max##num, set_temp_max##num); \
488static ssize_t show_temp_hyst##num(struct device *dev, struct device_attribute *attr, char *buf) \
489{ \
490	return show_temp_hyst(dev, buf, num-1); \
491} \
492static ssize_t set_temp_hyst##num(struct device *dev, struct device_attribute *attr, const char *buf, \
493					size_t count) \
494{ \
495	return set_temp_hyst(dev, buf, count, num-1); \
496} \
497static DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
498		show_temp_hyst##num, set_temp_hyst##num);
499
500sysfs_temp(1);
501sysfs_temp(2);
502sysfs_temp(3);
503sysfs_temp(4);
504
505/* VID */
506static ssize_t show_vid(struct device *dev, struct device_attribute *attr, char *buf)
507{
508	struct asb100_data *data = asb100_update_device(dev);
509	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
510}
511
512static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
513
514/* VRM */
515static ssize_t show_vrm(struct device *dev, struct device_attribute *attr, char *buf)
516{
517	struct asb100_data *data = asb100_update_device(dev);
518	return sprintf(buf, "%d\n", data->vrm);
519}
520
521static ssize_t set_vrm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
522{
523	struct i2c_client *client = to_i2c_client(dev);
524	struct asb100_data *data = i2c_get_clientdata(client);
525	unsigned long val = simple_strtoul(buf, NULL, 10);
526	data->vrm = val;
527	return count;
528}
529
530/* Alarms */
531static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
532
533static ssize_t show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
534{
535	struct asb100_data *data = asb100_update_device(dev);
536	return sprintf(buf, "%u\n", data->alarms);
537}
538
539static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
540
541/* 1 PWM */
542static ssize_t show_pwm1(struct device *dev, struct device_attribute *attr, char *buf)
543{
544	struct asb100_data *data = asb100_update_device(dev);
545	return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
546}
547
548static ssize_t set_pwm1(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
549{
550	struct i2c_client *client = to_i2c_client(dev);
551	struct asb100_data *data = i2c_get_clientdata(client);
552	unsigned long val = simple_strtoul(buf, NULL, 10);
553
554	mutex_lock(&data->update_lock);
555	data->pwm &= 0x80; /* keep the enable bit */
556	data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
557	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
558	mutex_unlock(&data->update_lock);
559	return count;
560}
561
562static ssize_t show_pwm_enable1(struct device *dev, struct device_attribute *attr, char *buf)
563{
564	struct asb100_data *data = asb100_update_device(dev);
565	return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
566}
567
568static ssize_t set_pwm_enable1(struct device *dev, struct device_attribute *attr, const char *buf,
569				size_t count)
570{
571	struct i2c_client *client = to_i2c_client(dev);
572	struct asb100_data *data = i2c_get_clientdata(client);
573	unsigned long val = simple_strtoul(buf, NULL, 10);
574
575	mutex_lock(&data->update_lock);
576	data->pwm &= 0x0f; /* keep the duty cycle bits */
577	data->pwm |= (val ? 0x80 : 0x00);
578	asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
579	mutex_unlock(&data->update_lock);
580	return count;
581}
582
583static DEVICE_ATTR(pwm1, S_IRUGO | S_IWUSR, show_pwm1, set_pwm1);
584static DEVICE_ATTR(pwm1_enable, S_IRUGO | S_IWUSR,
585		show_pwm_enable1, set_pwm_enable1);
586
587static struct attribute *asb100_attributes[] = {
588	&dev_attr_in0_input.attr,
589	&dev_attr_in0_min.attr,
