1/*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 *    notice, and the entire permission notice in its entirety,
14 *    including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior
20 *    written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions.  (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42/*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices.  Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm.  Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable.  So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers.  In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure.  Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool".  The SHA hash avoids
80 * exposing the internal state of the entropy pool.  It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output.  Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable.  For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs.  This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * 	void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom.  /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested.  As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong.  For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * 	void add_input_randomness(unsigned int type, unsigned int code,
129 *                                unsigned int value);
130 * 	void add_interrupt_randomness(int irq);
131 *
132 * add_input_randomness() uses the input layer interrupt timing, as well as
133 * the event type information from the hardware.
134 *
135 * add_interrupt_randomness() uses the inter-interrupt timing as random
136 * inputs to the entropy pool.  Note that not all interrupts are good
137 * sources of randomness!  For example, the timer interrupts is not a
138 * good choice, because the periodicity of the interrupts is too
139 * regular, and hence predictable to an attacker.  Disk interrupts are
140 * a better measure, since the timing of the disk interrupts are more
141 * unpredictable.
142 *
143 * All of these routines try to estimate how many bits of randomness a
144 * particular randomness source.  They do this by keeping track of the
145 * first and second order deltas of the event timings.
146 *
147 * Ensuring unpredictability at system startup
148 * ============================================
149 *
150 * When any operating system starts up, it will go through a sequence
151 * of actions that are fairly predictable by an adversary, especially
152 * if the start-up does not involve interaction with a human operator.
153 * This reduces the actual number of bits of unpredictability in the
154 * entropy pool below the value in entropy_count.  In order to
155 * counteract this effect, it helps to carry information in the
156 * entropy pool across shut-downs and start-ups.  To do this, put the
157 * following lines an appropriate script which is run during the boot
158 * sequence:
159 *
160 *	echo "Initializing random number generator..."
161 *	random_seed=/var/run/random-seed
162 *	# Carry a random seed from start-up to start-up
163 *	# Load and then save the whole entropy pool
164 *	if [ -f $random_seed ]; then
165 *		cat $random_seed >/dev/urandom
166 *	else
167 *		touch $random_seed
168 *	fi
169 *	chmod 600 $random_seed
170 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
171 *
172 * and the following lines in an appropriate script which is run as
173 * the system is shutdown:
174 *
175 *	# Carry a random seed from shut-down to start-up
176 *	# Save the whole entropy pool
177 *	echo "Saving random seed..."
178 *	random_seed=/var/run/random-seed
179 *	touch $random_seed
180 *	chmod 600 $random_seed
181 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
182 *
183 * For example, on most modern systems using the System V init
184 * scripts, such code fragments would be found in
185 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187 *
188 * Effectively, these commands cause the contents of the entropy pool
189 * to be saved at shut-down time and reloaded into the entropy pool at
190 * start-up.  (The 'dd' in the addition to the bootup script is to
191 * make sure that /etc/random-seed is different for every start-up,
192 * even if the system crashes without executing rc.0.)  Even with
193 * complete knowledge of the start-up activities, predicting the state
194 * of the entropy pool requires knowledge of the previous history of
195 * the system.
196 *
197 * Configuring the /dev/random driver under Linux
198 * ==============================================
199 *
200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201 * the /dev/mem major number (#1).  So if your system does not have
202 * /dev/random and /dev/urandom created already, they can be created
203 * by using the commands:
204 *
205 * 	mknod /dev/random c 1 8
206 * 	mknod /dev/urandom c 1 9
207 *
208 * Acknowledgements:
209 * =================
210 *
211 * Ideas for constructing this random number generator were derived
212 * from Pretty Good Privacy's random number generator, and from private
213 * discussions with Phil Karn.  Colin Plumb provided a faster random
214 * number generator, which speed up the mixing function of the entropy
215 * pool, taken from PGPfone.  Dale Worley has also contributed many
216 * useful ideas and suggestions to improve this driver.
217 *
218 * Any flaws in the design are solely my responsibility, and should
219 * not be attributed to the Phil, Colin, or any of authors of PGP.
220 *
221 * Further background information on this topic may be obtained from
222 * RFC 1750, "Randomness Recommendations for Security", by Donald
223 * Eastlake, Steve Crocker, and Jeff Schiller.
224 */
225
226#include <linux/utsname.h>
227#include <linux/module.h>
228#include <linux/kernel.h>
229#include <linux/major.h>
230#include <linux/string.h>
231#include <linux/fcntl.h>
232#include <linux/slab.h>
233#include <linux/random.h>
234#include <linux/poll.h>
235#include <linux/init.h>
236#include <linux/fs.h>
237#include <linux/genhd.h>
238#include <linux/interrupt.h>
239#include <linux/spinlock.h>
240#include <linux/percpu.h>
241#include <linux/cryptohash.h>
242
243#include <asm/processor.h>
244#include <asm/uaccess.h>
245#include <asm/irq.h>
246#include <asm/io.h>
247
248/*
249 * Configuration information
250 */
251#define INPUT_POOL_WORDS 128
252#define OUTPUT_POOL_WORDS 32
253#define SEC_XFER_SIZE 512
254
255/*
256 * The minimum number of bits of entropy before we wake up a read on
257 * /dev/random.  Should be enough to do a significant reseed.
258 */
259static int random_read_wakeup_thresh = 64;
260
261/*
262 * If the entropy count falls under this number of bits, then we
263 * should wake up processes which are selecting or polling on write
264 * access to /dev/random.
265 */
266static int random_write_wakeup_thresh = 128;
267
268/*
269 * When the input pool goes over trickle_thresh, start dropping most
270 * samples to avoid wasting CPU time and reduce lock contention.
271 */
272
273static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
274
275static DEFINE_PER_CPU(int, trickle_count) = 0;
276
277/*
278 * A pool of size .poolwords is stirred with a primitive polynomial
279 * of degree .poolwords over GF(2).  The taps for various sizes are
280 * defined below.  They are chosen to be evenly spaced (minimum RMS
281 * distance from evenly spaced; the numbers in the comments are a
282 * scaled squared error sum) except for the last tap, which is 1 to
283 * get the twisting happening as fast as possible.
