1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14
15/*
16 * tunables
17 */
18static const int cfq_quantum = 4;		/* max queue in one round of service */
19static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20static const int cfq_back_max = 16 * 1024;	/* maximum backwards seek, in KiB */
21static const int cfq_back_penalty = 2;		/* penalty of a backwards seek */
22
23static const int cfq_slice_sync = HZ / 10;
24static int cfq_slice_async = HZ / 25;
25static const int cfq_slice_async_rq = 2;
26static int cfq_slice_idle = HZ / 125;
27
28/*
29 * grace period before allowing idle class to get disk access
30 */
31#define CFQ_IDLE_GRACE		(HZ / 10)
32
33/*
34 * below this threshold, we consider thinktime immediate
35 */
36#define CFQ_MIN_TT		(2)
37
38#define CFQ_SLICE_SCALE		(5)
39
40#define RQ_CIC(rq)		((struct cfq_io_context*)(rq)->elevator_private)
41#define RQ_CFQQ(rq)		((rq)->elevator_private2)
42
43static struct kmem_cache *cfq_pool;
44static struct kmem_cache *cfq_ioc_pool;
45
46static DEFINE_PER_CPU(unsigned long, ioc_count);
47static struct completion *ioc_gone;
48
49#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
50#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
52
53#define ASYNC			(0)
54#define SYNC			(1)
55
56#define sample_valid(samples)	((samples) > 80)
57
58/*
59 * Most of our rbtree usage is for sorting with min extraction, so
60 * if we cache the leftmost node we don't have to walk down the tree
61 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62 * move this into the elevator for the rq sorting as well.
63 */
64struct cfq_rb_root {
65	struct rb_root rb;
66	struct rb_node *left;
67};
68#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
69
70/*
71 * Per block device queue structure
72 */
73struct cfq_data {
74	request_queue_t *queue;
75
76	/*
77	 * rr list of queues with requests and the count of them
78	 */
79	struct cfq_rb_root service_tree;
80	unsigned int busy_queues;
81
82	int rq_in_driver;
83	int sync_flight;
84	int hw_tag;
85
86	/*
87	 * idle window management
88	 */
89	struct timer_list idle_slice_timer;
90	struct work_struct unplug_work;
91
92	struct cfq_queue *active_queue;
93	struct cfq_io_context *active_cic;
94
95	struct timer_list idle_class_timer;
96
97	sector_t last_position;
98	unsigned long last_end_request;
99
100	/*
101	 * tunables, see top of file
102	 */
103	unsigned int cfq_quantum;
104	unsigned int cfq_fifo_expire[2];
105	unsigned int cfq_back_penalty;
106	unsigned int cfq_back_max;
107	unsigned int cfq_slice[2];
108	unsigned int cfq_slice_async_rq;
109	unsigned int cfq_slice_idle;
110
111	struct list_head cic_list;
112
113	sector_t new_seek_mean;
114	u64 new_seek_total;
115};
116
117/*
118 * Per process-grouping structure
119 */
120struct cfq_queue {
121	/* reference count */
122	atomic_t ref;
123	/* parent cfq_data */
124	struct cfq_data *cfqd;
125	/* service_tree member */
126	struct rb_node rb_node;
127	/* service_tree key */
128	unsigned long rb_key;
129	/* sorted list of pending requests */
130	struct rb_root sort_list;
131	/* if fifo isn't expired, next request to serve */
132	struct request *next_rq;
133	/* requests queued in sort_list */
134	int queued[2];
135	/* currently allocated requests */
136	int allocated[2];
137	/* pending metadata requests */
138	int meta_pending;
139	/* fifo list of requests in sort_list */
140	struct list_head fifo;
141
142	unsigned long slice_end;
143	long slice_resid;
144
145	/* number of requests that are on the dispatch list or inside driver */
146	int dispatched;
147
148	/* io prio of this group */
149	unsigned short ioprio, org_ioprio;
150	unsigned short ioprio_class, org_ioprio_class;
151
152	/* various state flags, see below */
153	unsigned int flags;
154
155	sector_t last_request_pos;
156};
157
158enum cfqq_state_flags {
159	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
160	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
161	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
162	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
163	CFQ_CFQQ_FLAG_must_dispatch,	/* must dispatch, even if expired */
164	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
165	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
166	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
167	CFQ_CFQQ_FLAG_queue_new,	/* queue never been serviced */
168	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
169	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
170};
171
172#define CFQ_CFQQ_FNS(name)						\
173static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
174{									\
175	cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
176}									\
177static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
178{									\
179	cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
180}									\
181static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
182{									\
183	return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
184}
185
186CFQ_CFQQ_FNS(on_rr);
187CFQ_CFQQ_FNS(wait_request);
188CFQ_CFQQ_FNS(must_alloc);
189CFQ_CFQQ_FNS(must_alloc_slice);
190CFQ_CFQQ_FNS(must_dispatch);
191CFQ_CFQQ_FNS(fifo_expire);
192CFQ_CFQQ_FNS(idle_window);
193CFQ_CFQQ_FNS(prio_changed);
194CFQ_CFQQ_FNS(queue_new);
195CFQ_CFQQ_FNS(slice_new);
196CFQ_CFQQ_FNS(sync);
197#undef CFQ_CFQQ_FNS
198
199static void cfq_dispatch_insert(request_queue_t *, struct request *);
200static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
201				       struct task_struct *, gfp_t);
202static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
203						struct io_context *);
204
205static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
206					    int is_sync)
207{
208	return cic->cfqq[!!is_sync];
209}
210
211static inline void cic_set_cfqq(struct cfq_io_context *cic,
212				struct cfq_queue *cfqq, int is_sync)
213{
214	cic->cfqq[!!is_sync] = cfqq;
215}
216
217/*
218 * We regard a request as SYNC, if it's either a read or has the SYNC bit
219 * set (in which case it could also be direct WRITE).
220 */
221static inline int cfq_bio_sync(struct bio *bio)
222{
223	if (bio_data_dir(bio) == READ || bio_sync(bio))
224		return 1;
225
226	return 0;
227}
228
229/*
230 * scheduler run of queue, if there are requests pending and no one in the
231 * driver that will restart queueing
232 */
233static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
234{
235	if (cfqd->busy_queues)
236		kblockd_schedule_work(&cfqd->unplug_work);
237}
238
239static int cfq_queue_empty(request_queue_t *q)
240{
241	struct cfq_data *cfqd = q->elevator->elevator_data;
242
243	return !cfqd->busy_queues;
244}
245
246/*
247 * Scale schedule slice based on io priority. Use the sync time slice only
248 * if a queue is marked sync and has sync io queued. A sync queue with async
249 * io only, should not get full sync slice length.
250 */
251static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
252				 unsigned short prio)
253{
254	const int base_slice = cfqd->cfq_slice[sync];
255
256	WARN_ON(prio >= IOPRIO_BE_NR);
257
258	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
259}
260
261static inline int
262cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
263{
264	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
265}
266
267static inline void
268cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
269{
270	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
271}
272
273/*
274 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
275 * isn't valid until the first request from the dispatch is activated
276 * and the slice time set.
277 */
278static inline int cfq_slice_used(struct cfq_queue *cfqq)
279{
280	if (cfq_cfqq_slice_new(cfqq))
281		return 0;
282	if (time_before(jiffies, cfqq->slice_end))
283		return 0;
284
285	return 1;
286}
287
288/*
289 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
290 * We choose the request that is closest to the head right now. Distance
291 * behind the head is penalized and only allowed to a certain extent.
292 */
293static struct request *
294cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
295{
296	sector_t last, s1, s2, d1 = 0, d2 = 0;
297	unsigned long back_max;
298#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
299#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
300	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
301
302	if (rq1 == NULL || rq1 == rq2)
303		return rq2;
304	if (rq2 == NULL)
305		return rq1;
306
307	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
308		return rq1;
309	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
310		return rq2;
311	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
312		return rq1;
313	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
314		return rq2;
315
316	s1 = rq1->sector;
317	s2 = rq2->sector;
318
319	last = cfqd->last_position;
320
321	/*
322	 * by definition, 1KiB is 2 sectors
323	 */
324	back_max = cfqd->cfq_back_max * 2;
325
326	/*
327	 * Strict one way elevator _except_ in the case where we allow
328	 * short backward seeks which are biased as twice the cost of a
329	 * similar forward seek.
