1/*
2 *  Kernel Probes (KProbes)
3 *  arch/x86_64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 *		Probes initial implementation ( includes contributions from
23 *		Rusty Russell).
24 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 *		interface to access function arguments.
26 * 2004-Oct	Jim Keniston <kenistoj@us.ibm.com> and Prasanna S Panchamukhi
27 *		<prasanna@in.ibm.com> adapted for x86_64
28 * 2005-Mar	Roland McGrath <roland@redhat.com>
29 *		Fixed to handle %rip-relative addressing mode correctly.
30 * 2005-May     Rusty Lynch <rusty.lynch@intel.com>
31 *              Added function return probes functionality
32 */
33
34#include <linux/kprobes.h>
35#include <linux/ptrace.h>
36#include <linux/string.h>
37#include <linux/slab.h>
38#include <linux/preempt.h>
39#include <linux/module.h>
40#include <linux/kdebug.h>
41
42#include <asm/cacheflush.h>
43#include <asm/pgtable.h>
44#include <asm/uaccess.h>
45
46void jprobe_return_end(void);
47static void __kprobes arch_copy_kprobe(struct kprobe *p);
48
49DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
50DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
51
52/*
53 * returns non-zero if opcode modifies the interrupt flag.
54 */
55static __always_inline int is_IF_modifier(kprobe_opcode_t *insn)
56{
57	switch (*insn) {
58	case 0xfa:		/* cli */
59	case 0xfb:		/* sti */
60	case 0xcf:		/* iret/iretd */
61	case 0x9d:		/* popf/popfd */
62		return 1;
63	}
64
65	if (*insn  >= 0x40 && *insn <= 0x4f && *++insn == 0xcf)
66		return 1;
67	return 0;
68}
69
70int __kprobes arch_prepare_kprobe(struct kprobe *p)
71{
72	/* insn: must be on special executable page on x86_64. */
73	p->ainsn.insn = get_insn_slot();
74	if (!p->ainsn.insn) {
75		return -ENOMEM;
76	}
77	arch_copy_kprobe(p);
78	return 0;
79}
80
81/*
82 * Determine if the instruction uses the %rip-relative addressing mode.
83 * If it does, return the address of the 32-bit displacement word.
84 * If not, return null.
85 */
86static s32 __kprobes *is_riprel(u8 *insn)
87{
88#define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)		      \
89	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
90	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
91	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
92	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
93	 << (row % 64))
94	static const u64 onebyte_has_modrm[256 / 64] = {
95		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
96		/*      -------------------------------         */
97		W(0x00, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 00 */
98		W(0x10, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 10 */
99		W(0x20, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0)| /* 20 */
100		W(0x30, 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0), /* 30 */
101		W(0x40, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 40 */
102		W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 50 */
103		W(0x60, 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0)| /* 60 */
104		W(0x70, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 70 */
105		W(0x80, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 80 */
106		W(0x90, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 90 */
107		W(0xa0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* a0 */
108		W(0xb0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* b0 */
109		W(0xc0, 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0)| /* c0 */
110		W(0xd0, 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1)| /* d0 */
111		W(0xe0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* e0 */
112		W(0xf0, 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1)  /* f0 */
113		/*      -------------------------------         */
114		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
115	};
116	static const u64 twobyte_has_modrm[256 / 64] = {
117		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
118		/*      -------------------------------         */
119		W(0x00, 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1)| /* 0f */
120		W(0x10, 1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0)| /* 1f */
121		W(0x20, 1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1)| /* 2f */
122		W(0x30, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 3f */