284 */
285static struct poolinfo {
286	int poolwords;
287	int tap1, tap2, tap3, tap4, tap5;
288} poolinfo_table[] = {
289	/* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
290	{ 128,	103,	76,	51,	25,	1 },
291	/* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
292	{ 32,	26,	20,	14,	7,	1 },
293};
294
295#define POOLBITS	poolwords*32
296#define POOLBYTES	poolwords*4
297
298/*
299 * For the purposes of better mixing, we use the CRC-32 polynomial as
300 * well to make a twisted Generalized Feedback Shift Reigster
301 *
302 * (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR generators.  ACM
303 * Transactions on Modeling and Computer Simulation 2(3):179-194.
304 * Also see M. Matsumoto & Y. Kurita, 1994.  Twisted GFSR generators
305 * II.  ACM Transactions on Mdeling and Computer Simulation 4:254-266)
306 *
307 * Thanks to Colin Plumb for suggesting this.
308 *
309 * We have not analyzed the resultant polynomial to prove it primitive;
310 * in fact it almost certainly isn't.  Nonetheless, the irreducible factors
311 * of a random large-degree polynomial over GF(2) are more than large enough
312 * that periodicity is not a concern.
313 *
314 * The input hash is much less sensitive than the output hash.  All
315 * that we want of it is that it be a good non-cryptographic hash;
316 * i.e. it not produce collisions when fed "random" data of the sort
317 * we expect to see.  As long as the pool state differs for different
318 * inputs, we have preserved the input entropy and done a good job.
319 * The fact that an intelligent attacker can construct inputs that
320 * will produce controlled alterations to the pool's state is not
321 * important because we don't consider such inputs to contribute any
322 * randomness.  The only property we need with respect to them is that
323 * the attacker can't increase his/her knowledge of the pool's state.
324 * Since all additions are reversible (knowing the final state and the
325 * input, you can reconstruct the initial state), if an attacker has
326 * any uncertainty about the initial state, he/she can only shuffle
327 * that uncertainty about, but never cause any collisions (which would
328 * decrease the uncertainty).
329 *
330 * The chosen system lets the state of the pool be (essentially) the input
331 * modulo the generator polymnomial.  Now, for random primitive polynomials,
332 * this is a universal class of hash functions, meaning that the chance
333 * of a collision is limited by the attacker's knowledge of the generator
334 * polynomail, so if it is chosen at random, an attacker can never force
335 * a collision.  Here, we use a fixed polynomial, but we *can* assume that
336 * ###--> it is unknown to the processes generating the input entropy. <-###
337 * Because of this important property, this is a good, collision-resistant
338 * hash; hash collisions will occur no more often than chance.
339 */
340
341/*
342 * Static global variables
343 */
344static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
345static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
346
347#define DEBUG_ENT(fmt, arg...) do {} while (0)
348
349/**********************************************************************
350 *
351 * OS independent entropy store.   Here are the functions which handle
352 * storing entropy in an entropy pool.
353 *
354 **********************************************************************/
355
356struct entropy_store;
357struct entropy_store {
358	/* mostly-read data: */
359	struct poolinfo *poolinfo;
360	__u32 *pool;
361	const char *name;
362	int limit;
363	struct entropy_store *pull;
364
365	/* read-write data: */
366	spinlock_t lock ____cacheline_aligned_in_smp;
367	unsigned add_ptr;
368	int entropy_count;
369	int input_rotate;
370};
371
372static __u32 input_pool_data[INPUT_POOL_WORDS];
373static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
374static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
375
376static struct entropy_store input_pool = {
377	.poolinfo = &poolinfo_table[0],
378	.name = "input",
379	.limit = 1,
380	.lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
381	.pool = input_pool_data
382};
383
384static struct entropy_store blocking_pool = {
385	.poolinfo = &poolinfo_table[1],
386	.name = "blocking",
387	.limit = 1,
388	.pull = &input_pool,
389	.lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
390	.pool = blocking_pool_data
391};
392
393static struct entropy_store nonblocking_pool = {
394	.poolinfo = &poolinfo_table[1],
395	.name = "nonblocking",
396	.pull = &input_pool,
397	.lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
398	.pool = nonblocking_pool_data
399};
400
401/*
402 * This function adds a byte into the entropy "pool".  It does not
403 * update the entropy estimate.  The caller should call
404 * credit_entropy_store if this is appropriate.
405 *
406 * The pool is stirred with a primitive polynomial of the appropriate
407 * degree, and then twisted.  We twist by three bits at a time because
408 * it's cheap to do so and helps slightly in the expected case where
409 * the entropy is concentrated in the low-order bits.
410 */
411static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
412				int nwords, __u32 out[16])
413{
414	static __u32 const twist_table[8] = {
415		0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
416		0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
417	unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
418	int new_rotate, input_rotate;
419	int wordmask = r->poolinfo->poolwords - 1;
420	__u32 w, next_w;
421	unsigned long flags;
422
423	/* Taps are constant, so we can load them without holding r->lock.  */
424	tap1 = r->poolinfo->tap1;
425	tap2 = r->poolinfo->tap2;
426	tap3 = r->poolinfo->tap3;
427	tap4 = r->poolinfo->tap4;
428	tap5 = r->poolinfo->tap5;
429	next_w = *in++;
430
431	spin_lock_irqsave(&r->lock, flags);
432	prefetch_range(r->pool, wordmask);
433	input_rotate = r->input_rotate;
434	add_ptr = r->add_ptr;
435
436	while (nwords--) {
437		w = rol32(next_w, input_rotate);
438		if (nwords > 0)
439			next_w = *in++;
440		i = add_ptr = (add_ptr - 1) & wordmask;
441		/*
442		 * Normally, we add 7 bits of rotation to the pool.
443		 * At the beginning of the pool, add an extra 7 bits
444		 * rotation, so that successive passes spread the
445		 * input bits across the pool evenly.