330	 */
331	if (s1 >= last)
332		d1 = s1 - last;
333	else if (s1 + back_max >= last)
334		d1 = (last - s1) * cfqd->cfq_back_penalty;
335	else
336		wrap |= CFQ_RQ1_WRAP;
337
338	if (s2 >= last)
339		d2 = s2 - last;
340	else if (s2 + back_max >= last)
341		d2 = (last - s2) * cfqd->cfq_back_penalty;
342	else
343		wrap |= CFQ_RQ2_WRAP;
344
345	/* Found required data */
346
347	/*
348	 * By doing switch() on the bit mask "wrap" we avoid having to
349	 * check two variables for all permutations: --> faster!
350	 */
351	switch (wrap) {
352	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
353		if (d1 < d2)
354			return rq1;
355		else if (d2 < d1)
356			return rq2;
357		else {
358			if (s1 >= s2)
359				return rq1;
360			else
361				return rq2;
362		}
363
364	case CFQ_RQ2_WRAP:
365		return rq1;
366	case CFQ_RQ1_WRAP:
367		return rq2;
368	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
369	default:
370		/*
371		 * Since both rqs are wrapped,
372		 * start with the one that's further behind head
373		 * (--> only *one* back seek required),
374		 * since back seek takes more time than forward.
375		 */
376		if (s1 <= s2)
377			return rq1;
378		else
379			return rq2;
380	}
381}
382
383/*
384 * The below is leftmost cache rbtree addon
385 */
386static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
387{
388	if (!root->left)
389		root->left = rb_first(&root->rb);
390
391	return root->left;
392}
393
394static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
395{
396	if (root->left == n)
397		root->left = NULL;
398
399	rb_erase(n, &root->rb);
400	RB_CLEAR_NODE(n);
401}
402
403/*
404 * would be nice to take fifo expire time into account as well
405 */
406static struct request *
407cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
408		  struct request *last)
409{
410	struct rb_node *rbnext = rb_next(&last->rb_node);
411	struct rb_node *rbprev = rb_prev(&last->rb_node);
412	struct request *next = NULL, *prev = NULL;
413
414	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
415
416	if (rbprev)
417		prev = rb_entry_rq(rbprev);
418
419	if (rbnext)
420		next = rb_entry_rq(rbnext);
421	else {
422		rbnext = rb_first(&cfqq->sort_list);
423		if (rbnext && rbnext != &last->rb_node)
424			next = rb_entry_rq(rbnext);
425	}
426
427	return cfq_choose_req(cfqd, next, prev);
428}
429
430static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
431				      struct cfq_queue *cfqq)
432{
433	/*
434	 * just an approximation, should be ok.
435	 */
436	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
437		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
438}
439
440/*
441 * The cfqd->service_tree holds all pending cfq_queue's that have
442 * requests waiting to be processed. It is sorted in the order that
443 * we will service the queues.
444 */
445static void cfq_service_tree_add(struct cfq_data *cfqd,
446				    struct cfq_queue *cfqq, int add_front)
447{
448	struct rb_node **p = &cfqd->service_tree.rb.rb_node;
449	struct rb_node *parent = NULL;
450	unsigned long rb_key;
451	int left;
452
453	if (!add_front) {
454		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
455		rb_key += cfqq->slice_resid;
456		cfqq->slice_resid = 0;
457	} else
458		rb_key = 0;
459
460	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
461		/*
462		 * same position, nothing more to do
463		 */
464		if (rb_key == cfqq->rb_key)
465			return;
466
467		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
468	}
469
470	left = 1;
471	while (*p) {
472		struct cfq_queue *__cfqq;
473		struct rb_node **n;
474
475		parent = *p;
476		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
477
478		/*
479		 * sort RT queues first, we always want to give
480		 * preference to them. IDLE queues goes to the back.
481		 * after that, sort on the next service time.
482		 */
483		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
484			n = &(*p)->rb_left;
485		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
486			n = &(*p)->rb_right;
487		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
488			n = &(*p)->rb_left;
489		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
490			n = &(*p)->rb_right;
491		else if (rb_key < __cfqq->rb_key)
492			n = &(*p)->rb_left;
493		else
494			n = &(*p)->rb_right;
495
496		if (n == &(*p)->rb_right)
497			left = 0;
498
499		p = n;
500	}
501
502	if (left)
503		cfqd->service_tree.left = &cfqq->rb_node;
504
505	cfqq->rb_key = rb_key;
506	rb_link_node(&cfqq->rb_node, parent, p);
507	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
508}
509
510/*
511 * Update cfqq's position in the service tree.
512 */
513static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
514{
515	/*
516	 * Resorting requires the cfqq to be on the RR list already.
517	 */
518	if (cfq_cfqq_on_rr(cfqq))
519		cfq_service_tree_add(cfqd, cfqq, 0);
520}
521
522/*
523 * add to busy list of queues for service, trying to be fair in ordering
524 * the pending list according to last request service
525 */
526static inline void
527cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528{
529	BUG_ON(cfq_cfqq_on_rr(cfqq));
530	cfq_mark_cfqq_on_rr(cfqq);
531	cfqd->busy_queues++;
532
533	cfq_resort_rr_list(cfqd, cfqq);
534}
535
536/*
537 * Called when the cfqq no longer has requests pending, remove it from
538 * the service tree.
539 */
540static inline void
541cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
542{
543	BUG_ON(!cfq_cfqq_on_rr(cfqq));
544	cfq_clear_cfqq_on_rr(cfqq);
545
546	if (!RB_EMPTY_NODE(&cfqq->rb_node))
547		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
548
549	BUG_ON(!cfqd->busy_queues);
550	cfqd->busy_queues--;
551}
552
553/*
554 * rb tree support functions
555 */
556static inline void cfq_del_rq_rb(struct request *rq)
557{
558	struct cfq_queue *cfqq = RQ_CFQQ(rq);
559	struct cfq_data *cfqd = cfqq->cfqd;
560	const int sync = rq_is_sync(rq);
561
562	BUG_ON(!cfqq->queued[sync]);
563	cfqq->queued[sync]--;
564
565	elv_rb_del(&cfqq->sort_list, rq);
566
567	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
568		cfq_del_cfqq_rr(cfqd, cfqq);
569}
570
571static void cfq_add_rq_rb(struct request *rq)
572{
573	struct cfq_queue *cfqq = RQ_CFQQ(rq);
574	struct cfq_data *cfqd = cfqq->cfqd;
575	struct request *__alias;
576
577	cfqq->queued[rq_is_sync(rq)]++;
578
579	/*
580	 * looks a little odd, but the first insert might return an alias.
581	 * if that happens, put the alias on the dispatch list
582	 */
583	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
584		cfq_dispatch_insert(cfqd->queue, __alias);
585
586	if (!cfq_cfqq_on_rr(cfqq))
587		cfq_add_cfqq_rr(cfqd, cfqq);
588
589	/*
590	 * check if this request is a better next-serve candidate
591	 */
592	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
593	BUG_ON(!cfqq->next_rq);
594}
595
596static inline void
597cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
598{
599	elv_rb_del(&cfqq->sort_list, rq);
600	cfqq->queued[rq_is_sync(rq)]--;
601	cfq_add_rq_rb(rq);
602}
603
604static struct request *
605cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
606{
607	struct task_struct *tsk = current;
608	struct cfq_io_context *cic;
609	struct cfq_queue *cfqq;
610
611	cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
612	if (!cic)
613		return NULL;
614
615	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
616	if (cfqq) {
617		sector_t sector = bio->bi_sector + bio_sectors(bio);
618
619		return elv_rb_find(&cfqq->sort_list, sector);
620	}
621
622	return NULL;
623}
624
625static void cfq_activate_request(request_queue_t *q, struct request *rq)
626{
627	struct cfq_data *cfqd = q->elevator->elevator_data;
628
629	cfqd->rq_in_driver++;
630
631	/*
632	 * If the depth is larger 1, it really could be queueing. But lets
633	 * make the mark a little higher - idling could still be good for
634	 * low queueing, and a low queueing number could also just indicate
635	 * a SCSI mid layer like behaviour where limit+1 is often seen.
