1/*
2 * include/asm-v850/rte_cb.c -- Midas lab RTE-CB series of evaluation boards
3 *
4 *  Copyright (C) 2001,02,03  NEC Electronics Corporation
5 *  Copyright (C) 2001,02,03  Miles Bader <miles@gnu.org>
6 *
7 * This file is subject to the terms and conditions of the GNU General
8 * Public License.  See the file COPYING in the main directory of this
9 * archive for more details.
10 *
11 * Written by Miles Bader <miles@gnu.org>
12 */
13
14#include <linux/init.h>
15#include <linux/irq.h>
16#include <linux/fs.h>
17#include <linux/module.h>
18#include <linux/kernel.h>
19
20#include <asm/machdep.h>
21#include <asm/v850e_uart.h>
22
23#include "mach.h"
24
25static void led_tick (void);
26
27/* LED access routines.  */
28extern unsigned read_leds (int pos, char *buf, int len);
29extern unsigned write_leds (int pos, const char *buf, int len);
30
31#ifdef CONFIG_RTE_CB_MULTI
32extern void multi_init (void);
33#endif
34
35
36void __init rte_cb_early_init (void)
37{
38	v850e_intc_disable_irqs ();
39
40#ifdef CONFIG_RTE_CB_MULTI
41	multi_init ();
42#endif
43}
44
45void __init mach_setup (char **cmdline)
46{
47#ifdef CONFIG_RTE_MB_A_PCI
48	/* Probe for Mother-A, and print a message if we find it.  */
49	*(volatile unsigned long *)MB_A_SRAM_ADDR = 0xDEADBEEF;
50	if (*(volatile unsigned long *)MB_A_SRAM_ADDR == 0xDEADBEEF) {
51		*(volatile unsigned long *)MB_A_SRAM_ADDR = 0x12345678;
52		if (*(volatile unsigned long *)MB_A_SRAM_ADDR == 0x12345678)
53			printk (KERN_INFO
54				"          NEC SolutionGear/Midas lab"
55				" RTE-MOTHER-A motherboard\n");
56	}
57#endif /* CONFIG_RTE_MB_A_PCI */
58
59	mach_tick = led_tick;
60}
61
62void machine_restart (char *__unused)
63{
64#ifdef CONFIG_RESET_GUARD
65	disable_reset_guard ();
66#endif
67	asm ("jmp r0"); /* Jump to the reset vector.  */
68}
69
70/* This says `HALt.' in LEDese.  */
71static unsigned char halt_leds_msg[] = { 0x76, 0x77, 0x38, 0xF8 };
72
73void machine_halt (void)
74{
75#ifdef CONFIG_RESET_GUARD
76	disable_reset_guard ();
77#endif
78
79	/* Ignore all interrupts.  */
80	local_irq_disable ();
81
82	/* Write a little message.  */
83	write_leds (0, halt_leds_msg, sizeof halt_leds_msg);
84
85	/* Really halt.  */
86	for (;;)
87		asm ("halt; nop; nop; nop; nop; nop");
88}
89
90void machine_power_off (void)
91{
92	machine_halt ();
93}
94
95
96/* Animated LED display for timer tick.  */
97
98#define TICK_UPD_FREQ	6
99static int tick_frames[][10] = {
100	{ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, -1 },
101	{ 0x63, 0x5c, -1 },
102	{ 0x5c, 0x00, -1 },
103	{ 0x63, 0x00, -1 },
104	{ -1 }
105};
106
107static void led_tick ()
108{
109	static unsigned counter = 0;
110
111	if (++counter == (HZ / TICK_UPD_FREQ)) {
112		/* Which frame we're currently displaying for each digit.  */
113		static unsigned frame_nums[LED_NUM_DIGITS] = { 0 };
114		/* Display image.  */
115		static unsigned char image[LED_NUM_DIGITS] = { 0 };
116		unsigned char prev_image[LED_NUM_DIGITS];
117		int write_to_leds = 1; /* true if we should actually display */
118		int digit;
119
120		/* We check to see if the physical LEDs contains what we last
121		   wrote to them; if not, we suppress display (this is so that
122		   users can write to the LEDs, and not have their output
123		   overwritten).  As a special case, we start writing again if
124		   all the LEDs are blank, or our display image is all zeros
125		   (indicating that this is the initial update, when the actual
126		   LEDs might contain random data).  */
127		read_leds (0, prev_image, LED_NUM_DIGITS);
128		for (digit = 0; digit < LED_NUM_DIGITS; digit++)
129			if (image[digit] != prev_image[digit]
130			    && image[digit] && prev_image[digit])
131			{
132				write_to_leds = 0;
133				break;
134			}
135
136		/* Update display image.  */
137		for (digit = 0;
138		     digit < LED_NUM_DIGITS && tick_frames[digit][0] >= 0;
139		     digit++)
140		{
141			int frame = tick_frames[digit][frame_nums[digit]];
142			if (frame < 0) {
143				image[digit] = tick_frames[digit][0];
144				frame_nums[digit] = 1;
145			} else {
146				image[digit] = frame;
147				frame_nums[digit]++;
148				break;
149			}
150		}
151
152		if (write_to_leds)
153			/* Write the display image to the physical LEDs.  */
154			write_leds (0, image, LED_NUM_DIGITS);
155
156		counter = 0;
157	}
158}
159
160
161/* Mother-A interrupts.  */
162
163#ifdef CONFIG_RTE_GBUS_INT
164
165#define L GBUS_INT_PRIORITY_LOW
166#define M GBUS_INT_PRIORITY_MEDIUM
167#define H GBUS_INT_PRIORITY_HIGH
168
169static struct gbus_int_irq_init gbus_irq_inits[] = {
170#ifdef CONFIG_RTE_MB_A_PCI
171	{ "MB_A_LAN",	IRQ_MB_A_LAN,		1,		     1, L },
172	{ "MB_A_PCI1",	IRQ_MB_A_PCI1(0),	IRQ_MB_A_PCI1_NUM,   1, L },
173	{ "MB_A_PCI2",	IRQ_MB_A_PCI2(0),	IRQ_MB_A_PCI2_NUM,   1, L },
174	{ "MB_A_EXT",	IRQ_MB_A_EXT(0),	IRQ_MB_A_EXT_NUM,    1, L },
175	{ "MB_A_USB_OC",IRQ_MB_A_USB_OC(0),	IRQ_MB_A_USB_OC_NUM, 1, L },
176	{ "MB_A_PCMCIA_OC",IRQ_MB_A_PCMCIA_OC,	1,		     1, L },
177#endif
178	{ 0 }
179};
180#define NUM_GBUS_IRQ_INITS (ARRAY_SIZE(gbus_irq_inits) - 1)
181
182static struct hw_interrupt_type gbus_hw_itypes[NUM_GBUS_IRQ_INITS];
183
184#endif /* CONFIG_RTE_GBUS_INT */
185
186
187void __init rte_cb_init_irqs (void)
188{
189#ifdef CONFIG_RTE_GBUS_INT
190	gbus_int_init_irqs ();
191	gbus_int_init_irq_types (gbus_irq_inits, gbus_hw_itypes);
192#endif /* CONFIG_RTE_GBUS_INT */
193}
194