123		W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 4f */
124		W(0x50, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 5f */
125		W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 6f */
126		W(0x70, 1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1), /* 7f */
127		W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 8f */
128		W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 9f */
129		W(0xa0, 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1)| /* af */
130		W(0xb0, 1,1,1,1,1,1,1,1,0,0,1,1,1,1,1,1), /* bf */
131		W(0xc0, 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0)| /* cf */
132		W(0xd0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* df */
133		W(0xe0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* ef */
134		W(0xf0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0)  /* ff */
135		/*      -------------------------------         */
136		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */
137	};
138#undef	W
139	int need_modrm;
140
141	/* Skip legacy instruction prefixes.  */
142	while (1) {
143		switch (*insn) {
144		case 0x66:
145		case 0x67:
146		case 0x2e:
147		case 0x3e:
148		case 0x26:
149		case 0x64:
150		case 0x65:
151		case 0x36:
152		case 0xf0:
153		case 0xf3:
154		case 0xf2:
155			++insn;
156			continue;
157		}
158		break;
159	}
160
161	/* Skip REX instruction prefix.  */
162	if ((*insn & 0xf0) == 0x40)
163		++insn;
164
165	if (*insn == 0x0f) {	/* Two-byte opcode.  */
166		++insn;
167		need_modrm = test_bit(*insn, twobyte_has_modrm);
168	} else {		/* One-byte opcode.  */
169		need_modrm = test_bit(*insn, onebyte_has_modrm);
170	}
171
172	if (need_modrm) {
173		u8 modrm = *++insn;
174		if ((modrm & 0xc7) == 0x05) { /* %rip+disp32 addressing mode */
175			/* Displacement follows ModRM byte.  */
176			return (s32 *) ++insn;
177		}
178	}
179
180	/* No %rip-relative addressing mode here.  */
181	return NULL;
182}
183
184static void __kprobes arch_copy_kprobe(struct kprobe *p)
185{
186	s32 *ripdisp;
187	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
188	ripdisp = is_riprel(p->ainsn.insn);
189	if (ripdisp) {
190		/*
191		 * The copied instruction uses the %rip-relative
192		 * addressing mode.  Adjust the displacement for the
193		 * difference between the original location of this
194		 * instruction and the location of the copy that will
195		 * actually be run.  The tricky bit here is making sure
196		 * that the sign extension happens correctly in this
197		 * calculation, since we need a signed 32-bit result to
198		 * be sign-extended to 64 bits when it's added to the
199		 * %rip value and yield the same 64-bit result that the
200		 * sign-extension of the original signed 32-bit
201		 * displacement would have given.
202		 */
203		s64 disp = (u8 *) p->addr + *ripdisp - (u8 *) p->ainsn.insn;
204		BUG_ON((s64) (s32) disp != disp); /* Sanity check.  */
205		*ripdisp = disp;
206	}
207	p->opcode = *p->addr;
208}
209
210void __kprobes arch_arm_kprobe(struct kprobe *p)
211{
212	*p->addr = BREAKPOINT_INSTRUCTION;
213	flush_icache_range((unsigned long) p->addr,
214			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
215}
216
217void __kprobes arch_disarm_kprobe(struct kprobe *p)
218{
219	*p->addr = p->opcode;
220	flush_icache_range((unsigned long) p->addr,
221			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
222}
223
224void __kprobes arch_remove_kprobe(struct kprobe *p)
225{
226	mutex_lock(&kprobe_mutex);
227	free_insn_slot(p->ainsn.insn, 0);
228	mutex_unlock(&kprobe_mutex);
229}
230
231static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
232{
233	kcb->prev_kprobe.kp = kprobe_running();
234	kcb->prev_kprobe.status = kcb->kprobe_status;
235	kcb->prev_kprobe.old_rflags = kcb->kprobe_old_rflags;
236	kcb->prev_kprobe.saved_rflags = kcb->kprobe_saved_rflags;
237}
238
239static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
240{
241	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
242	kcb->kprobe_status = kcb->prev_kprobe.status;
243	kcb->kprobe_old_rflags = kcb->prev_kprobe.old_rflags;
244	kcb->kprobe_saved_rflags = kcb->prev_kprobe.saved_rflags;
245}
246
247static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
248				struct kprobe_ctlblk *kcb)