590	&dev_attr_in0_max.attr,
591	&dev_attr_in1_input.attr,
592	&dev_attr_in1_min.attr,
593	&dev_attr_in1_max.attr,
594	&dev_attr_in2_input.attr,
595	&dev_attr_in2_min.attr,
596	&dev_attr_in2_max.attr,
597	&dev_attr_in3_input.attr,
598	&dev_attr_in3_min.attr,
599	&dev_attr_in3_max.attr,
600	&dev_attr_in4_input.attr,
601	&dev_attr_in4_min.attr,
602	&dev_attr_in4_max.attr,
603	&dev_attr_in5_input.attr,
604	&dev_attr_in5_min.attr,
605	&dev_attr_in5_max.attr,
606	&dev_attr_in6_input.attr,
607	&dev_attr_in6_min.attr,
608	&dev_attr_in6_max.attr,
609
610	&dev_attr_fan1_input.attr,
611	&dev_attr_fan1_min.attr,
612	&dev_attr_fan1_div.attr,
613	&dev_attr_fan2_input.attr,
614	&dev_attr_fan2_min.attr,
615	&dev_attr_fan2_div.attr,
616	&dev_attr_fan3_input.attr,
617	&dev_attr_fan3_min.attr,
618	&dev_attr_fan3_div.attr,
619
620	&dev_attr_temp1_input.attr,
621	&dev_attr_temp1_max.attr,
622	&dev_attr_temp1_max_hyst.attr,
623	&dev_attr_temp2_input.attr,
624	&dev_attr_temp2_max.attr,
625	&dev_attr_temp2_max_hyst.attr,
626	&dev_attr_temp3_input.attr,
627	&dev_attr_temp3_max.attr,
628	&dev_attr_temp3_max_hyst.attr,
629	&dev_attr_temp4_input.attr,
630	&dev_attr_temp4_max.attr,
631	&dev_attr_temp4_max_hyst.attr,
632
633	&dev_attr_cpu0_vid.attr,
634	&dev_attr_vrm.attr,
635	&dev_attr_alarms.attr,
636	&dev_attr_pwm1.attr,
637	&dev_attr_pwm1_enable.attr,
638
639	NULL
640};
641
642static const struct attribute_group asb100_group = {
643	.attrs = asb100_attributes,
644};
645
646/* This function is called when:
647	asb100_driver is inserted (when this module is loaded), for each
648		available adapter
649	when a new adapter is inserted (and asb100_driver is still present)
650 */
651static int asb100_attach_adapter(struct i2c_adapter *adapter)
652{
653	if (!(adapter->class & I2C_CLASS_HWMON))
654		return 0;
655	return i2c_probe(adapter, &addr_data, asb100_detect);
656}
657
658static int asb100_detect_subclients(struct i2c_adapter *adapter, int address,
659		int kind, struct i2c_client *new_client)
660{
661	int i, id, err;
662	struct asb100_data *data = i2c_get_clientdata(new_client);
663
664	data->lm75[0] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
665	if (!(data->lm75[0])) {
666		err = -ENOMEM;
667		goto ERROR_SC_0;
668	}
669
670	data->lm75[1] = kzalloc(sizeof(struct i2c_client), GFP_KERNEL);
671	if (!(data->lm75[1])) {
672		err = -ENOMEM;
673		goto ERROR_SC_1;
674	}
675
676	id = i2c_adapter_id(adapter);
677
678	if (force_subclients[0] == id && force_subclients[1] == address) {
679		for (i = 2; i <= 3; i++) {
680			if (force_subclients[i] < 0x48 ||
681			    force_subclients[i] > 0x4f) {
682				dev_err(&new_client->dev, "invalid subclient "
683					"address %d; must be 0x48-0x4f\n",
684					force_subclients[i]);
685				err = -ENODEV;
686				goto ERROR_SC_2;
687			}
688		}
689		asb100_write_value(new_client, ASB100_REG_I2C_SUBADDR,
690					(force_subclients[2] & 0x07) |
691					((force_subclients[3] & 0x07) <<4));
692		data->lm75[0]->addr = force_subclients[2];
693		data->lm75[1]->addr = force_subclients[3];
694	} else {
695		int val = asb100_read_value(new_client, ASB100_REG_I2C_SUBADDR);
696		data->lm75[0]->addr = 0x48 + (val & 0x07);
697		data->lm75[1]->addr = 0x48 + ((val >> 4) & 0x07);
698	}
699
700	if(data->lm75[0]->addr == data->lm75[1]->addr) {
701		dev_err(&new_client->dev, "duplicate addresses 0x%x "
702				"for subclients\n", data->lm75[0]->addr);
703		err = -ENODEV;
704		goto ERROR_SC_2;
705	}
706
707	for (i = 0; i <= 1; i++) {
708		i2c_set_clientdata(data->lm75[i], NULL);
709		data->lm75[i]->adapter = adapter;