636	 */
637	if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
638		cfqd->hw_tag = 1;
639
640	cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
641}
642
643static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
644{
645	struct cfq_data *cfqd = q->elevator->elevator_data;
646
647	WARN_ON(!cfqd->rq_in_driver);
648	cfqd->rq_in_driver--;
649}
650
651static void cfq_remove_request(struct request *rq)
652{
653	struct cfq_queue *cfqq = RQ_CFQQ(rq);
654
655	if (cfqq->next_rq == rq)
656		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
657
658	list_del_init(&rq->queuelist);
659	cfq_del_rq_rb(rq);
660
661	if (rq_is_meta(rq)) {
662		WARN_ON(!cfqq->meta_pending);
663		cfqq->meta_pending--;
664	}
665}
666
667static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
668{
669	struct cfq_data *cfqd = q->elevator->elevator_data;
670	struct request *__rq;
671
672	__rq = cfq_find_rq_fmerge(cfqd, bio);
673	if (__rq && elv_rq_merge_ok(__rq, bio)) {
674		*req = __rq;
675		return ELEVATOR_FRONT_MERGE;
676	}
677
678	return ELEVATOR_NO_MERGE;
679}
680
681static void cfq_merged_request(request_queue_t *q, struct request *req,
682			       int type)
683{
684	if (type == ELEVATOR_FRONT_MERGE) {
685		struct cfq_queue *cfqq = RQ_CFQQ(req);
686
687		cfq_reposition_rq_rb(cfqq, req);
688	}
689}
690
691static void
692cfq_merged_requests(request_queue_t *q, struct request *rq,
693		    struct request *next)
694{
695	/*
696	 * reposition in fifo if next is older than rq
697	 */
698	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
699	    time_before(next->start_time, rq->start_time))
700		list_move(&rq->queuelist, &next->queuelist);
701
702	cfq_remove_request(next);
703}
704
705static int cfq_allow_merge(request_queue_t *q, struct request *rq,
706			   struct bio *bio)
707{
708	struct cfq_data *cfqd = q->elevator->elevator_data;
709	struct cfq_io_context *cic;
710	struct cfq_queue *cfqq;
711
712	/*
713	 * Disallow merge of a sync bio into an async request.
714	 */
715	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
716		return 0;
717
718	/*
719	 * Lookup the cfqq that this bio will be queued with. Allow
720	 * merge only if rq is queued there.
721	 */
722	cic = cfq_cic_rb_lookup(cfqd, current->io_context);
723	if (!cic)
724		return 0;
725
726	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
727	if (cfqq == RQ_CFQQ(rq))
728		return 1;
729
730	return 0;
731}
732
733static inline void
734__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
735{
736	if (cfqq) {
737		/*
738		 * stop potential idle class queues waiting service
739		 */
740		del_timer(&cfqd->idle_class_timer);
741
742		cfqq->slice_end = 0;
743		cfq_clear_cfqq_must_alloc_slice(cfqq);
744		cfq_clear_cfqq_fifo_expire(cfqq);
745		cfq_mark_cfqq_slice_new(cfqq);
746		cfq_clear_cfqq_queue_new(cfqq);
747	}
748
749	cfqd->active_queue = cfqq;
750}
751
752/*
753 * current cfqq expired its slice (or was too idle), select new one
754 */
755static void
756__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
757		    int timed_out)
758{
759	if (cfq_cfqq_wait_request(cfqq))
760		del_timer(&cfqd->idle_slice_timer);
761
762	cfq_clear_cfqq_must_dispatch(cfqq);
763	cfq_clear_cfqq_wait_request(cfqq);
764
765	/*
766	 * store what was left of this slice, if the queue idled/timed out
767	 */
768	if (timed_out && !cfq_cfqq_slice_new(cfqq))
769		cfqq->slice_resid = cfqq->slice_end - jiffies;
770
771	cfq_resort_rr_list(cfqd, cfqq);
772
773	if (cfqq == cfqd->active_queue)
774		cfqd->active_queue = NULL;
775
776	if (cfqd->active_cic) {
777		put_io_context(cfqd->active_cic->ioc);
778		cfqd->active_cic = NULL;
779	}
780}
781
782static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
783{
784	struct cfq_queue *cfqq = cfqd->active_queue;
785
786	if (cfqq)
787		__cfq_slice_expired(cfqd, cfqq, timed_out);
788}
789
790/*
791 * Get next queue for service. Unless we have a queue preemption,
792 * we'll simply select the first cfqq in the service tree.
793 */
794static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
795{
796	struct cfq_queue *cfqq;
797	struct rb_node *n;
798
799	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
800		return NULL;
801
802	n = cfq_rb_first(&cfqd->service_tree);
803	cfqq = rb_entry(n, struct cfq_queue, rb_node);
804
805	if (cfq_class_idle(cfqq)) {
806		unsigned long end;
807
808		/*
809		 * if we have idle queues and no rt or be queues had
810		 * pending requests, either allow immediate service if
811		 * the grace period has passed or arm the idle grace
812		 * timer
813		 */
814		end = cfqd->last_end_request + CFQ_IDLE_GRACE;
815		if (time_before(jiffies, end)) {
816			mod_timer(&cfqd->idle_class_timer, end);
817			cfqq = NULL;
818		}
819	}
820
821	return cfqq;
822}
823
824/*
825 * Get and set a new active queue for service.
826 */
827static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
828{
829	struct cfq_queue *cfqq;
830
831	cfqq = cfq_get_next_queue(cfqd);
832	__cfq_set_active_queue(cfqd, cfqq);
833	return cfqq;
834}
835
836static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
837					  struct request *rq)
838{
839	if (rq->sector >= cfqd->last_position)
840		return rq->sector - cfqd->last_position;
841	else
842		return cfqd->last_position - rq->sector;
843}
844
845static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
846{
847	struct cfq_io_context *cic = cfqd->active_cic;
848
849	if (!sample_valid(cic->seek_samples))
850		return 0;
851
852	return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
853}
854
855static int cfq_close_cooperator(struct cfq_data *cfq_data,
856				struct cfq_queue *cfqq)
857{
858	/*
859	 * We should notice if some of the queues are cooperating, eg
860	 * working closely on the same area of the disk. In that case,
861	 * we can group them together and don't waste time idling.
862	 */
863	return 0;
864}
865
866#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
867
868static void cfq_arm_slice_timer(struct cfq_data *cfqd)
869{
870	struct cfq_queue *cfqq = cfqd->active_queue;
871	struct cfq_io_context *cic;
872	unsigned long sl;
873
874	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
875	WARN_ON(cfq_cfqq_slice_new(cfqq));
876
877	/*
878	 * idle is disabled, either manually or by past process history
879	 */
880	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
881		return;
882
883	/*
884	 * task has exited, don't wait
885	 */
886	cic = cfqd->active_cic;
887	if (!cic || !cic->ioc->task)
888		return;
889
890	/*
891	 * See if this prio level has a good candidate
892	 */
893	if (cfq_close_cooperator(cfqd, cfqq) &&
894	    (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
895		return;
896
897	cfq_mark_cfqq_must_dispatch(cfqq);
898	cfq_mark_cfqq_wait_request(cfqq);
899
900	/*
901	 * we don't want to idle for seeks, but we do want to allow
902	 * fair distribution of slice time for a process doing back-to-back
903	 * seeks. so allow a little bit of time for him to submit a new rq
904	 */
905	sl = cfqd->cfq_slice_idle;
906	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
907		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
908
909	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
910}
911
912/*
913 * Move request from internal lists to the request queue dispatch list.