249{
250	__get_cpu_var(current_kprobe) = p;
251	kcb->kprobe_saved_rflags = kcb->kprobe_old_rflags
252		= (regs->eflags & (TF_MASK | IF_MASK));
253	if (is_IF_modifier(p->ainsn.insn))
254		kcb->kprobe_saved_rflags &= ~IF_MASK;
255}
256
257static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
258{
259	regs->eflags |= TF_MASK;
260	regs->eflags &= ~IF_MASK;
261	/*single step inline if the instruction is an int3*/
262	if (p->opcode == BREAKPOINT_INSTRUCTION)
263		regs->rip = (unsigned long)p->addr;
264	else
265		regs->rip = (unsigned long)p->ainsn.insn;
266}
267
268/* Called with kretprobe_lock held */
269void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
270				      struct pt_regs *regs)
271{
272	unsigned long *sara = (unsigned long *)regs->rsp;
273
274	ri->ret_addr = (kprobe_opcode_t *) *sara;
275	/* Replace the return addr with trampoline addr */
276	*sara = (unsigned long) &kretprobe_trampoline;
277}
278
279int __kprobes kprobe_handler(struct pt_regs *regs)
280{
281	struct kprobe *p;
282	int ret = 0;
283	kprobe_opcode_t *addr = (kprobe_opcode_t *)(regs->rip - sizeof(kprobe_opcode_t));
284	struct kprobe_ctlblk *kcb;
285
286	/*
287	 * We don't want to be preempted for the entire
288	 * duration of kprobe processing
289	 */
290	preempt_disable();
291	kcb = get_kprobe_ctlblk();
292
293	/* Check we're not actually recursing */
294	if (kprobe_running()) {
295		p = get_kprobe(addr);
296		if (p) {
297			if (kcb->kprobe_status == KPROBE_HIT_SS &&
298				*p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
299				regs->eflags &= ~TF_MASK;
300				regs->eflags |= kcb->kprobe_saved_rflags;
301				goto no_kprobe;
302			} else if (kcb->kprobe_status == KPROBE_HIT_SSDONE) {
303				/* TODO: Provide re-entrancy from
304				 * post_kprobes_handler() and avoid exception
305				 * stack corruption while single-stepping on
306				 * the instruction of the new probe.
307				 */
308				arch_disarm_kprobe(p);
309				regs->rip = (unsigned long)p->addr;
310				reset_current_kprobe();
311				ret = 1;
312			} else {
313				/* We have reentered the kprobe_handler(), since
314				 * another probe was hit while within the
315				 * handler. We here save the original kprobe
316				 * variables and just single step on instruction
317				 * of the new probe without calling any user
318				 * handlers.
319				 */
320				save_previous_kprobe(kcb);
321				set_current_kprobe(p, regs, kcb);
322				kprobes_inc_nmissed_count(p);
323				prepare_singlestep(p, regs);
324				kcb->kprobe_status = KPROBE_REENTER;
325				return 1;
326			}
327		} else {
328			if (*addr != BREAKPOINT_INSTRUCTION) {
329			/* The breakpoint instruction was removed by
330			 * another cpu right after we hit, no further
331			 * handling of this interrupt is appropriate
332			 */
333				regs->rip = (unsigned long)addr;
334				ret = 1;
335				goto no_kprobe;
336			}
337			p = __get_cpu_var(current_kprobe);
338			if (p->break_handler && p->break_handler(p, regs)) {
339				goto ss_probe;
340			}
341		}
342		goto no_kprobe;
343	}
344
345	p = get_kprobe(addr);
346	if (!p) {
347		if (*addr != BREAKPOINT_INSTRUCTION) {
348			/*
349			 * The breakpoint instruction was removed right
350			 * after we hit it.  Another cpu has removed
351			 * either a probepoint or a debugger breakpoint
352			 * at this address.  In either case, no further
353			 * handling of this interrupt is appropriate.
354			 * Back up over the (now missing) int3 and run
355			 * the original instruction.
356			 */
357			regs->rip = (unsigned long)addr;
358			ret = 1;
359		}
360		/* Not one of ours: let kernel handle it */
361		goto no_kprobe;
362	}
363
364	set_current_kprobe(p, regs, kcb);
365	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
366
367	if (p->pre_handler && p->pre_handler(p, regs))
368		/* handler has already set things up, so skip ss setup */
369		return 1;
370
371ss_probe:
372	prepare_singlestep(p, regs);
373	kcb->kprobe_status = KPROBE_HIT_SS;
374	return 1;
375
376no_kprobe:
377	preempt_enable_no_resched();
378	return ret;
379}
380
381/*
382 * For function-return probes, init_kprobes() establishes a probepoint
383 * here. When a retprobed function returns, this probe is hit and
384 * trampoline_probe_handler() runs, calling the kretprobe's handler.
