1/* SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com>
2 *
3 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
4 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
5 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; either version 2, or (at your option) any
10 * later version.
11 *
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16
17#include <linux/mm.h>
18#include <linux/init.h>
19#include <linux/crypto.h>
20#include <linux/types.h>
21
22#include <asm/scatterlist.h>
23#include <asm/byteorder.h>
24
25#define SHA384_DIGEST_SIZE 48
26#define SHA512_DIGEST_SIZE 64
27#define SHA384_HMAC_BLOCK_SIZE 128
28#define SHA512_HMAC_BLOCK_SIZE 128
29
30struct sha512_ctx {
31	u64 state[8];
32	u32 count[4];
33	u8 buf[128];
34	u64 W[80];
35};
36
37static inline u64 Ch(u64 x, u64 y, u64 z)
38{
39        return z ^ (x & (y ^ z));
40}
41
42static inline u64 Maj(u64 x, u64 y, u64 z)
43{
44        return (x & y) | (z & (x | y));
45}
46
47static inline u64 RORu64(u64 x, u64 y)
48{
49        return (x >> y) | (x << (64 - y));
50}
51
52static const u64 sha512_K[80] = {
53        0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
54        0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
55        0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
56        0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
57        0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
58        0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
59        0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
60        0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
61        0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
62        0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
63        0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
64        0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
65        0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
66        0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
67        0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
68        0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
69        0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
70        0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
71        0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
72        0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
73        0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
74        0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
75        0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
76        0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
77        0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
78        0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
79        0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
80};
81
82#define e0(x)       (RORu64(x,28) ^ RORu64(x,34) ^ RORu64(x,39))
83#define e1(x)       (RORu64(x,14) ^ RORu64(x,18) ^ RORu64(x,41))
84#define s0(x)       (RORu64(x, 1) ^ RORu64(x, 8) ^ (x >> 7))
85#define s1(x)       (RORu64(x,19) ^ RORu64(x,61) ^ (x >> 6))
86
87/* H* initial state for SHA-512 */
88#define H0         0x6a09e667f3bcc908ULL
89#define H1         0xbb67ae8584caa73bULL
90#define H2         0x3c6ef372fe94f82bULL
91#define H3         0xa54ff53a5f1d36f1ULL
92#define H4         0x510e527fade682d1ULL
93#define H5         0x9b05688c2b3e6c1fULL
94#define H6         0x1f83d9abfb41bd6bULL
95#define H7         0x5be0cd19137e2179ULL
96
97/* H'* initial state for SHA-384 */
98#define HP0 0xcbbb9d5dc1059ed8ULL
99#define HP1 0x629a292a367cd507ULL