914 */
915static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
916{
917	struct cfq_data *cfqd = q->elevator->elevator_data;
918	struct cfq_queue *cfqq = RQ_CFQQ(rq);
919
920	cfq_remove_request(rq);
921	cfqq->dispatched++;
922	elv_dispatch_sort(q, rq);
923
924	if (cfq_cfqq_sync(cfqq))
925		cfqd->sync_flight++;
926}
927
928/*
929 * return expired entry, or NULL to just start from scratch in rbtree
930 */
931static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
932{
933	struct cfq_data *cfqd = cfqq->cfqd;
934	struct request *rq;
935	int fifo;
936
937	if (cfq_cfqq_fifo_expire(cfqq))
938		return NULL;
939
940	cfq_mark_cfqq_fifo_expire(cfqq);
941
942	if (list_empty(&cfqq->fifo))
943		return NULL;
944
945	fifo = cfq_cfqq_sync(cfqq);
946	rq = rq_entry_fifo(cfqq->fifo.next);
947
948	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
949		return NULL;
950
951	return rq;
952}
953
954static inline int
955cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
956{
957	const int base_rq = cfqd->cfq_slice_async_rq;
958
959	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
960
961	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
962}
963
964/*
965 * Select a queue for service. If we have a current active queue,
966 * check whether to continue servicing it, or retrieve and set a new one.
967 */
968static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
969{
970	struct cfq_queue *cfqq;
971
972	cfqq = cfqd->active_queue;
973	if (!cfqq)
974		goto new_queue;
975
976	/*
977	 * The active queue has run out of time, expire it and select new.
978	 */
979	if (cfq_slice_used(cfqq))
980		goto expire;
981
982	/*
983	 * The active queue has requests and isn't expired, allow it to
984	 * dispatch.
985	 */
986	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
987		goto keep_queue;
988
989	/*
990	 * No requests pending. If the active queue still has requests in
991	 * flight or is idling for a new request, allow either of these
992	 * conditions to happen (or time out) before selecting a new queue.
993	 */
994	if (timer_pending(&cfqd->idle_slice_timer) ||
995	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
996		cfqq = NULL;
997		goto keep_queue;
998	}
999
1000expire:
1001	cfq_slice_expired(cfqd, 0);
1002new_queue:
1003	cfqq = cfq_set_active_queue(cfqd);
1004keep_queue:
1005	return cfqq;
1006}
1007
1008/*
1009 * Dispatch some requests from cfqq, moving them to the request queue
1010 * dispatch list.
1011 */
1012static int
1013__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1014			int max_dispatch)
1015{
1016	int dispatched = 0;
1017
1018	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1019
1020	do {
1021		struct request *rq;
1022
1023		/*
1024		 * follow expired path, else get first next available
1025		 */
1026		if ((rq = cfq_check_fifo(cfqq)) == NULL)
1027			rq = cfqq->next_rq;
1028
1029		/*
1030		 * finally, insert request into driver dispatch list
1031		 */
1032		cfq_dispatch_insert(cfqd->queue, rq);
1033
1034		dispatched++;
1035
1036		if (!cfqd->active_cic) {
1037			atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1038			cfqd->active_cic = RQ_CIC(rq);
1039		}
1040
1041		if (RB_EMPTY_ROOT(&cfqq->sort_list))
1042			break;
1043
1044	} while (dispatched < max_dispatch);
1045
1046	/*
1047	 * expire an async queue immediately if it has used up its slice. idle
1048	 * queue always expire after 1 dispatch round.
1049	 */
1050	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1051	    dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1052	    cfq_class_idle(cfqq))) {
1053		cfqq->slice_end = jiffies + 1;
1054		cfq_slice_expired(cfqd, 0);
1055	}
1056
1057	return dispatched;
1058}
1059
1060static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1061{
1062	int dispatched = 0;
1063
1064	while (cfqq->next_rq) {
1065		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1066		dispatched++;
1067	}
1068
1069	BUG_ON(!list_empty(&cfqq->fifo));
1070	return dispatched;
1071}
1072
1073/*
1074 * Drain our current requests. Used for barriers and when switching
1075 * io schedulers on-the-fly.
1076 */
1077static int cfq_forced_dispatch(struct cfq_data *cfqd)
1078{
1079	int dispatched = 0;
1080	struct rb_node *n;
1081
1082	while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1083		struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1084
1085		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1086	}
1087
1088	cfq_slice_expired(cfqd, 0);
1089
1090	BUG_ON(cfqd->busy_queues);
1091
1092	return dispatched;
1093}
1094
1095static int cfq_dispatch_requests(request_queue_t *q, int force)
1096{
1097	struct cfq_data *cfqd = q->elevator->elevator_data;
1098	struct cfq_queue *cfqq;
1099	int dispatched;
1100
1101	if (!cfqd->busy_queues)
1102		return 0;
1103
1104	if (unlikely(force))
1105		return cfq_forced_dispatch(cfqd);
1106
1107	dispatched = 0;
1108	while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1109		int max_dispatch;
1110
1111		max_dispatch = cfqd->cfq_quantum;
1112		if (cfq_class_idle(cfqq))
1113			max_dispatch = 1;
1114
1115		if (cfqq->dispatched >= max_dispatch) {
1116			if (cfqd->busy_queues > 1)
1117				break;
1118			if (cfqq->dispatched >= 4 * max_dispatch)
1119				break;
1120		}
1121
1122		if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1123			break;
1124
1125		cfq_clear_cfqq_must_dispatch(cfqq);
1126		cfq_clear_cfqq_wait_request(cfqq);
1127		del_timer(&cfqd->idle_slice_timer);
1128
1129		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1130	}
1131
1132	return dispatched;
1133}
1134
1135/*
1136 * task holds one reference to the queue, dropped when task exits. each rq
1137 * in-flight on this queue also holds a reference, dropped when rq is freed.
1138 *
1139 * queue lock must be held here.
1140 */
1141static void cfq_put_queue(struct cfq_queue *cfqq)
1142{
1143	struct cfq_data *cfqd = cfqq->cfqd;
1144
1145	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1146
1147	if (!atomic_dec_and_test(&cfqq->ref))
1148		return;
1149
1150	BUG_ON(rb_first(&cfqq->sort_list));
1151	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1152	BUG_ON(cfq_cfqq_on_rr(cfqq));
1153
1154	if (unlikely(cfqd->active_queue == cfqq)) {
1155		__cfq_slice_expired(cfqd, cfqq, 0);
1156		cfq_schedule_dispatch(cfqd);
1157	}
1158
1159	kmem_cache_free(cfq_pool, cfqq);
1160}
1161
1162static void cfq_free_io_context(struct io_context *ioc)
1163{
1164	struct cfq_io_context *__cic;
1165	struct rb_node *n;
1166	int freed = 0;
1167
1168	ioc->ioc_data = NULL;
1169
1170	while ((n = rb_first(&ioc->cic_root)) != NULL) {
1171		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1172		rb_erase(&__cic->rb_node, &ioc->cic_root);
1173		kmem_cache_free(cfq_ioc_pool, __cic);
1174		freed++;
1175	}
1176
1177	elv_ioc_count_mod(ioc_count, -freed);
1178
1179	if (ioc_gone && !elv_ioc_count_read(ioc_count))
1180		complete(ioc_gone);
1181}
1182
1183static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1184{
1185	if (unlikely(cfqq == cfqd->active_queue)) {
1186		__cfq_slice_expired(cfqd, cfqq, 0);
1187		cfq_schedule_dispatch(cfqd);
1188	}
1189
1190	cfq_put_queue(cfqq);
1191}
1192
1193static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1194					 struct cfq_io_context *cic)
1195{
1196	list_del_init(&cic->queue_list);
1197	smp_wmb();
1198	cic->key = NULL;
1199
1200	if (cic->cfqq[ASYNC]) {
1201		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1202		cic->cfqq[ASYNC] = NULL;
1203	}
1204
1205	if (cic->cfqq[SYNC]) {
1206		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1207		cic->cfqq[SYNC] = NULL;
1208	}
1209}
1210
1211static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1212{
1213	struct cfq_data *cfqd = cic->key;
1214
1215	if (cfqd) {
1216		request_queue_t *q = cfqd->queue;
1217
1218		spin_lock_irq(q->queue_lock);
1219		__cfq_exit_single_io_context(cfqd, cic);
1220		spin_unlock_irq(q->queue_lock);
1221	}
1222}
1223
1224/*
1225 * The process that ioc belongs to has exited, we need to clean up
1226 * and put the internal structures we have that belongs to that process.