446		 */
447		new_rotate = input_rotate + 14;
448		if (i)
449			new_rotate = input_rotate + 7;
450		input_rotate = new_rotate & 31;
451
452		/* XOR in the various taps */
453		w ^= r->pool[(i + tap1) & wordmask];
454		w ^= r->pool[(i + tap2) & wordmask];
455		w ^= r->pool[(i + tap3) & wordmask];
456		w ^= r->pool[(i + tap4) & wordmask];
457		w ^= r->pool[(i + tap5) & wordmask];
458		w ^= r->pool[i];
459		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
460	}
461
462	r->input_rotate = input_rotate;
463	r->add_ptr = add_ptr;
464
465	if (out) {
466		for (i = 0; i < 16; i++) {
467			out[i] = r->pool[add_ptr];
468			add_ptr = (add_ptr - 1) & wordmask;
469		}
470	}
471
472	spin_unlock_irqrestore(&r->lock, flags);
473}
474
475static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
476				     int nwords)
477{
478	__add_entropy_words(r, in, nwords, NULL);
479}
480
481/*
482 * Credit (or debit) the entropy store with n bits of entropy
483 */
484static void credit_entropy_store(struct entropy_store *r, int nbits)
485{
486	unsigned long flags;
487
488	spin_lock_irqsave(&r->lock, flags);
489
490	if (r->entropy_count + nbits < 0) {
491		DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
492			  r->entropy_count, nbits);
493		r->entropy_count = 0;
494	} else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
495		r->entropy_count = r->poolinfo->POOLBITS;
496	} else {
497		r->entropy_count += nbits;
498		if (nbits)
499			DEBUG_ENT("added %d entropy credits to %s\n",
500				  nbits, r->name);
501	}
502
503	spin_unlock_irqrestore(&r->lock, flags);
504}
505
506/*********************************************************************
507 *
508 * Entropy input management
509 *
510 *********************************************************************/
511
512/* There is one of these per entropy source */
513struct timer_rand_state {
514	cycles_t last_time;
515	long last_delta,last_delta2;
516	unsigned dont_count_entropy:1;
517};
518
519static struct timer_rand_state input_timer_state;
520static struct timer_rand_state *irq_timer_state[NR_IRQS];
521
522/*
523 * This function adds entropy to the entropy "pool" by using timing
524 * delays.  It uses the timer_rand_state structure to make an estimate
525 * of how many bits of entropy this call has added to the pool.
526 *
527 * The number "num" is also added to the pool - it should somehow describe
528 * the type of event which just happened.  This is currently 0-255 for
529 * keyboard scan codes, and 256 upwards for interrupts.
530 *
531 */
532static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
533{
534	struct {
535		cycles_t cycles;
536		long jiffies;
537		unsigned num;
538	} sample;
539	long delta, delta2, delta3;
540
541	preempt_disable();
542	/* if over the trickle threshold, use only 1 in 4096 samples */
543	if (input_pool.entropy_count > trickle_thresh &&
544	    (__get_cpu_var(trickle_count)++ & 0xfff))
545		goto out;
546
547	sample.jiffies = jiffies;
548	sample.cycles = get_cycles();
549	sample.num = num;
550	add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
551
552	/*
553	 * Calculate number of bits of randomness we probably added.
554	 * We take into account the first, second and third-order deltas
555	 * in order to make our estimate.
556	 */
557
558	if (!state->dont_count_entropy) {
559		delta = sample.jiffies - state->last_time;
560		state->last_time = sample.jiffies;
561
562		delta2 = delta - state->last_delta;
563		state->last_delta = delta;
564
565		delta3 = delta2 - state->last_delta2;
566		state->last_delta2 = delta2;
567
568		if (delta < 0)
569			delta = -delta;
570		if (delta2 < 0)
571			delta2 = -delta2;
572		if (delta3 < 0)
573			delta3 = -delta3;
574		if (delta > delta2)
575			delta = delta2;
576		if (delta > delta3)
577			delta = delta3;
578
579		/*
580		 * delta is now minimum absolute delta.
581		 * Round down by 1 bit on general principles,
582		 * and limit entropy entimate to 12 bits.
583		 */
584		credit_entropy_store(&input_pool,
585				     min_t(int, fls(delta>>1), 11));
586	}
587
588	if(input_pool.entropy_count >= random_read_wakeup_thresh)
589		wake_up_interruptible(&random_read_wait);
590
591out:
592	preempt_enable();
593}
594
595void add_input_randomness(unsigned int type, unsigned int code,
596				 unsigned int value)
597{
598	static unsigned char last_value;
599
600	/* ignore autorepeat and the like */
601	if (value == last_value)
602		return;
603
604	DEBUG_ENT("input event\n");
605	last_value = value;
606	add_timer_randomness(&input_timer_state,
607			     (type << 4) ^ code ^ (code >> 4) ^ value);
608}
609EXPORT_SYMBOL_GPL(add_input_randomness);
610
611void add_interrupt_randomness(int irq)
612{
613	if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
614		return;
615
616	DEBUG_ENT("irq event %d\n", irq);
617	add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
618}
619
620#ifdef CONFIG_BLOCK
621void add_disk_randomness(struct gendisk *disk)
622{
623	if (!disk || !disk->random)
624		return;
625	/* first major is 1, so we get >= 0x200 here */
626	DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
627
628	add_timer_randomness(disk->random,
629			     0x100 + MKDEV(disk->major, disk->first_minor));
630}
631
632EXPORT_SYMBOL(add_disk_randomness);
633#endif
634
635#define EXTRACT_SIZE 10
636
637/*********************************************************************
638 *
639 * Entropy extraction routines
640 *
641 *********************************************************************/
642
643static ssize_t extract_entropy(struct entropy_store *r, void * buf,
644			       size_t nbytes, int min, int rsvd);
645
646/*
647 * This utility inline function is responsible for transfering entropy
648 * from the primary pool to the secondary extraction pool. We make
649 * sure we pull enough for a 'catastrophic reseed'.
650 */
651static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
652{
653	__u32 tmp[OUTPUT_POOL_WORDS];
654
655	if (r->pull && r->entropy_count < nbytes * 8 &&
656	    r->entropy_count < r->poolinfo->POOLBITS) {
657		int bytes = max_t(int, random_read_wakeup_thresh / 8,
658				min_t(int, nbytes, sizeof(tmp)));
659		int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
660
661		DEBUG_ENT("going to reseed %s with %d bits "
662			  "(%d of %d requested)\n",
663			  r->name, bytes * 8, nbytes * 8, r->entropy_count);
664
665		bytes=extract_entropy(r->pull, tmp, bytes,
666				      random_read_wakeup_thresh / 8, rsvd);
667		add_entropy_words(r, tmp, (bytes + 3) / 4);
668		credit_entropy_store(r, bytes*8);
669	}
670}
671
672/*
673 * These functions extracts randomness from the "entropy pool", and
674 * returns it in a buffer.