385 */
386 void kretprobe_trampoline_holder(void)
387 {
388 	asm volatile (  ".global kretprobe_trampoline\n"
389 			"kretprobe_trampoline: \n"
390 			"nop\n");
391 }
392
393/*
394 * Called when we hit the probe point at kretprobe_trampoline
395 */
396int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
397{
398	struct kretprobe_instance *ri = NULL;
399	struct hlist_head *head, empty_rp;
400	struct hlist_node *node, *tmp;
401	unsigned long flags, orig_ret_address = 0;
402	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
403
404	INIT_HLIST_HEAD(&empty_rp);
405	spin_lock_irqsave(&kretprobe_lock, flags);
406	head = kretprobe_inst_table_head(current);
407
408	/*
409	 * It is possible to have multiple instances associated with a given
410	 * task either because an multiple functions in the call path
411	 * have a return probe installed on them, and/or more then one return
412	 * return probe was registered for a target function.
413	 *
414	 * We can handle this because:
415	 *     - instances are always inserted at the head of the list
416	 *     - when multiple return probes are registered for the same
417	 *       function, the first instance's ret_addr will point to the
418	 *       real return address, and all the rest will point to
419	 *       kretprobe_trampoline
420	 */
421	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
422		if (ri->task != current)
423			/* another task is sharing our hash bucket */
424			continue;
425
426		if (ri->rp && ri->rp->handler)
427			ri->rp->handler(ri, regs);
428
429		orig_ret_address = (unsigned long)ri->ret_addr;
430		recycle_rp_inst(ri, &empty_rp);
431
432		if (orig_ret_address != trampoline_address)
433			/*
434			 * This is the real return address. Any other
435			 * instances associated with this task are for
436			 * other calls deeper on the call stack
437			 */
438			break;
439	}
440
441	kretprobe_assert(ri, orig_ret_address, trampoline_address);
442	regs->rip = orig_ret_address;
443
444	reset_current_kprobe();
445	spin_unlock_irqrestore(&kretprobe_lock, flags);
446	preempt_enable_no_resched();
447
448	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
449		hlist_del(&ri->hlist);
450		kfree(ri);
451	}
452	/*
453	 * By returning a non-zero value, we are telling
454	 * kprobe_handler() that we don't want the post_handler
455	 * to run (and have re-enabled preemption)
456	 */
457	return 1;
458}
459
460/*
461 * Called after single-stepping.  p->addr is the address of the
462 * instruction whose first byte has been replaced by the "int 3"
463 * instruction.  To avoid the SMP problems that can occur when we
464 * temporarily put back the original opcode to single-step, we
465 * single-stepped a copy of the instruction.  The address of this
466 * copy is p->ainsn.insn.
467 *
468 * This function prepares to return from the post-single-step
469 * interrupt.  We have to fix up the stack as follows:
470 *
471 * 0) Except in the case of absolute or indirect jump or call instructions,
472 * the new rip is relative to the copied instruction.  We need to make
473 * it relative to the original instruction.
474 *
475 * 1) If the single-stepped instruction was pushfl, then the TF and IF
476 * flags are set in the just-pushed eflags, and may need to be cleared.
477 *
478 * 2) If the single-stepped instruction was a call, the return address
479 * that is atop the stack is the address following the copied instruction.
480 * We need to make it the address following the original instruction.