1227 */
1228static void cfq_exit_io_context(struct io_context *ioc)
1229{
1230	struct cfq_io_context *__cic;
1231	struct rb_node *n;
1232
1233	ioc->ioc_data = NULL;
1234
1235	/*
1236	 * put the reference this task is holding to the various queues
1237	 */
1238	n = rb_first(&ioc->cic_root);
1239	while (n != NULL) {
1240		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1241
1242		cfq_exit_single_io_context(__cic);
1243		n = rb_next(n);
1244	}
1245}
1246
1247static struct cfq_io_context *
1248cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1249{
1250	struct cfq_io_context *cic;
1251
1252	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1253	if (cic) {
1254		memset(cic, 0, sizeof(*cic));
1255		cic->last_end_request = jiffies;
1256		INIT_LIST_HEAD(&cic->queue_list);
1257		cic->dtor = cfq_free_io_context;
1258		cic->exit = cfq_exit_io_context;
1259		elv_ioc_count_inc(ioc_count);
1260	}
1261
1262	return cic;
1263}
1264
1265static void cfq_init_prio_data(struct cfq_queue *cfqq)
1266{
1267	struct task_struct *tsk = current;
1268	int ioprio_class;
1269
1270	if (!cfq_cfqq_prio_changed(cfqq))
1271		return;
1272
1273	ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1274	switch (ioprio_class) {
1275		default:
1276			printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1277		case IOPRIO_CLASS_NONE:
1278			/*
1279			 * no prio set, place us in the middle of the BE classes
1280			 */
1281			if (tsk->policy == SCHED_IDLE)
1282				goto set_class_idle;
1283			cfqq->ioprio = task_nice_ioprio(tsk);
1284			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1285			break;
1286		case IOPRIO_CLASS_RT:
1287			cfqq->ioprio = task_ioprio(tsk);
1288			cfqq->ioprio_class = IOPRIO_CLASS_RT;
1289			break;
1290		case IOPRIO_CLASS_BE:
1291			cfqq->ioprio = task_ioprio(tsk);
1292			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1293			break;
1294		case IOPRIO_CLASS_IDLE:
1295 set_class_idle:
1296			cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1297			cfqq->ioprio = 7;
1298			cfq_clear_cfqq_idle_window(cfqq);
1299			break;
1300	}
1301
1302	/*
1303	 * keep track of original prio settings in case we have to temporarily
1304	 * elevate the priority of this queue
1305	 */
1306	cfqq->org_ioprio = cfqq->ioprio;
1307	cfqq->org_ioprio_class = cfqq->ioprio_class;
1308	cfq_clear_cfqq_prio_changed(cfqq);
1309}
1310
1311static inline void changed_ioprio(struct cfq_io_context *cic)
1312{
1313	struct cfq_data *cfqd = cic->key;
1314	struct cfq_queue *cfqq;
1315	unsigned long flags;
1316
1317	if (unlikely(!cfqd))
1318		return;
1319
1320	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1321
1322	cfqq = cic->cfqq[ASYNC];
1323	if (cfqq) {
1324		struct cfq_queue *new_cfqq;
1325		new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc->task,
1326					 GFP_ATOMIC);
1327		if (new_cfqq) {
1328			cic->cfqq[ASYNC] = new_cfqq;
1329			cfq_put_queue(cfqq);
1330		}
1331	}
1332
1333	cfqq = cic->cfqq[SYNC];
1334	if (cfqq)
1335		cfq_mark_cfqq_prio_changed(cfqq);
1336
1337	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1338}
1339
1340static void cfq_ioc_set_ioprio(struct io_context *ioc)
1341{
1342	struct cfq_io_context *cic;
1343	struct rb_node *n;
1344
1345	ioc->ioprio_changed = 0;
1346
1347	n = rb_first(&ioc->cic_root);
1348	while (n != NULL) {
1349		cic = rb_entry(n, struct cfq_io_context, rb_node);
1350
1351		changed_ioprio(cic);
1352		n = rb_next(n);
1353	}
1354}
1355
1356static struct cfq_queue *
1357cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct task_struct *tsk,
1358	      gfp_t gfp_mask)
1359{
1360	struct cfq_queue *cfqq, *new_cfqq = NULL;
1361	struct cfq_io_context *cic;
1362
1363retry:
1364	cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1365	/* cic always exists here */
1366	cfqq = cic_to_cfqq(cic, is_sync);
1367
1368	if (!cfqq) {
1369		if (new_cfqq) {
1370			cfqq = new_cfqq;
1371			new_cfqq = NULL;
1372		} else if (gfp_mask & __GFP_WAIT) {
1373			/*
1374			 * Inform the allocator of the fact that we will
1375			 * just repeat this allocation if it fails, to allow
1376			 * the allocator to do whatever it needs to attempt to
1377			 * free memory.
1378			 */
1379			spin_unlock_irq(cfqd->queue->queue_lock);
1380			new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1381			spin_lock_irq(cfqd->queue->queue_lock);
1382			goto retry;
1383		} else {
1384			cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1385			if (!cfqq)
1386				goto out;
1387		}
1388
1389		memset(cfqq, 0, sizeof(*cfqq));
1390
1391		RB_CLEAR_NODE(&cfqq->rb_node);
1392		INIT_LIST_HEAD(&cfqq->fifo);
1393
1394		atomic_set(&cfqq->ref, 0);
1395		cfqq->cfqd = cfqd;
1396
1397		if (is_sync) {
1398			cfq_mark_cfqq_idle_window(cfqq);
1399			cfq_mark_cfqq_sync(cfqq);
1400		}
1401
1402		cfq_mark_cfqq_prio_changed(cfqq);
1403		cfq_mark_cfqq_queue_new(cfqq);
1404
1405		cfq_init_prio_data(cfqq);
1406	}
1407
1408	if (new_cfqq)
1409		kmem_cache_free(cfq_pool, new_cfqq);
1410
1411	atomic_inc(&cfqq->ref);
1412out:
1413	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1414	return cfqq;
1415}
1416
1417/*
1418 * We drop cfq io contexts lazily, so we may find a dead one.