710		data->lm75[i]->driver = &asb100_driver;
711		data->lm75[i]->flags = 0;
712		strlcpy(data->lm75[i]->name, "asb100 subclient", I2C_NAME_SIZE);
713	}
714
715	if ((err = i2c_attach_client(data->lm75[0]))) {
716		dev_err(&new_client->dev, "subclient %d registration "
717			"at address 0x%x failed.\n", i, data->lm75[0]->addr);
718		goto ERROR_SC_2;
719	}
720
721	if ((err = i2c_attach_client(data->lm75[1]))) {
722		dev_err(&new_client->dev, "subclient %d registration "
723			"at address 0x%x failed.\n", i, data->lm75[1]->addr);
724		goto ERROR_SC_3;
725	}
726
727	return 0;
728
729/* Undo inits in case of errors */
730ERROR_SC_3:
731	i2c_detach_client(data->lm75[0]);
732ERROR_SC_2:
733	kfree(data->lm75[1]);
734ERROR_SC_1:
735	kfree(data->lm75[0]);
736ERROR_SC_0:
737	return err;
738}
739
740static int asb100_detect(struct i2c_adapter *adapter, int address, int kind)
741{
742	int err;
743	struct i2c_client *new_client;
744	struct asb100_data *data;
745
746	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
747		pr_debug("asb100.o: detect failed, "
748				"smbus byte data not supported!\n");
749		err = -ENODEV;
750		goto ERROR0;
751	}
752
753	/* OK. For now, we presume we have a valid client. We now create the
754	   client structure, even though we cannot fill it completely yet.
755	   But it allows us to access asb100_{read,write}_value. */
756
757	if (!(data = kzalloc(sizeof(struct asb100_data), GFP_KERNEL))) {
758		pr_debug("asb100.o: detect failed, kzalloc failed!\n");
759		err = -ENOMEM;
760		goto ERROR0;
761	}
762
763	new_client = &data->client;
764	mutex_init(&data->lock);
765	i2c_set_clientdata(new_client, data);
766	new_client->addr = address;
767	new_client->adapter = adapter;
768	new_client->driver = &asb100_driver;
769	new_client->flags = 0;
770
771	/* Now, we do the remaining detection. */
772
773	/* The chip may be stuck in some other bank than bank 0. This may
774	   make reading other information impossible. Specify a force=... or
775	   force_*=... parameter, and the chip will be reset to the right
776	   bank. */
777	if (kind < 0) {
778
779		int val1 = asb100_read_value(new_client, ASB100_REG_BANK);
780		int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
781
782		/* If we're in bank 0 */
783		if ( (!(val1 & 0x07)) &&
784				/* Check for ASB100 ID (low byte) */
785				( ((!(val1 & 0x80)) && (val2 != 0x94)) ||
786				/* Check for ASB100 ID (high byte ) */
787				((val1 & 0x80) && (val2 != 0x06)) ) ) {
788			pr_debug("asb100.o: detect failed, "
789					"bad chip id 0x%02x!\n", val2);
790			err = -ENODEV;
791			goto ERROR1;
792		}
793
794	} /* kind < 0 */
795
796	/* We have either had a force parameter, or we have already detected
797	   Winbond. Put it now into bank 0 and Vendor ID High Byte */
798	asb100_write_value(new_client, ASB100_REG_BANK,
799		(asb100_read_value(new_client, ASB100_REG_BANK) & 0x78) | 0x80);
800
801	/* Determine the chip type. */
802	if (kind <= 0) {
803		int val1 = asb100_read_value(new_client, ASB100_REG_WCHIPID);
804		int val2 = asb100_read_value(new_client, ASB100_REG_CHIPMAN);
805
806		if ((val1 == 0x31) && (val2 == 0x06))
807			kind = asb100;
808		else {
809			if (kind == 0)
810				dev_warn(&new_client->dev, "ignoring "
811					"'force' parameter for unknown chip "
812					"at adapter %d, address 0x%02x.\n",
813					i2c_adapter_id(adapter), address);
814			err = -ENODEV;
815			goto ERROR1;
816		}
817	}
818
819	/* Fill in remaining client fields and put it into the global list */
820	strlcpy(new_client->name, "asb100", I2C_NAME_SIZE);