675 *
676 * The min parameter specifies the minimum amount we can pull before
677 * failing to avoid races that defeat catastrophic reseeding while the
678 * reserved parameter indicates how much entropy we must leave in the
679 * pool after each pull to avoid starving other readers.
680 *
681 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
682 */
683
684static size_t account(struct entropy_store *r, size_t nbytes, int min,
685		      int reserved)
686{
687	unsigned long flags;
688
689	BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
690
691	/* Hold lock while accounting */
692	spin_lock_irqsave(&r->lock, flags);
693
694	DEBUG_ENT("trying to extract %d bits from %s\n",
695		  nbytes * 8, r->name);
696
697	/* Can we pull enough? */
698	if (r->entropy_count / 8 < min + reserved) {
699		nbytes = 0;
700	} else {
701		/* If limited, never pull more than available */
702		if (r->limit && nbytes + reserved >= r->entropy_count / 8)
703			nbytes = r->entropy_count/8 - reserved;
704
705		if(r->entropy_count / 8 >= nbytes + reserved)
706			r->entropy_count -= nbytes*8;
707		else
708			r->entropy_count = reserved;
709
710		if (r->entropy_count < random_write_wakeup_thresh)
711			wake_up_interruptible(&random_write_wait);
712	}
713
714	DEBUG_ENT("debiting %d entropy credits from %s%s\n",
715		  nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
716
717	spin_unlock_irqrestore(&r->lock, flags);
718
719	return nbytes;
720}
721
722static void extract_buf(struct entropy_store *r, __u8 *out)
723{
724	int i;
725	__u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
726
727	sha_init(buf);
728	/*
729	 * As we hash the pool, we mix intermediate values of
730	 * the hash back into the pool.  This eliminates
731	 * backtracking attacks (where the attacker knows
732	 * the state of the pool plus the current outputs, and
733	 * attempts to find previous ouputs), unless the hash
734	 * function can be inverted.
735	 */
736	for (i = 0; i < r->poolinfo->poolwords; i += 16) {
737		/* hash blocks of 16 words = 512 bits */
738		sha_transform(buf, (__u8 *)(r->pool + i), buf + 5);
739		/* feed back portion of the resulting hash */
740		add_entropy_words(r, &buf[i % 5], 1);
741	}
742
743	/*
744	 * To avoid duplicates, we atomically extract a
745	 * portion of the pool while mixing, and hash one
746	 * final time.
747	 */
748	__add_entropy_words(r, &buf[i % 5], 1, data);
749	sha_transform(buf, (__u8 *)data, buf + 5);
750
751	/*
752	 * In case the hash function has some recognizable
753	 * output pattern, we fold it in half.
754	 */
755
756	buf[0] ^= buf[3];
757	buf[1] ^= buf[4];
758	buf[2] ^= rol32(buf[2], 16);
759	memcpy(out, buf, EXTRACT_SIZE);
760	memset(buf, 0, sizeof(buf));
761}
762
763static ssize_t extract_entropy(struct entropy_store *r, void * buf,
764			       size_t nbytes, int min, int reserved)
765{
766	ssize_t ret = 0, i;
767	__u8 tmp[EXTRACT_SIZE];
768
769	xfer_secondary_pool(r, nbytes);
770	nbytes = account(r, nbytes, min, reserved);
771
772	while (nbytes) {
773		extract_buf(r, tmp);
774		i = min_t(int, nbytes, EXTRACT_SIZE);
775		memcpy(buf, tmp, i);
776		nbytes -= i;
777		buf += i;
778		ret += i;
779	}
780
781	/* Wipe data just returned from memory */
782	memset(tmp, 0, sizeof(tmp));
783
784	return ret;
785}
786
787static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
788				    size_t nbytes)
789{
790	ssize_t ret = 0, i;
791	__u8 tmp[EXTRACT_SIZE];
792
793	xfer_secondary_pool(r, nbytes);
794	nbytes = account(r, nbytes, 0, 0);
795
796	while (nbytes) {
797		if (need_resched()) {
798			if (signal_pending(current)) {
799				if (ret == 0)
800					ret = -ERESTARTSYS;
801				break;
802			}
803			schedule();
804		}
805
806		extract_buf(r, tmp);
807		i = min_t(int, nbytes, EXTRACT_SIZE);
808		if (copy_to_user(buf, tmp, i)) {
809			ret = -EFAULT;
810			break;
811		}
812
813		nbytes -= i;
814		buf += i;
815		ret += i;
816	}
817
818	/* Wipe data just returned from memory */
819	memset(tmp, 0, sizeof(tmp));
820
821	return ret;
822}
823
824/*
825 * This function is the exported kernel interface.  It returns some
826 * number of good random numbers, suitable for seeding TCP sequence
827 * numbers, etc.
828 */
829void get_random_bytes(void *buf, int nbytes)
830{
831	extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
832}
833
834EXPORT_SYMBOL(get_random_bytes);
835
836/*
837 * init_std_data - initialize pool with system data
838 *
839 * @r: pool to initialize
840 *
841 * This function clears the pool's entropy count and mixes some system
842 * data into the pool to prepare it for use. The pool is not cleared
843 * as that can only decrease the entropy in the pool.
844 */
845static void init_std_data(struct entropy_store *r)
846{
847	ktime_t now;
848	unsigned long flags;
849
850	spin_lock_irqsave(&r->lock, flags);
851	r->entropy_count = 0;
852	spin_unlock_irqrestore(&r->lock, flags);
853
854	now = ktime_get_real();
855	add_entropy_words(r, (__u32 *)&now, sizeof(now)/4);
856	add_entropy_words(r, (__u32 *)utsname(),
857			  sizeof(*(utsname()))/4);
858}
859
860static int __init rand_initialize(void)
861{
862	init_std_data(&input_pool);
863	init_std_data(&blocking_pool);
864	init_std_data(&nonblocking_pool);
865	return 0;
866}
867module_init(rand_initialize);
868
869void rand_initialize_irq(int irq)
870{
871	struct timer_rand_state *state;
872
873	if (irq >= NR_IRQS || irq_timer_state[irq])
874		return;
875
876	/*
877	 * If kzalloc returns null, we just won't use that entropy
878	 * source.