100#define HP2 0x9159015a3070dd17ULL
101#define HP3 0x152fecd8f70e5939ULL
102#define HP4 0x67332667ffc00b31ULL
103#define HP5 0x8eb44a8768581511ULL
104#define HP6 0xdb0c2e0d64f98fa7ULL
105#define HP7 0x47b5481dbefa4fa4ULL
106
107static inline void LOAD_OP(int I, u64 *W, const u8 *input)
108{
109	W[I] = __be64_to_cpu( ((__be64*)(input))[I] );
110}
111
112static inline void BLEND_OP(int I, u64 *W)
113{
114	W[I] = s1(W[I-2]) + W[I-7] + s0(W[I-15]) + W[I-16];
115}
116
117static void
118sha512_transform(u64 *state, u64 *W, const u8 *input)
119{
120	u64 a, b, c, d, e, f, g, h, t1, t2;
121
122	int i;
123
124	/* load the input */
125        for (i = 0; i < 16; i++)
126                LOAD_OP(i, W, input);
127
128        for (i = 16; i < 80; i++) {
129                BLEND_OP(i, W);
130        }
131
132	/* load the state into our registers */
133	a=state[0];   b=state[1];   c=state[2];   d=state[3];
134	e=state[4];   f=state[5];   g=state[6];   h=state[7];
135
136	/* now iterate */
137	for (i=0; i<80; i+=8) {
138		t1 = h + e1(e) + Ch(e,f,g) + sha512_K[i  ] + W[i  ];
139		t2 = e0(a) + Maj(a,b,c);    d+=t1;    h=t1+t2;
140		t1 = g + e1(d) + Ch(d,e,f) + sha512_K[i+1] + W[i+1];
141		t2 = e0(h) + Maj(h,a,b);    c+=t1;    g=t1+t2;
142		t1 = f + e1(c) + Ch(c,d,e) + sha512_K[i+2] + W[i+2];
143		t2 = e0(g) + Maj(g,h,a);    b+=t1;    f=t1+t2;
144		t1 = e + e1(b) + Ch(b,c,d) + sha512_K[i+3] + W[i+3];
145		t2 = e0(f) + Maj(f,g,h);    a+=t1;    e=t1+t2;
146		t1 = d + e1(a) + Ch(a,b,c) + sha512_K[i+4] + W[i+4];
147		t2 = e0(e) + Maj(e,f,g);    h+=t1;    d=t1+t2;
148		t1 = c + e1(h) + Ch(h,a,b) + sha512_K[i+5] + W[i+5];
149		t2 = e0(d) + Maj(d,e,f);    g+=t1;    c=t1+t2;
150		t1 = b + e1(g) + Ch(g,h,a) + sha512_K[i+6] + W[i+6];
151		t2 = e0(c) + Maj(c,d,e);    f+=t1;    b=t1+t2;
152		t1 = a + e1(f) + Ch(f,g,h) + sha512_K[i+7] + W[i+7];
153		t2 = e0(b) + Maj(b,c,d);    e+=t1;    a=t1+t2;
154	}
155
156	state[0] += a; state[1] += b; state[2] += c; state[3] += d;
157	state[4] += e; state[5] += f; state[6] += g; state[7] += h;
158
159	/* erase our data */
160	a = b = c = d = e = f = g = h = t1 = t2 = 0;
161}
162
163static void
164sha512_init(struct crypto_tfm *tfm)
165{
166	struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
167	sctx->state[0] = H0;
168	sctx->state[1] = H1;
169	sctx->state[2] = H2;
170	sctx->state[3] = H3;
171	sctx->state[4] = H4;
172	sctx->state[5] = H5;
173	sctx->state[6] = H6;
174	sctx->state[7] = H7;
175	sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0;
176}
177
178static void
179sha384_init(struct crypto_tfm *tfm)
180{
181	struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
182        sctx->state[0] = HP0;
183        sctx->state[1] = HP1;
184        sctx->state[2] = HP2;
185        sctx->state[3] = HP3;
186        sctx->state[4] = HP4;
187        sctx->state[5] = HP5;
188        sctx->state[6] = HP6;
189        sctx->state[7] = HP7;
190        sctx->count[0] = sctx->count[1] = sctx->count[2] = sctx->count[3] = 0;
191}
192
193static void
194sha512_update(struct crypto_tfm *tfm, const u8 *data, unsigned int len)
195{
196	struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
197
198	unsigned int i, index, part_len;
199
200	/* Compute number of bytes mod 128 */
201	index = (unsigned int)((sctx->count[0] >> 3) & 0x7F);
202
203	/* Update number of bits */
204	if ((sctx->count[0] += (len << 3)) < (len << 3)) {
205		if ((sctx->count[1] += 1) < 1)
206			if ((sctx->count[2] += 1) < 1)
207				sctx->count[3]++;
208		sctx->count[1] += (len >> 29);
209	}
210
211        part_len = 128 - index;
212
213	/* Transform as many times as possible. */
214	if (len >= part_len) {