821	data->type = kind;
822
823	data->valid = 0;
824	mutex_init(&data->update_lock);
825
826	/* Tell the I2C layer a new client has arrived */
827	if ((err = i2c_attach_client(new_client)))
828		goto ERROR1;
829
830	/* Attach secondary lm75 clients */
831	if ((err = asb100_detect_subclients(adapter, address, kind,
832			new_client)))
833		goto ERROR2;
834
835	/* Initialize the chip */
836	asb100_init_client(new_client);
837
838	/* A few vars need to be filled upon startup */
839	data->fan_min[0] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(0));
840	data->fan_min[1] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(1));
841	data->fan_min[2] = asb100_read_value(new_client, ASB100_REG_FAN_MIN(2));
842
843	/* Register sysfs hooks */
844	if ((err = sysfs_create_group(&new_client->dev.kobj, &asb100_group)))
845		goto ERROR3;
846
847	data->class_dev = hwmon_device_register(&new_client->dev);
848	if (IS_ERR(data->class_dev)) {
849		err = PTR_ERR(data->class_dev);
850		goto ERROR4;
851	}
852
853	return 0;
854
855ERROR4:
856	sysfs_remove_group(&new_client->dev.kobj, &asb100_group);
857ERROR3:
858	i2c_detach_client(data->lm75[1]);
859	i2c_detach_client(data->lm75[0]);
860	kfree(data->lm75[1]);
861	kfree(data->lm75[0]);
862ERROR2:
863	i2c_detach_client(new_client);
864ERROR1:
865	kfree(data);
866ERROR0:
867	return err;
868}
869
870static int asb100_detach_client(struct i2c_client *client)
871{
872	struct asb100_data *data = i2c_get_clientdata(client);
873	int err;
874
875	/* main client */
876	if (data) {
877		hwmon_device_unregister(data->class_dev);
878		sysfs_remove_group(&client->dev.kobj, &asb100_group);
879	}
880
881	if ((err = i2c_detach_client(client)))
882		return err;
883
884	/* main client */
885	if (data)
886		kfree(data);
887
888	/* subclient */
889	else
890		kfree(client);
891
892	return 0;
893}
894
895/* The SMBus locks itself, usually, but nothing may access the chip between
896   bank switches. */
897static int asb100_read_value(struct i2c_client *client, u16 reg)
898{
899	struct asb100_data *data = i2c_get_clientdata(client);
900	struct i2c_client *cl;
901	int res, bank;
902
903	mutex_lock(&data->lock);
904
905	bank = (reg >> 8) & 0x0f;
906	if (bank > 2)
907		/* switch banks */
908		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
909
910	if (bank == 0 || bank > 2) {
911		res = i2c_smbus_read_byte_data(client, reg & 0xff);
912	} else {
913		/* switch to subclient */
914		cl = data->lm75[bank - 1];
915
916		/* convert from ISA to LM75 I2C addresses */
917		switch (reg & 0xff) {
918		case 0x50: /* TEMP */
919			res = swab16(i2c_smbus_read_word_data (cl, 0));
920			break;
921		case 0x52: /* CONFIG */
922			res = i2c_smbus_read_byte_data(cl, 1);
923			break;
924		case 0x53: /* HYST */
925			res = swab16(i2c_smbus_read_word_data (cl, 2));
926			break;
927		case 0x55: /* MAX */
928		default:
929			res = swab16(i2c_smbus_read_word_data (cl, 3));
930			break;
931		}
932	}
933
934	if (bank > 2)
935		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
936
937	mutex_unlock(&data->lock);
938
939	return res;
940}
941
942static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
943{
944	struct asb100_data *data = i2c_get_clientdata(client);
945	struct i2c_client *cl;
946	int bank;
947
948	mutex_lock(&data->lock);
949
950	bank = (reg >> 8) & 0x0f;
951	if (bank > 2)
952		/* switch banks */
953		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
954
955	if (bank == 0 || bank > 2) {
956		i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
957	} else {
958		/* switch to subclient */