879	 */
880	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
881	if (state)
882		irq_timer_state[irq] = state;
883}
884
885#ifdef CONFIG_BLOCK
886void rand_initialize_disk(struct gendisk *disk)
887{
888	struct timer_rand_state *state;
889
890	/*
891	 * If kzalloc returns null, we just won't use that entropy
892	 * source.
893	 */
894	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
895	if (state)
896		disk->random = state;
897}
898#endif
899
900static ssize_t
901random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
902{
903	ssize_t n, retval = 0, count = 0;
904
905	if (nbytes == 0)
906		return 0;
907
908	while (nbytes > 0) {
909		n = nbytes;
910		if (n > SEC_XFER_SIZE)
911			n = SEC_XFER_SIZE;
912
913		DEBUG_ENT("reading %d bits\n", n*8);
914
915		n = extract_entropy_user(&blocking_pool, buf, n);
916
917		DEBUG_ENT("read got %d bits (%d still needed)\n",
918			  n*8, (nbytes-n)*8);
919
920		if (n == 0) {
921			if (file->f_flags & O_NONBLOCK) {
922				retval = -EAGAIN;
923				break;
924			}
925
926			DEBUG_ENT("sleeping?\n");
927
928			wait_event_interruptible(random_read_wait,
929				input_pool.entropy_count >=
930						 random_read_wakeup_thresh);
931
932			DEBUG_ENT("awake\n");
933
934			if (signal_pending(current)) {
935				retval = -ERESTARTSYS;
936				break;
937			}
938
939			continue;
940		}
941
942		if (n < 0) {
943			retval = n;
944			break;
945		}
946		count += n;
947		buf += n;
948		nbytes -= n;
949		break;		/* This break makes the device work */
950				/* like a named pipe */
951	}
952
953	/*
954	 * If we gave the user some bytes, update the access time.
955	 */
956	if (count)
957		file_accessed(file);
958
959	return (count ? count : retval);
960}
961
962static ssize_t
963urandom_read(struct file * file, char __user * buf,
964		      size_t nbytes, loff_t *ppos)
965{
966	return extract_entropy_user(&nonblocking_pool, buf, nbytes);
967}
968
969static unsigned int
970random_poll(struct file *file, poll_table * wait)
971{
972	unsigned int mask;
973
974	poll_wait(file, &random_read_wait, wait);
975	poll_wait(file, &random_write_wait, wait);
976	mask = 0;
977	if (input_pool.entropy_count >= random_read_wakeup_thresh)
978		mask |= POLLIN | POLLRDNORM;
979	if (input_pool.entropy_count < random_write_wakeup_thresh)
980		mask |= POLLOUT | POLLWRNORM;
981	return mask;
982}
983
984static int
985write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
986{
987	size_t bytes;
988	__u32 buf[16];
989	const char __user *p = buffer;
990
991	while (count > 0) {
992		bytes = min(count, sizeof(buf));
993		if (copy_from_user(&buf, p, bytes))
994			return -EFAULT;
995
996		count -= bytes;
997		p += bytes;
998
999		add_entropy_words(r, buf, (bytes + 3) / 4);
1000	}
1001
1002	return 0;
1003}
1004
1005static ssize_t
1006random_write(struct file * file, const char __user * buffer,
1007	     size_t count, loff_t *ppos)
1008{
1009	size_t ret;
1010	struct inode *inode = file->f_path.dentry->d_inode;
1011
1012	ret = write_pool(&blocking_pool, buffer, count);
1013	if (ret)
1014		return ret;
1015	ret = write_pool(&nonblocking_pool, buffer, count);
1016	if (ret)
1017		return ret;
1018
1019	inode->i_mtime = current_fs_time(inode->i_sb);
1020	mark_inode_dirty(inode);
1021	return (ssize_t)count;
1022}
1023
1024static int
1025random_ioctl(struct inode * inode, struct file * file,
1026	     unsigned int cmd, unsigned long arg)
1027{
1028	int size, ent_count;
1029	int __user *p = (int __user *)arg;
1030	int retval;
1031
1032	switch (cmd) {
1033	case RNDGETENTCNT:
1034		ent_count = input_pool.entropy_count;
1035		if (put_user(ent_count, p))
1036			return -EFAULT;
1037		return 0;
1038	case RNDADDTOENTCNT:
1039		if (!capable(CAP_SYS_ADMIN))
1040			return -EPERM;
1041		if (get_user(ent_count, p))
1042			return -EFAULT;
1043		credit_entropy_store(&input_pool, ent_count);
1044		/*
1045		 * Wake up waiting processes if we have enough
1046		 * entropy.
1047		 */
1048		if (input_pool.entropy_count >= random_read_wakeup_thresh)
1049			wake_up_interruptible(&random_read_wait);
1050		return 0;
1051	case RNDADDENTROPY:
1052		if (!capable(CAP_SYS_ADMIN))
1053			return -EPERM;
1054		if (get_user(ent_count, p++))
1055			return -EFAULT;
1056		if (ent_count < 0)
1057			return -EINVAL;
1058		if (get_user(size, p++))
1059			return -EFAULT;
1060		retval = write_pool(&input_pool, (const char __user *)p,
1061				    size);
1062		if (retval < 0)
1063			return retval;
1064		credit_entropy_store(&input_pool, ent_count);
1065		/*
1066		 * Wake up waiting processes if we have enough
1067		 * entropy.