1419 */
1420static void
1421cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1422{
1423	WARN_ON(!list_empty(&cic->queue_list));
1424
1425	if (ioc->ioc_data == cic)
1426		ioc->ioc_data = NULL;
1427
1428	rb_erase(&cic->rb_node, &ioc->cic_root);
1429	kmem_cache_free(cfq_ioc_pool, cic);
1430	elv_ioc_count_dec(ioc_count);
1431}
1432
1433static struct cfq_io_context *
1434cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1435{
1436	struct rb_node *n;
1437	struct cfq_io_context *cic;
1438	void *k, *key = cfqd;
1439
1440	if (unlikely(!ioc))
1441		return NULL;
1442
1443	/*
1444	 * we maintain a last-hit cache, to avoid browsing over the tree
1445	 */
1446	cic = ioc->ioc_data;
1447	if (cic && cic->key == cfqd)
1448		return cic;
1449
1450restart:
1451	n = ioc->cic_root.rb_node;
1452	while (n) {
1453		cic = rb_entry(n, struct cfq_io_context, rb_node);
1454		/* ->key must be copied to avoid race with cfq_exit_queue() */
1455		k = cic->key;
1456		if (unlikely(!k)) {
1457			cfq_drop_dead_cic(ioc, cic);
1458			goto restart;
1459		}
1460
1461		if (key < k)
1462			n = n->rb_left;
1463		else if (key > k)
1464			n = n->rb_right;
1465		else {
1466			ioc->ioc_data = cic;
1467			return cic;
1468		}
1469	}
1470
1471	return NULL;
1472}
1473
1474static inline void
1475cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1476	     struct cfq_io_context *cic)
1477{
1478	struct rb_node **p;
1479	struct rb_node *parent;
1480	struct cfq_io_context *__cic;
1481	unsigned long flags;
1482	void *k;
1483
1484	cic->ioc = ioc;
1485	cic->key = cfqd;
1486
1487restart:
1488	parent = NULL;
1489	p = &ioc->cic_root.rb_node;
1490	while (*p) {
1491		parent = *p;
1492		__cic = rb_entry(parent, struct cfq_io_context, rb_node);
1493		/* ->key must be copied to avoid race with cfq_exit_queue() */
1494		k = __cic->key;
1495		if (unlikely(!k)) {
1496			cfq_drop_dead_cic(ioc, __cic);
1497			goto restart;
1498		}
1499
1500		if (cic->key < k)
1501			p = &(*p)->rb_left;
1502		else if (cic->key > k)
1503			p = &(*p)->rb_right;
1504		else
1505			BUG();
1506	}
1507
1508	rb_link_node(&cic->rb_node, parent, p);
1509	rb_insert_color(&cic->rb_node, &ioc->cic_root);
1510
1511	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1512	list_add(&cic->queue_list, &cfqd->cic_list);
1513	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1514}
1515
1516/*
1517 * Setup general io context and cfq io context. There can be several cfq
1518 * io contexts per general io context, if this process is doing io to more
1519 * than one device managed by cfq.
1520 */
1521static struct cfq_io_context *
1522cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1523{
1524	struct io_context *ioc = NULL;
1525	struct cfq_io_context *cic;
1526
1527	might_sleep_if(gfp_mask & __GFP_WAIT);
1528
1529	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1530	if (!ioc)
1531		return NULL;
1532
1533	cic = cfq_cic_rb_lookup(cfqd, ioc);
1534	if (cic)
1535		goto out;
1536
1537	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1538	if (cic == NULL)
1539		goto err;
1540
1541	cfq_cic_link(cfqd, ioc, cic);
1542out:
1543	smp_read_barrier_depends();
1544	if (unlikely(ioc->ioprio_changed))
1545		cfq_ioc_set_ioprio(ioc);
1546
1547	return cic;
1548err:
1549	put_io_context(ioc);
1550	return NULL;
1551}
1552
1553static void
1554cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1555{
1556	unsigned long elapsed = jiffies - cic->last_end_request;
1557	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1558
1559	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1560	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1561	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1562}
1563
1564static void
1565cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1566		       struct request *rq)
1567{
1568	sector_t sdist;
1569	u64 total;
1570
1571	if (cic->last_request_pos < rq->sector)
1572		sdist = rq->sector - cic->last_request_pos;
1573	else
1574		sdist = cic->last_request_pos - rq->sector;
1575
1576	if (!cic->seek_samples) {
1577		cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1578		cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1579	}
1580
1581	/*
1582	 * Don't allow the seek distance to get too large from the
1583	 * odd fragment, pagein, etc
1584	 */
1585	if (cic->seek_samples <= 60) /* second&third seek */
1586		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1587	else
1588		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1589
1590	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1591	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1592	total = cic->seek_total + (cic->seek_samples/2);
1593	do_div(total, cic->seek_samples);
1594	cic->seek_mean = (sector_t)total;
1595}
1596
1597/*
1598 * Disable idle window if the process thinks too long or seeks so much that
1599 * it doesn't matter
1600 */
1601static void
1602cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1603		       struct cfq_io_context *cic)
1604{
1605	int enable_idle;
1606
1607	if (!cfq_cfqq_sync(cfqq))
1608		return;
1609
1610	enable_idle = cfq_cfqq_idle_window(cfqq);
1611
1612	if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1613	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1614		enable_idle = 0;
1615	else if (sample_valid(cic->ttime_samples)) {
1616		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1617			enable_idle = 0;
1618		else
1619			enable_idle = 1;
1620	}
1621
1622	if (enable_idle)
1623		cfq_mark_cfqq_idle_window(cfqq);
1624	else
1625		cfq_clear_cfqq_idle_window(cfqq);
1626}
1627
1628/*
1629 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1630 * no or if we aren't sure, a 1 will cause a preempt.
1631 */
1632static int
1633cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1634		   struct request *rq)
1635{
1636	struct cfq_queue *cfqq;
1637
1638	cfqq = cfqd->active_queue;
1639	if (!cfqq)
1640		return 0;
1641
1642	if (cfq_slice_used(cfqq))
1643		return 1;
1644
1645	if (cfq_class_idle(new_cfqq))
1646		return 0;
1647
1648	if (cfq_class_idle(cfqq))
1649		return 1;
1650
1651	/*
1652	 * if the new request is sync, but the currently running queue is
1653	 * not, let the sync request have priority.
1654	 */
1655	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1656		return 1;
1657
1658	/*
1659	 * So both queues are sync. Let the new request get disk time if
1660	 * it's a metadata request and the current queue is doing regular IO.
1661	 */
1662	if (rq_is_meta(rq) && !cfqq->meta_pending)
1663		return 1;
1664
1665	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1666		return 0;
1667
1668	/*
1669	 * if this request is as-good as one we would expect from the
1670	 * current cfqq, let it preempt
1671	 */
1672	if (cfq_rq_close(cfqd, rq))
1673		return 1;
1674
1675	return 0;
1676}
1677
1678/*
1679 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1680 * let it have half of its nominal slice.
1681 */
1682static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1683{
1684	cfq_slice_expired(cfqd, 1);
1685
1686	/*
1687	 * Put the new queue at the front of the of the current list,
1688	 * so we know that it will be selected next.
1689	 */
1690	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1691
1692	cfq_service_tree_add(cfqd, cfqq, 1);
1693
1694	cfqq->slice_end = 0;
1695	cfq_mark_cfqq_slice_new(cfqq);
1696}
1697
1698/*
1699 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1700 * something we should do about it
1701 */
1702static void
1703cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1704		struct request *rq)
1705{
1706	struct cfq_io_context *cic = RQ_CIC(rq);
1707
1708	if (rq_is_meta(rq))
1709		cfqq->meta_pending++;
1710
1711	cfq_update_io_thinktime(cfqd, cic);
1712	cfq_update_io_seektime(cfqd, cic, rq);
1713	cfq_update_idle_window(cfqd, cfqq, cic);
1714
1715	cic->last_request_pos = rq->sector + rq->nr_sectors;
1716	cfqq->last_request_pos = cic->last_request_pos;
1717
1718	if (cfqq == cfqd->active_queue) {
1719		/*
1720		 * if we are waiting for a request for this queue, let it rip
1721		 * immediately and flag that we must not expire this queue
1722		 * just now
1723		 */
1724		if (cfq_cfqq_wait_request(cfqq)) {
1725			cfq_mark_cfqq_must_dispatch(cfqq);
1726			del_timer(&cfqd->idle_slice_timer);
1727			blk_start_queueing(cfqd->queue);
1728		}
1729	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1730		/*
1731		 * not the active queue - expire current slice if it is
1732		 * idle and has expired it's mean thinktime or this new queue
1733		 * has some old slice time left and is of higher priority
1734		 */
1735		cfq_preempt_queue(cfqd, cfqq);
1736		cfq_mark_cfqq_must_dispatch(cfqq);
1737		blk_start_queueing(cfqd->queue);
1738	}
1739}
1740
1741static void cfq_insert_request(request_queue_t *q, struct request *rq)
1742{
1743	struct cfq_data *cfqd = q->elevator->elevator_data;
1744	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1745
1746	cfq_init_prio_data(cfqq);
1747
1748	cfq_add_rq_rb(rq);
1749
1750	list_add_tail(&rq->queuelist, &cfqq->fifo);
1751
1752	cfq_rq_enqueued(cfqd, cfqq, rq);
1753}
1754
1755static void cfq_completed_request(request_queue_t *q, struct request *rq)
1756{
1757	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1758	struct cfq_data *cfqd = cfqq->cfqd;
1759	const int sync = rq_is_sync(rq);
1760	unsigned long now;
1761
1762	now = jiffies;
1763
1764	WARN_ON(!cfqd->rq_in_driver);
1765	WARN_ON(!cfqq->dispatched);
1766	cfqd->rq_in_driver--;
1767	cfqq->dispatched--;
1768
1769	if (cfq_cfqq_sync(cfqq))
1770		cfqd->sync_flight--;
1771
1772	if (!cfq_class_idle(cfqq))
1773		cfqd->last_end_request = now;
1774
1775	if (sync)
1776		RQ_CIC(rq)->last_end_request = now;
1777
1778	/*
1779	 * If this is the active queue, check if it needs to be expired,
1780	 * or if we want to idle in case it has no pending requests.