959		cl = data->lm75[bank - 1];
960
961		/* convert from ISA to LM75 I2C addresses */
962		switch (reg & 0xff) {
963		case 0x52: /* CONFIG */
964			i2c_smbus_write_byte_data(cl, 1, value & 0xff);
965			break;
966		case 0x53: /* HYST */
967			i2c_smbus_write_word_data(cl, 2, swab16(value));
968			break;
969		case 0x55: /* MAX */
970			i2c_smbus_write_word_data(cl, 3, swab16(value));
971			break;
972		}
973	}
974
975	if (bank > 2)
976		i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
977
978	mutex_unlock(&data->lock);
979}
980
981static void asb100_init_client(struct i2c_client *client)
982{
983	struct asb100_data *data = i2c_get_clientdata(client);
984	int vid = 0;
985
986	vid = asb100_read_value(client, ASB100_REG_VID_FANDIV) & 0x0f;
987	vid |= (asb100_read_value(client, ASB100_REG_CHIPID) & 0x01) << 4;
988	data->vrm = vid_which_vrm();
989	vid = vid_from_reg(vid, data->vrm);
990
991	/* Start monitoring */
992	asb100_write_value(client, ASB100_REG_CONFIG,
993		(asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
994}
995
996static struct asb100_data *asb100_update_device(struct device *dev)
997{
998	struct i2c_client *client = to_i2c_client(dev);
999	struct asb100_data *data = i2c_get_clientdata(client);
1000	int i;
1001
1002	mutex_lock(&data->update_lock);
1003
1004	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
1005		|| !data->valid) {
1006
1007		dev_dbg(&client->dev, "starting device update...\n");
1008
1009		/* 7 voltage inputs */
1010		for (i = 0; i < 7; i++) {
1011			data->in[i] = asb100_read_value(client,
1012				ASB100_REG_IN(i));
1013			data->in_min[i] = asb100_read_value(client,
1014				ASB100_REG_IN_MIN(i));
1015			data->in_max[i] = asb100_read_value(client,
1016				ASB100_REG_IN_MAX(i));
1017		}
1018
1019		/* 3 fan inputs */
1020		for (i = 0; i < 3; i++) {
1021			data->fan[i] = asb100_read_value(client,
1022					ASB100_REG_FAN(i));
1023			data->fan_min[i] = asb100_read_value(client,
1024					ASB100_REG_FAN_MIN(i));
1025		}
1026
1027		/* 4 temperature inputs */
1028		for (i = 1; i <= 4; i++) {
1029			data->temp[i-1] = asb100_read_value(client,
1030					ASB100_REG_TEMP(i));
1031			data->temp_max[i-1] = asb100_read_value(client,
1032					ASB100_REG_TEMP_MAX(i));
1033			data->temp_hyst[i-1] = asb100_read_value(client,
1034					ASB100_REG_TEMP_HYST(i));
1035		}
1036
1037		/* VID and fan divisors */
1038		i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
1039		data->vid = i & 0x0f;
1040		data->vid |= (asb100_read_value(client,
1041				ASB100_REG_CHIPID) & 0x01) << 4;
1042		data->fan_div[0] = (i >> 4) & 0x03;
1043		data->fan_div[1] = (i >> 6) & 0x03;
1044		data->fan_div[2] = (asb100_read_value(client,
1045				ASB100_REG_PIN) >> 6) & 0x03;
1046
1047		/* PWM */
1048		data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
1049
1050		/* alarms */
1051		data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
1052			(asb100_read_value(client, ASB100_REG_ALARM2) << 8);
1053
1054		data->last_updated = jiffies;
1055		data->valid = 1;
1056
1057		dev_dbg(&client->dev, "... device update complete\n");
1058	}
1059
1060	mutex_unlock(&data->update_lock);
1061
1062	return data;
1063}
1064
1065static int __init asb100_init(void)
1066{
1067	return i2c_add_driver(&asb100_driver);
1068}
1069
1070static void __exit asb100_exit(void)
1071{
1072	i2c_del_driver(&asb100_driver);
1073}
1074
1075MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
1076MODULE_DESCRIPTION("ASB100 Bach driver");
1077MODULE_LICENSE("GPL");
1078
1079module_init(asb100_init);
1080module_exit(asb100_exit);
1081