1068		 */
1069		if (input_pool.entropy_count >= random_read_wakeup_thresh)
1070			wake_up_interruptible(&random_read_wait);
1071		return 0;
1072	case RNDZAPENTCNT:
1073	case RNDCLEARPOOL:
1074		/* Clear the entropy pool counters. */
1075		if (!capable(CAP_SYS_ADMIN))
1076			return -EPERM;
1077		init_std_data(&input_pool);
1078		init_std_data(&blocking_pool);
1079		init_std_data(&nonblocking_pool);
1080		return 0;
1081	default:
1082		return -EINVAL;
1083	}
1084}
1085
1086const struct file_operations random_fops = {
1087	.read  = random_read,
1088	.write = random_write,
1089	.poll  = random_poll,
1090	.ioctl = random_ioctl,
1091};
1092
1093const struct file_operations urandom_fops = {
1094	.read  = urandom_read,
1095	.write = random_write,
1096	.ioctl = random_ioctl,
1097};
1098
1099/***************************************************************
1100 * Random UUID interface
1101 *
1102 * Used here for a Boot ID, but can be useful for other kernel
1103 * drivers.
1104 ***************************************************************/
1105
1106/*
1107 * Generate random UUID
1108 */
1109void generate_random_uuid(unsigned char uuid_out[16])
1110{
1111	get_random_bytes(uuid_out, 16);
1112	/* Set UUID version to 4 --- truely random generation */
1113	uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1114	/* Set the UUID variant to DCE */
1115	uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1116}
1117
1118EXPORT_SYMBOL(generate_random_uuid);
1119
1120/********************************************************************
1121 *
1122 * Sysctl interface
1123 *
1124 ********************************************************************/
1125
1126#ifdef CONFIG_SYSCTL
1127
1128#include <linux/sysctl.h>
1129
1130static int min_read_thresh = 8, min_write_thresh;
1131static int max_read_thresh = INPUT_POOL_WORDS * 32;
1132static int max_write_thresh = INPUT_POOL_WORDS * 32;
1133static char sysctl_bootid[16];
1134
1135/*
1136 * These functions is used to return both the bootid UUID, and random
1137 * UUID.  The difference is in whether table->data is NULL; if it is,
1138 * then a new UUID is generated and returned to the user.
1139 *
1140 * If the user accesses this via the proc interface, it will be returned
1141 * as an ASCII string in the standard UUID format.  If accesses via the
1142 * sysctl system call, it is returned as 16 bytes of binary data.
1143 */
1144static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1145			void __user *buffer, size_t *lenp, loff_t *ppos)
1146{
1147	ctl_table fake_table;
1148	unsigned char buf[64], tmp_uuid[16], *uuid;
1149
1150	uuid = table->data;
1151	if (!uuid) {
1152		uuid = tmp_uuid;
1153		uuid[8] = 0;
1154	}
1155	if (uuid[8] == 0)
1156		generate_random_uuid(uuid);
1157
1158	sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1159		"%02x%02x%02x%02x%02x%02x",
1160		uuid[0],  uuid[1],  uuid[2],  uuid[3],
1161		uuid[4],  uuid[5],  uuid[6],  uuid[7],
1162		uuid[8],  uuid[9],  uuid[10], uuid[11],
1163		uuid[12], uuid[13], uuid[14], uuid[15]);
1164	fake_table.data = buf;
1165	fake_table.maxlen = sizeof(buf);
1166
1167	return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1168}
1169
1170static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1171			 void __user *oldval, size_t __user *oldlenp,
1172			 void __user *newval, size_t newlen)
1173{
1174	unsigned char tmp_uuid[16], *uuid;
1175	unsigned int len;
1176
1177	if (!oldval || !oldlenp)
1178		return 1;
1179
1180	uuid = table->data;
1181	if (!uuid) {
1182		uuid = tmp_uuid;
1183		uuid[8] = 0;
1184	}
1185	if (uuid[8] == 0)
1186		generate_random_uuid(uuid);
1187
1188	if (get_user(len, oldlenp))
1189		return -EFAULT;
1190	if (len) {
1191		if (len > 16)
1192			len = 16;
1193		if (copy_to_user(oldval, uuid, len) ||
1194		    put_user(len, oldlenp))
1195			return -EFAULT;
1196	}
1197	return 1;
1198}
1199
1200static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1201ctl_table random_table[] = {
1202	{
1203		.ctl_name 	= RANDOM_POOLSIZE,
1204		.procname	= "poolsize",
1205		.data		= &sysctl_poolsize,
1206		.maxlen		= sizeof(int),
1207		.mode		= 0444,
1208		.proc_handler	= &proc_dointvec,
1209	},
1210	{
1211		.ctl_name	= RANDOM_ENTROPY_COUNT,
1212		.procname	= "entropy_avail",
1213		.maxlen		= sizeof(int),
1214		.mode		= 0444,
1215		.proc_handler	= &proc_dointvec,
1216		.data		= &input_pool.entropy_count,
1217	},
1218	{
1219		.ctl_name	= RANDOM_READ_THRESH,
1220		.procname	= "read_wakeup_threshold",
1221		.data		= &random_read_wakeup_thresh,
1222		.maxlen		= sizeof(int),
1223		.mode		= 0644,
1224		.proc_handler	= &proc_dointvec_minmax,
1225		.strategy	= &sysctl_intvec,
1226		.extra1		= &min_read_thresh,
1227		.extra2		= &max_read_thresh,
1228	},
1229	{
1230		.ctl_name	= RANDOM_WRITE_THRESH,
1231		.procname	= "write_wakeup_threshold",
1232		.data		= &random_write_wakeup_thresh,
1233		.maxlen		= sizeof(int),
1234		.mode		= 0644,
1235		.proc_handler	= &proc_dointvec_minmax,
1236		.strategy	= &sysctl_intvec,
1237		.extra1		= &min_write_thresh,
1238		.extra2		= &max_write_thresh,
1239	},
1240	{
1241		.ctl_name	= RANDOM_BOOT_ID,
1242		.procname	= "boot_id",
1243		.data		= &sysctl_bootid,
1244		.maxlen		= 16,
1245		.mode		= 0444,
1246		.proc_handler	= &proc_do_uuid,
1247		.strategy	= &uuid_strategy,
1248	},
1249	{
1250		.ctl_name	= RANDOM_UUID,
1251		.procname	= "uuid",
1252		.maxlen		= 16,
1253		.mode		= 0444,
1254		.proc_handler	= &proc_do_uuid,
1255		.strategy	= &uuid_strategy,
1256	},
1257	{ .ctl_name = 0 }
1258};
1259#endif 	/* CONFIG_SYSCTL */
1260
1261/********************************************************************
1262 *
1263 * Random funtions for networking
1264 *
1265 ********************************************************************/
1266
1267/*
1268 * TCP initial sequence number picking.  This uses the random number
1269 * generator to pick an initial secret value.  This value is hashed
1270 * along with the TCP endpoint information to provide a unique
1271 * starting point for each pair of TCP endpoints.  This defeats
1272 * attacks which rely on guessing the initial TCP sequence number.