1781	 */
1782	if (cfqd->active_queue == cfqq) {
1783		if (cfq_cfqq_slice_new(cfqq)) {
1784			cfq_set_prio_slice(cfqd, cfqq);
1785			cfq_clear_cfqq_slice_new(cfqq);
1786		}
1787		if (cfq_slice_used(cfqq))
1788			cfq_slice_expired(cfqd, 1);
1789		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1790			cfq_arm_slice_timer(cfqd);
1791	}
1792
1793	if (!cfqd->rq_in_driver)
1794		cfq_schedule_dispatch(cfqd);
1795}
1796
1797/*
1798 * we temporarily boost lower priority queues if they are holding fs exclusive
1799 * resources. they are boosted to normal prio (CLASS_BE/4)
1800 */
1801static void cfq_prio_boost(struct cfq_queue *cfqq)
1802{
1803	if (has_fs_excl()) {
1804		/*
1805		 * boost idle prio on transactions that would lock out other
1806		 * users of the filesystem
1807		 */
1808		if (cfq_class_idle(cfqq))
1809			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1810		if (cfqq->ioprio > IOPRIO_NORM)
1811			cfqq->ioprio = IOPRIO_NORM;
1812	} else {
1813		/*
1814		 * check if we need to unboost the queue
1815		 */
1816		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1817			cfqq->ioprio_class = cfqq->org_ioprio_class;
1818		if (cfqq->ioprio != cfqq->org_ioprio)
1819			cfqq->ioprio = cfqq->org_ioprio;
1820	}
1821}
1822
1823static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1824{
1825	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1826	    !cfq_cfqq_must_alloc_slice(cfqq)) {
1827		cfq_mark_cfqq_must_alloc_slice(cfqq);
1828		return ELV_MQUEUE_MUST;
1829	}
1830
1831	return ELV_MQUEUE_MAY;
1832}
1833
1834static int cfq_may_queue(request_queue_t *q, int rw)
1835{
1836	struct cfq_data *cfqd = q->elevator->elevator_data;
1837	struct task_struct *tsk = current;
1838	struct cfq_io_context *cic;
1839	struct cfq_queue *cfqq;
1840
1841	/*
1842	 * don't force setup of a queue from here, as a call to may_queue
1843	 * does not necessarily imply that a request actually will be queued.
1844	 * so just lookup a possibly existing queue, or return 'may queue'
1845	 * if that fails
1846	 */
1847	cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1848	if (!cic)
1849		return ELV_MQUEUE_MAY;
1850
1851	cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1852	if (cfqq) {
1853		cfq_init_prio_data(cfqq);
1854		cfq_prio_boost(cfqq);
1855
1856		return __cfq_may_queue(cfqq);
1857	}
1858
1859	return ELV_MQUEUE_MAY;
1860}
1861
1862/*
1863 * queue lock held here
1864 */
1865static void cfq_put_request(struct request *rq)
1866{
1867	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1868
1869	if (cfqq) {
1870		const int rw = rq_data_dir(rq);
1871
1872		BUG_ON(!cfqq->allocated[rw]);
1873		cfqq->allocated[rw]--;
1874
1875		put_io_context(RQ_CIC(rq)->ioc);
1876
1877		rq->elevator_private = NULL;
1878		rq->elevator_private2 = NULL;
1879
1880		cfq_put_queue(cfqq);
1881	}
1882}
1883
1884/*
1885 * Allocate cfq data structures associated with this request.
1886 */
1887static int
1888cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1889{
1890	struct cfq_data *cfqd = q->elevator->elevator_data;
1891	struct task_struct *tsk = current;
1892	struct cfq_io_context *cic;
1893	const int rw = rq_data_dir(rq);
1894	const int is_sync = rq_is_sync(rq);
1895	struct cfq_queue *cfqq;
1896	unsigned long flags;
1897
1898	might_sleep_if(gfp_mask & __GFP_WAIT);
1899
1900	cic = cfq_get_io_context(cfqd, gfp_mask);
1901
1902	spin_lock_irqsave(q->queue_lock, flags);
1903
1904	if (!cic)
1905		goto queue_fail;
1906
1907	cfqq = cic_to_cfqq(cic, is_sync);
1908	if (!cfqq) {
1909		cfqq = cfq_get_queue(cfqd, is_sync, tsk, gfp_mask);
1910
1911		if (!cfqq)
1912			goto queue_fail;
1913
1914		cic_set_cfqq(cic, cfqq, is_sync);
1915	}
1916
1917	cfqq->allocated[rw]++;
1918	cfq_clear_cfqq_must_alloc(cfqq);
1919	atomic_inc(&cfqq->ref);
1920
1921	spin_unlock_irqrestore(q->queue_lock, flags);
1922
1923	rq->elevator_private = cic;
1924	rq->elevator_private2 = cfqq;
1925	return 0;
1926
1927queue_fail:
1928	if (cic)
1929		put_io_context(cic->ioc);
1930
1931	cfq_schedule_dispatch(cfqd);
1932	spin_unlock_irqrestore(q->queue_lock, flags);
1933	return 1;
1934}
1935
1936static void cfq_kick_queue(struct work_struct *work)
1937{
1938	struct cfq_data *cfqd =
1939		container_of(work, struct cfq_data, unplug_work);
1940	request_queue_t *q = cfqd->queue;
1941	unsigned long flags;
1942
1943	spin_lock_irqsave(q->queue_lock, flags);
1944	blk_start_queueing(q);
1945	spin_unlock_irqrestore(q->queue_lock, flags);
1946}
1947
1948/*
1949 * Timer running if the active_queue is currently idling inside its time slice
1950 */
1951static void cfq_idle_slice_timer(unsigned long data)
1952{
1953	struct cfq_data *cfqd = (struct cfq_data *) data;
1954	struct cfq_queue *cfqq;
1955	unsigned long flags;
1956	int timed_out = 1;
1957
1958	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1959
1960	if ((cfqq = cfqd->active_queue) != NULL) {
1961		timed_out = 0;
1962
1963		/*
1964		 * expired
1965		 */
1966		if (cfq_slice_used(cfqq))
1967			goto expire;
1968
1969		/*
1970		 * only expire and reinvoke request handler, if there are
1971		 * other queues with pending requests
1972		 */
1973		if (!cfqd->busy_queues)
1974			goto out_cont;
1975
1976		/*
1977		 * not expired and it has a request pending, let it dispatch
1978		 */
1979		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1980			cfq_mark_cfqq_must_dispatch(cfqq);
1981			goto out_kick;
1982		}
1983	}
1984expire:
1985	cfq_slice_expired(cfqd, timed_out);
1986out_kick:
1987	cfq_schedule_dispatch(cfqd);
1988out_cont:
1989	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1990}
1991
1992/*
1993 * Timer running if an idle class queue is waiting for service
1994 */
1995static void cfq_idle_class_timer(unsigned long data)
1996{
1997	struct cfq_data *cfqd = (struct cfq_data *) data;
1998	unsigned long flags, end;
1999
2000	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2001
2002	/*
2003	 * race with a non-idle queue, reset timer
2004	 */
2005	end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2006	if (!time_after_eq(jiffies, end))
2007		mod_timer(&cfqd->idle_class_timer, end);
2008	else
2009		cfq_schedule_dispatch(cfqd);
2010
2011	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2012}
2013
2014static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2015{
2016	del_timer_sync(&cfqd->idle_slice_timer);
2017	del_timer_sync(&cfqd->idle_class_timer);
2018	blk_sync_queue(cfqd->queue);
2019}
2020
2021static void cfq_exit_queue(elevator_t *e)
2022{
2023	struct cfq_data *cfqd = e->elevator_data;
2024	request_queue_t *q = cfqd->queue;
2025
2026	cfq_shutdown_timer_wq(cfqd);
2027
2028	spin_lock_irq(q->queue_lock);
2029
2030	if (cfqd->active_queue)
2031		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2032
2033	while (!list_empty(&cfqd->cic_list)) {