481 */
482static void __kprobes resume_execution(struct kprobe *p,
483		struct pt_regs *regs, struct kprobe_ctlblk *kcb)
484{
485	unsigned long *tos = (unsigned long *)regs->rsp;
486	unsigned long next_rip = 0;
487	unsigned long copy_rip = (unsigned long)p->ainsn.insn;
488	unsigned long orig_rip = (unsigned long)p->addr;
489	kprobe_opcode_t *insn = p->ainsn.insn;
490
491	/*skip the REX prefix*/
492	if (*insn >= 0x40 && *insn <= 0x4f)
493		insn++;
494
495	switch (*insn) {
496	case 0x9c:		/* pushfl */
497		*tos &= ~(TF_MASK | IF_MASK);
498		*tos |= kcb->kprobe_old_rflags;
499		break;
500	case 0xc3:		/* ret/lret */
501	case 0xcb:
502	case 0xc2:
503	case 0xca:
504		regs->eflags &= ~TF_MASK;
505		/* rip is already adjusted, no more changes required*/
506		return;
507	case 0xe8:		/* call relative - Fix return addr */
508		*tos = orig_rip + (*tos - copy_rip);
509		break;
510	case 0xff:
511		if ((insn[1] & 0x30) == 0x10) {
512			/* call absolute, indirect */
513			/* Fix return addr; rip is correct. */
514			next_rip = regs->rip;
515			*tos = orig_rip + (*tos - copy_rip);
516		} else if (((insn[1] & 0x31) == 0x20) ||	/* jmp near, absolute indirect */
517			   ((insn[1] & 0x31) == 0x21)) {	/* jmp far, absolute indirect */
518			/* rip is correct. */
519			next_rip = regs->rip;
520		}
521		break;
522	case 0xea:		/* jmp absolute -- rip is correct */
523		next_rip = regs->rip;
524		break;
525	default:
526		break;
527	}
528
529	regs->eflags &= ~TF_MASK;
530	if (next_rip) {
531		regs->rip = next_rip;
532	} else {
533		regs->rip = orig_rip + (regs->rip - copy_rip);
534	}
535}
536
537int __kprobes post_kprobe_handler(struct pt_regs *regs)
538{
539	struct kprobe *cur = kprobe_running();
540	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
541
542	if (!cur)
543		return 0;
544
545	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
546		kcb->kprobe_status = KPROBE_HIT_SSDONE;
547		cur->post_handler(cur, regs, 0);
548	}
549
550	resume_execution(cur, regs, kcb);
551	regs->eflags |= kcb->kprobe_saved_rflags;
552
553	/* Restore the original saved kprobes variables and continue. */
554	if (kcb->kprobe_status == KPROBE_REENTER) {
555		restore_previous_kprobe(kcb);
556		goto out;
557	}
558	reset_current_kprobe();
559out:
560	preempt_enable_no_resched();
561
562	/*
563	 * if somebody else is singlestepping across a probe point, eflags
564	 * will have TF set, in which case, continue the remaining processing
565	 * of do_debug, as if this is not a probe hit.
566	 */
567	if (regs->eflags & TF_MASK)
568		return 0;
569
570	return 1;
571}
572
573int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
574{
575	struct kprobe *cur = kprobe_running();
576	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
577	const struct exception_table_entry *fixup;
578
579	switch(kcb->kprobe_status) {
580	case KPROBE_HIT_SS:
581	case KPROBE_REENTER:
582		/*
583		 * We are here because the instruction being single
584		 * stepped caused a page fault. We reset the current
585		 * kprobe and the rip points back to the probe address
586		 * and allow the page fault handler to continue as a
587		 * normal page fault.
588		 */
589		regs->rip = (unsigned long)cur->addr;
590		regs->eflags |= kcb->kprobe_old_rflags;
591		if (kcb->kprobe_status == KPROBE_REENTER)
592			restore_previous_kprobe(kcb);
593		else
594			reset_current_kprobe();
595		preempt_enable_no_resched();
596		break;
597	case KPROBE_HIT_ACTIVE:
598	case KPROBE_HIT_SSDONE:
599		/*
600		 * We increment the nmissed count for accounting,
601		 * we can also use npre/npostfault count for accouting
602		 * these specific fault cases.
603		 */
604		kprobes_inc_nmissed_count(cur);
605
606		/*
607		 * We come here because instructions in the pre/post
608		 * handler caused the page_fault, this could happen
609		 * if handler tries to access user space by
610		 * copy_from_user(), get_user() etc. Let the
611		 * user-specified handler try to fix it first.