1273 * This algorithm was suggested by Steve Bellovin.
1274 *
1275 * Using a very strong hash was taking an appreciable amount of the total
1276 * TCP connection establishment time, so this is a weaker hash,
1277 * compensated for by changing the secret periodically.
1278 */
1279
1280/* F, G and H are basic MD4 functions: selection, majority, parity */
1281#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1282#define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1283#define H(x, y, z) ((x) ^ (y) ^ (z))
1284
1285/*
1286 * The generic round function.  The application is so specific that
1287 * we don't bother protecting all the arguments with parens, as is generally
1288 * good macro practice, in favor of extra legibility.
1289 * Rotation is separate from addition to prevent recomputation
1290 */
1291#define ROUND(f, a, b, c, d, x, s)	\
1292	(a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1293#define K1 0
1294#define K2 013240474631UL
1295#define K3 015666365641UL
1296
1297#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1298
1299static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
1300{
1301	__u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1302
1303	/* Round 1 */
1304	ROUND(F, a, b, c, d, in[ 0] + K1,  3);
1305	ROUND(F, d, a, b, c, in[ 1] + K1,  7);
1306	ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1307	ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1308	ROUND(F, a, b, c, d, in[ 4] + K1,  3);
1309	ROUND(F, d, a, b, c, in[ 5] + K1,  7);
1310	ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1311	ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1312	ROUND(F, a, b, c, d, in[ 8] + K1,  3);
1313	ROUND(F, d, a, b, c, in[ 9] + K1,  7);
1314	ROUND(F, c, d, a, b, in[10] + K1, 11);
1315	ROUND(F, b, c, d, a, in[11] + K1, 19);
1316
1317	/* Round 2 */
1318	ROUND(G, a, b, c, d, in[ 1] + K2,  3);
1319	ROUND(G, d, a, b, c, in[ 3] + K2,  5);
1320	ROUND(G, c, d, a, b, in[ 5] + K2,  9);
1321	ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1322	ROUND(G, a, b, c, d, in[ 9] + K2,  3);
1323	ROUND(G, d, a, b, c, in[11] + K2,  5);
1324	ROUND(G, c, d, a, b, in[ 0] + K2,  9);
1325	ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1326	ROUND(G, a, b, c, d, in[ 4] + K2,  3);
1327	ROUND(G, d, a, b, c, in[ 6] + K2,  5);
1328	ROUND(G, c, d, a, b, in[ 8] + K2,  9);
1329	ROUND(G, b, c, d, a, in[10] + K2, 13);
1330
1331	/* Round 3 */
1332	ROUND(H, a, b, c, d, in[ 3] + K3,  3);
1333	ROUND(H, d, a, b, c, in[ 7] + K3,  9);
1334	ROUND(H, c, d, a, b, in[11] + K3, 11);
1335	ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1336	ROUND(H, a, b, c, d, in[ 6] + K3,  3);
1337	ROUND(H, d, a, b, c, in[10] + K3,  9);
1338	ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1339	ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1340	ROUND(H, a, b, c, d, in[ 9] + K3,  3);
1341	ROUND(H, d, a, b, c, in[ 0] + K3,  9);
1342	ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1343	ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1344
1345	return buf[1] + b; /* "most hashed" word */
1346	/* Alternative: return sum of all words? */
1347}
1348#endif
1349
1350#undef ROUND
1351#undef F
1352#undef G
1353#undef H
1354#undef K1
1355#undef K2
1356#undef K3
1357
1358/* This should not be decreased so low that ISNs wrap too fast. */
1359#define REKEY_INTERVAL (300 * HZ)
1360/*
1361 * Bit layout of the tcp sequence numbers (before adding current time):
1362 * bit 24-31: increased after every key exchange
1363 * bit 0-23: hash(source,dest)
1364 *
1365 * The implementation is similar to the algorithm described
1366 * in the Appendix of RFC 1185, except that
1367 * - it uses a 1 MHz clock instead of a 250 kHz clock
1368 * - it performs a rekey every 5 minutes, which is equivalent
1369 * 	to a (source,dest) tulple dependent forward jump of the
1370 * 	clock by 0..2^(HASH_BITS+1)
1371 *
1372 * Thus the average ISN wraparound time is 68 minutes instead of
1373 * 4.55 hours.
1374 *
1375 * SMP cleanup and lock avoidance with poor man's RCU.
1376 * 			Manfred Spraul <manfred@colorfullife.com>
1377 *
1378 */
1379#define COUNT_BITS 8
1380#define COUNT_MASK ((1 << COUNT_BITS) - 1)
1381#define HASH_BITS 24
1382#define HASH_MASK ((1 << HASH_BITS) - 1)
1383
1384static struct keydata {
1385	__u32 count; /* already shifted to the final position */
1386	__u32 secret[12];
1387} ____cacheline_aligned ip_keydata[2];
1388
1389static unsigned int ip_cnt;
1390
1391static void rekey_seq_generator(struct work_struct *work);
1392
1393static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1394
1395/*
1396 * Lock avoidance:
1397 * The ISN generation runs lockless - it's just a hash over random data.
1398 * State changes happen every 5 minutes when the random key is replaced.
1399 * Synchronization is performed by having two copies of the hash function
1400 * state and rekey_seq_generator always updates the inactive copy.
1401 * The copy is then activated by updating ip_cnt.
1402 * The implementation breaks down if someone blocks the thread
1403 * that processes SYN requests for more than 5 minutes. Should never
1404 * happen, and even if that happens only a not perfectly compliant
1405 * ISN is generated, nothing fatal.