2034		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2035							struct cfq_io_context,
2036							queue_list);
2037
2038		__cfq_exit_single_io_context(cfqd, cic);
2039	}
2040
2041	spin_unlock_irq(q->queue_lock);
2042
2043	cfq_shutdown_timer_wq(cfqd);
2044
2045	kfree(cfqd);
2046}
2047
2048static void *cfq_init_queue(request_queue_t *q)
2049{
2050	struct cfq_data *cfqd;
2051
2052	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2053	if (!cfqd)
2054		return NULL;
2055
2056	memset(cfqd, 0, sizeof(*cfqd));
2057
2058	cfqd->service_tree = CFQ_RB_ROOT;
2059	INIT_LIST_HEAD(&cfqd->cic_list);
2060
2061	cfqd->queue = q;
2062
2063	init_timer(&cfqd->idle_slice_timer);
2064	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2065	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2066
2067	init_timer(&cfqd->idle_class_timer);
2068	cfqd->idle_class_timer.function = cfq_idle_class_timer;
2069	cfqd->idle_class_timer.data = (unsigned long) cfqd;
2070
2071	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2072
2073	cfqd->cfq_quantum = cfq_quantum;
2074	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2075	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2076	cfqd->cfq_back_max = cfq_back_max;
2077	cfqd->cfq_back_penalty = cfq_back_penalty;
2078	cfqd->cfq_slice[0] = cfq_slice_async;
2079	cfqd->cfq_slice[1] = cfq_slice_sync;
2080	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2081	cfqd->cfq_slice_idle = cfq_slice_idle;
2082
2083	return cfqd;
2084}
2085
2086static void cfq_slab_kill(void)
2087{
2088	if (cfq_pool)
2089		kmem_cache_destroy(cfq_pool);
2090	if (cfq_ioc_pool)
2091		kmem_cache_destroy(cfq_ioc_pool);
2092}
2093
2094static int __init cfq_slab_setup(void)
2095{
2096	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2097	if (!cfq_pool)
2098		goto fail;
2099
2100	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2101	if (!cfq_ioc_pool)
2102		goto fail;
2103
2104	return 0;
2105fail:
2106	cfq_slab_kill();
2107	return -ENOMEM;
2108}
2109
2110/*
2111 * sysfs parts below -->
2112 */
2113static ssize_t
2114cfq_var_show(unsigned int var, char *page)
2115{
2116	return sprintf(page, "%d\n", var);
2117}
2118
2119static ssize_t
2120cfq_var_store(unsigned int *var, const char *page, size_t count)
2121{
2122	char *p = (char *) page;
2123
2124	*var = simple_strtoul(p, &p, 10);
2125	return count;
2126}
2127
2128#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2129static ssize_t __FUNC(elevator_t *e, char *page)			\
2130{									\
2131	struct cfq_data *cfqd = e->elevator_data;			\
2132	unsigned int __data = __VAR;					\
2133	if (__CONV)							\
2134		__data = jiffies_to_msecs(__data);			\
2135	return cfq_var_show(__data, (page));				\
2136}
2137SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2138SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2139SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2140SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2141SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2142SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2143SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2144SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2145SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2146#undef SHOW_FUNCTION
2147
2148#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2149static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
2150{									\
2151	struct cfq_data *cfqd = e->elevator_data;			\
2152	unsigned int __data;						\
2153	int ret = cfq_var_store(&__data, (page), count);		\
2154	if (__data < (MIN))						\
2155		__data = (MIN);						\
2156	else if (__data > (MAX))					\
2157		__data = (MAX);						\
2158	if (__CONV)							\
2159		*(__PTR) = msecs_to_jiffies(__data);			\
2160	else								\
2161		*(__PTR) = __data;					\
2162	return ret;							\
2163}
2164STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2165STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2166STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2167STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2168STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2169STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2170STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2171STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2172STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2173#undef STORE_FUNCTION
2174
2175#define CFQ_ATTR(name) \
2176	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2177
2178static struct elv_fs_entry cfq_attrs[] = {
2179	CFQ_ATTR(quantum),
2180	CFQ_ATTR(fifo_expire_sync),
2181	CFQ_ATTR(fifo_expire_async),
2182	CFQ_ATTR(back_seek_max),
2183	CFQ_ATTR(back_seek_penalty),
2184	CFQ_ATTR(slice_sync),
2185	CFQ_ATTR(slice_async),
2186	CFQ_ATTR(slice_async_rq),
2187	CFQ_ATTR(slice_idle),
2188	__ATTR_NULL
2189};
2190
2191static struct elevator_type iosched_cfq = {
2192	.ops = {
2193		.elevator_merge_fn = 		cfq_merge,
2194		.elevator_merged_fn =		cfq_merged_request,
2195		.elevator_merge_req_fn =	cfq_merged_requests,
2196		.elevator_allow_merge_fn =	cfq_allow_merge,
2197		.elevator_dispatch_fn =		cfq_dispatch_requests,
2198		.elevator_add_req_fn =		cfq_insert_request,
2199		.elevator_activate_req_fn =	cfq_activate_request,
2200		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2201		.elevator_queue_empty_fn =	cfq_queue_empty,
2202		.elevator_completed_req_fn =	cfq_completed_request,
2203		.elevator_former_req_fn =	elv_rb_former_request,
2204		.elevator_latter_req_fn =	elv_rb_latter_request,
2205		.elevator_set_req_fn =		cfq_set_request,
2206		.elevator_put_req_fn =		cfq_put_request,
2207		.elevator_may_queue_fn =	cfq_may_queue,
2208		.elevator_init_fn =		cfq_init_queue,
2209		.elevator_exit_fn =		cfq_exit_queue,
2210		.trim =				cfq_free_io_context,
2211	},
2212	.elevator_attrs =	cfq_attrs,
2213	.elevator_name =	"cfq",
2214	.elevator_owner =	THIS_MODULE,
2215};
2216
2217static int __init cfq_init(void)
2218{
2219	int ret;
2220
2221	/*
2222	 * could be 0 on HZ < 1000 setups
2223	 */
2224	if (!cfq_slice_async)
2225		cfq_slice_async = 1;
2226	if (!cfq_slice_idle)
2227		cfq_slice_idle = 1;
2228
2229	if (cfq_slab_setup())
2230		return -ENOMEM;
2231
2232	ret = elv_register(&iosched_cfq);
2233	if (ret)
2234		cfq_slab_kill();
2235
2236	return ret;
2237}
2238
2239static void __exit cfq_exit(void)
2240{
2241	DECLARE_COMPLETION_ONSTACK(all_gone);
2242	elv_unregister(&iosched_cfq);
2243	ioc_gone = &all_gone;
2244	/* ioc_gone's update must be visible before reading ioc_count */
2245	smp_wmb();
2246	if (elv_ioc_count_read(ioc_count))
2247		wait_for_completion(ioc_gone);
2248	synchronize_rcu();
2249	cfq_slab_kill();
2250}
2251
2252module_init(cfq_init);
2253module_exit(cfq_exit);
2254
2255MODULE_AUTHOR("Jens Axboe");
2256MODULE_LICENSE("GPL");
2257MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2258