612		 */
613		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
614			return 1;
615
616		/*
617		 * In case the user-specified fault handler returned
618		 * zero, try to fix up.
619		 */
620		fixup = search_exception_tables(regs->rip);
621		if (fixup) {
622			regs->rip = fixup->fixup;
623			return 1;
624		}
625
626		/*
627		 * fixup() could not handle it,
628		 * Let do_page_fault() fix it.
629		 */
630		break;
631	default:
632		break;
633	}
634	return 0;
635}
636
637/*
638 * Wrapper routine for handling exceptions.
639 */
640int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
641				       unsigned long val, void *data)
642{
643	struct die_args *args = (struct die_args *)data;
644	int ret = NOTIFY_DONE;
645
646	if (args->regs && user_mode(args->regs))
647		return ret;
648
649	switch (val) {
650	case DIE_INT3:
651		if (kprobe_handler(args->regs))
652			ret = NOTIFY_STOP;
653		break;
654	case DIE_DEBUG:
655		if (post_kprobe_handler(args->regs))
656			ret = NOTIFY_STOP;
657		break;
658	case DIE_GPF:
659	case DIE_PAGE_FAULT:
660		/* kprobe_running() needs smp_processor_id() */
661		preempt_disable();
662		if (kprobe_running() &&
663		    kprobe_fault_handler(args->regs, args->trapnr))
664			ret = NOTIFY_STOP;
665		preempt_enable();
666		break;
667	default:
668		break;
669	}
670	return ret;
671}
672
673int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
674{
675	struct jprobe *jp = container_of(p, struct jprobe, kp);
676	unsigned long addr;
677	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
678
679	kcb->jprobe_saved_regs = *regs;
680	kcb->jprobe_saved_rsp = (long *) regs->rsp;
681	addr = (unsigned long)(kcb->jprobe_saved_rsp);
682	/*
683	 * As Linus pointed out, gcc assumes that the callee
684	 * owns the argument space and could overwrite it, e.g.
685	 * tailcall optimization. So, to be absolutely safe
686	 * we also save and restore enough stack bytes to cover
687	 * the argument area.
688	 */
689	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr,
690			MIN_STACK_SIZE(addr));
691	regs->eflags &= ~IF_MASK;
692	regs->rip = (unsigned long)(jp->entry);
693	return 1;
694}
695
696void __kprobes jprobe_return(void)
697{
698	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
699
700	asm volatile ("       xchg   %%rbx,%%rsp     \n"
701		      "       int3			\n"
702		      "       .globl jprobe_return_end	\n"
703		      "       jprobe_return_end:	\n"
704		      "       nop			\n"::"b"
705		      (kcb->jprobe_saved_rsp):"memory");
706}
707
708int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
709{
710	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
711	u8 *addr = (u8 *) (regs->rip - 1);
712	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_rsp);
713	struct jprobe *jp = container_of(p, struct jprobe, kp);
714
715	if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) {
716		if ((long *)regs->rsp != kcb->jprobe_saved_rsp) {
717			struct pt_regs *saved_regs =
718			    container_of(kcb->jprobe_saved_rsp,
719					    struct pt_regs, rsp);
720			printk("current rsp %p does not match saved rsp %p\n",
721			       (long *)regs->rsp, kcb->jprobe_saved_rsp);
722			printk("Saved registers for jprobe %p\n", jp);
723			show_registers(saved_regs);
724			printk("Current registers\n");
725			show_registers(regs);
726			BUG();
727		}
728		*regs = kcb->jprobe_saved_regs;
729		memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
730		       MIN_STACK_SIZE(stack_addr));
731		preempt_enable_no_resched();
732		return 1;
733	}
734	return 0;
735}
736
737static struct kprobe trampoline_p = {
738	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
739	.pre_handler = trampoline_probe_handler
740};
741
742int __init arch_init_kprobes(void)
743{
744	return register_kprobe(&trampoline_p);
745}
746
747int __kprobes arch_trampoline_kprobe(struct kprobe *p)
748{
749	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
750		return 1;
751
752	return 0;
753}
754