215		memcpy(&sctx->buf[index], data, part_len);
216		sha512_transform(sctx->state, sctx->W, sctx->buf);
217
218		for (i = part_len; i + 127 < len; i+=128)
219			sha512_transform(sctx->state, sctx->W, &data[i]);
220
221		index = 0;
222	} else {
223		i = 0;
224	}
225
226	/* Buffer remaining input */
227	memcpy(&sctx->buf[index], &data[i], len - i);
228
229	/* erase our data */
230	memset(sctx->W, 0, sizeof(sctx->W));
231}
232
233static void
234sha512_final(struct crypto_tfm *tfm, u8 *hash)
235{
236	struct sha512_ctx *sctx = crypto_tfm_ctx(tfm);
237        static u8 padding[128] = { 0x80, };
238	__be64 *dst = (__be64 *)hash;
239	__be32 bits[4];
240	unsigned int index, pad_len;
241	int i;
242
243	/* Save number of bits */
244	bits[3] = cpu_to_be32(sctx->count[0]);
245	bits[2] = cpu_to_be32(sctx->count[1]);
246	bits[1] = cpu_to_be32(sctx->count[2]);
247	bits[0] = cpu_to_be32(sctx->count[3]);
248
249	/* Pad out to 112 mod 128. */
250	index = (sctx->count[0] >> 3) & 0x7f;
251	pad_len = (index < 112) ? (112 - index) : ((128+112) - index);
252	sha512_update(tfm, padding, pad_len);
253
254	/* Append length (before padding) */
255	sha512_update(tfm, (const u8 *)bits, sizeof(bits));
256
257	/* Store state in digest */
258	for (i = 0; i < 8; i++)
259		dst[i] = cpu_to_be64(sctx->state[i]);
260
261	/* Zeroize sensitive information. */
262	memset(sctx, 0, sizeof(struct sha512_ctx));
263}
264
265static void sha384_final(struct crypto_tfm *tfm, u8 *hash)
266{
267        u8 D[64];
268
269	sha512_final(tfm, D);
270
271        memcpy(hash, D, 48);
272        memset(D, 0, 64);
273}
274
275static struct crypto_alg sha512 = {
276        .cra_name       = "sha512",
277        .cra_flags      = CRYPTO_ALG_TYPE_DIGEST,
278        .cra_blocksize  = SHA512_HMAC_BLOCK_SIZE,
279        .cra_ctxsize    = sizeof(struct sha512_ctx),
280        .cra_module     = THIS_MODULE,
281	.cra_alignmask	= 3,
282        .cra_list       = LIST_HEAD_INIT(sha512.cra_list),
283        .cra_u          = { .digest = {
284                                .dia_digestsize = SHA512_DIGEST_SIZE,
285                                .dia_init       = sha512_init,
286                                .dia_update     = sha512_update,
287                                .dia_final      = sha512_final }
288        }
289};
290
291static struct crypto_alg sha384 = {
292        .cra_name       = "sha384",
293        .cra_flags      = CRYPTO_ALG_TYPE_DIGEST,
294        .cra_blocksize  = SHA384_HMAC_BLOCK_SIZE,
295        .cra_ctxsize    = sizeof(struct sha512_ctx),
296	.cra_alignmask	= 3,
297        .cra_module     = THIS_MODULE,
298        .cra_list       = LIST_HEAD_INIT(sha384.cra_list),
299        .cra_u          = { .digest = {
300                                .dia_digestsize = SHA384_DIGEST_SIZE,
301                                .dia_init       = sha384_init,
302                                .dia_update     = sha512_update,
303                                .dia_final      = sha384_final }
304        }
305};
306
307MODULE_ALIAS("sha384");
308
309static int __init init(void)
310{
311        int ret = 0;
312
313        if ((ret = crypto_register_alg(&sha384)) < 0)
314                goto out;
315        if ((ret = crypto_register_alg(&sha512)) < 0)
316                crypto_unregister_alg(&sha384);
317out:
318        return ret;
319}
320
321static void __exit fini(void)
322{
323        crypto_unregister_alg(&sha384);
324        crypto_unregister_alg(&sha512);
325}
326
327module_init(init);
328module_exit(fini);
329
330MODULE_LICENSE("GPL");
331MODULE_DESCRIPTION("SHA-512 and SHA-384 Secure Hash Algorithms");
332