1406 */
1407static void rekey_seq_generator(struct work_struct *work)
1408{
1409	struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1410
1411	get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1412	keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1413	smp_wmb();
1414	ip_cnt++;
1415	schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1416}
1417
1418static inline struct keydata *get_keyptr(void)
1419{
1420	struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1421
1422	smp_rmb();
1423
1424	return keyptr;
1425}
1426
1427static __init int seqgen_init(void)
1428{
1429	rekey_seq_generator(NULL);
1430	return 0;
1431}
1432late_initcall(seqgen_init);
1433
1434#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1435__u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1436				   __be16 sport, __be16 dport)
1437{
1438	__u32 seq;
1439	__u32 hash[12];
1440	struct keydata *keyptr = get_keyptr();
1441
1442	/* The procedure is the same as for IPv4, but addresses are longer.
1443	 * Thus we must use twothirdsMD4Transform.
1444	 */
1445
1446	memcpy(hash, saddr, 16);
1447	hash[4]=((__force u16)sport << 16) + (__force u16)dport;
1448	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1449
1450	seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1451	seq += keyptr->count;
1452
1453	seq += ktime_get_real().tv64;
1454
1455	return seq;
1456}
1457EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1458#endif
1459
1460/*  The code below is shamelessly stolen from secure_tcp_sequence_number().
1461 *  All blames to Andrey V. Savochkin <saw@msu.ru>.
1462 */
1463__u32 secure_ip_id(__be32 daddr)
1464{
1465	struct keydata *keyptr;
1466	__u32 hash[4];
1467
1468	keyptr = get_keyptr();
1469
1470	/*
1471	 *  Pick a unique starting offset for each IP destination.
1472	 *  The dest ip address is placed in the starting vector,
1473	 *  which is then hashed with random data.
1474	 */
1475	hash[0] = (__force __u32)daddr;
1476	hash[1] = keyptr->secret[9];
1477	hash[2] = keyptr->secret[10];
1478	hash[3] = keyptr->secret[11];
1479
1480	return half_md4_transform(hash, keyptr->secret);
1481}
1482
1483#ifdef CONFIG_INET
1484
1485__u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1486				 __be16 sport, __be16 dport)
1487{
1488	__u32 seq;
1489	__u32 hash[4];
1490	struct keydata *keyptr = get_keyptr();
1491
1492	/*
1493	 *  Pick a unique starting offset for each TCP connection endpoints
1494	 *  (saddr, daddr, sport, dport).
1495	 *  Note that the words are placed into the starting vector, which is
1496	 *  then mixed with a partial MD4 over random data.
1497	 */
1498	hash[0]=(__force u32)saddr;
1499	hash[1]=(__force u32)daddr;
1500	hash[2]=((__force u16)sport << 16) + (__force u16)dport;
1501	hash[3]=keyptr->secret[11];
1502
1503	seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1504	seq += keyptr->count;
1505	/*
1506	 *	As close as possible to RFC 793, which
1507	 *	suggests using a 250 kHz clock.
1508	 *	Further reading shows this assumes 2 Mb/s networks.
1509	 *	For 10 Gb/s Ethernet, a 1 GHz clock is appropriate.
1510	 *	That's funny, Linux has one built in!  Use it!
1511	 *	(Networks are faster now - should this be increased?)
1512	 */
1513	seq += ktime_get_real().tv64;
1514	return seq;
1515}
1516
1517/* Generate secure starting point for ephemeral IPV4 transport port search */
1518u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1519{
1520	struct keydata *keyptr = get_keyptr();
1521	u32 hash[4];
1522
1523	/*
1524	 *  Pick a unique starting offset for each ephemeral port search
1525	 *  (saddr, daddr, dport) and 48bits of random data.
1526	 */
1527	hash[0] = (__force u32)saddr;
1528	hash[1] = (__force u32)daddr;
1529	hash[2] = (__force u32)dport ^ keyptr->secret[10];
1530	hash[3] = keyptr->secret[11];
1531
1532	return half_md4_transform(hash, keyptr->secret);
1533}
1534
1535#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1536u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, __be16 dport)
1537{
1538	struct keydata *keyptr = get_keyptr();
1539	u32 hash[12];
1540
1541	memcpy(hash, saddr, 16);
1542	hash[4] = (__force u32)dport;
1543	memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1544
1545	return twothirdsMD4Transform((const __u32 *)daddr, hash);
1546}
1547#endif
1548
1549#if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1550/* Similar to secure_tcp_sequence_number but generate a 48 bit value
1551 * bit's 32-47 increase every key exchange
1552 *       0-31  hash(source, dest)
1553 */
1554u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1555				__be16 sport, __be16 dport)
1556{
1557	u64 seq;
1558	__u32 hash[4];
1559	struct keydata *keyptr = get_keyptr();
1560
1561	hash[0] = (__force u32)saddr;
1562	hash[1] = (__force u32)daddr;
1563	hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1564	hash[3] = keyptr->secret[11];
1565
1566	seq = half_md4_transform(hash, keyptr->secret);
1567	seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1568
1569	seq += ktime_get_real().tv64;
1570	seq &= (1ull << 48) - 1;
1571	return seq;
1572}
1573
1574EXPORT_SYMBOL(secure_dccp_sequence_number);
1575#endif
1576
1577#endif /* CONFIG_INET */
1578
1579
1580/*
1581 * Get a random word for internal kernel use only. Similar to urandom but
1582 * with the goal of minimal entropy pool depletion. As a result, the random
1583 * value is not cryptographically secure but for several uses the cost of
1584 * depleting entropy is too high
1585 */
1586unsigned int get_random_int(void)
1587{
1588	/*
1589	 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1590	 * every second, from the entropy pool (and thus creates a limited
1591	 * drain on it), and uses halfMD4Transform within the second. We
1592	 * also mix it with jiffies and the PID:
1593	 */
1594	return secure_ip_id((__force __be32)(current->pid + jiffies));
1595}
1596
1597/*
1598 * randomize_range() returns a start address such that
1599 *
1600 *    [...... <range> .....]
1601 *  start                  end
1602 *
1603 * a <range> with size "len" starting at the return value is inside in the
1604 * area defined by [start, end], but is otherwise randomized.
1605 */
1606unsigned long
1607randomize_range(unsigned long start, unsigned long end, unsigned long len)
1608{
1609	unsigned long range = end - len - start;
1610
1611	if (end <= start + len)
1612		return 0;
1613	return PAGE_ALIGN(get_random_int() % range + start);
1614}
1615