• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-WNDR4500v2-V1.0.0.60_1.0.38/src/linux/linux-2.6/arch/powerpc/platforms/pseries/
1/*
2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
17 */
18
19/* Change Activity:
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21 * End Change Activity
22 */
23
24#include <linux/errno.h>
25#include <linux/threads.h>
26#include <linux/kernel_stat.h>
27#include <linux/signal.h>
28#include <linux/sched.h>
29#include <linux/ioport.h>
30#include <linux/interrupt.h>
31#include <linux/timex.h>
32#include <linux/init.h>
33#include <linux/slab.h>
34#include <linux/delay.h>
35#include <linux/irq.h>
36#include <linux/random.h>
37#include <linux/sysrq.h>
38#include <linux/bitops.h>
39
40#include <asm/uaccess.h>
41#include <asm/system.h>
42#include <asm/io.h>
43#include <asm/pgtable.h>
44#include <asm/irq.h>
45#include <asm/cache.h>
46#include <asm/prom.h>
47#include <asm/ptrace.h>
48#include <asm/machdep.h>
49#include <asm/rtas.h>
50#include <asm/udbg.h>
51#include <asm/firmware.h>
52
53#include "pseries.h"
54
55static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
56static DEFINE_SPINLOCK(ras_log_buf_lock);
57
58char mce_data_buf[RTAS_ERROR_LOG_MAX];
59
60static int ras_get_sensor_state_token;
61static int ras_check_exception_token;
62
63#define EPOW_SENSOR_TOKEN	9
64#define EPOW_SENSOR_INDEX	0
65#define RAS_VECTOR_OFFSET	0x500
66
67static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
68static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
69
70/* #define DEBUG */
71
72
73static void request_ras_irqs(struct device_node *np,
74			irq_handler_t handler,
75			const char *name)
76{
77	int i, index, count = 0;
78	struct of_irq oirq;
79	const u32 *opicprop;
80	unsigned int opicplen;
81	unsigned int virqs[16];
82
83	/* Check for obsolete "open-pic-interrupt" property. If present, then
84	 * map those interrupts using the default interrupt host and default
85	 * trigger
86	 */
87	opicprop = of_get_property(np, "open-pic-interrupt", &opicplen);
88	if (opicprop) {
89		opicplen /= sizeof(u32);
90		for (i = 0; i < opicplen; i++) {
91			if (count > 15)
92				break;
93			virqs[count] = irq_create_mapping(NULL, *(opicprop++));
94			if (virqs[count] == NO_IRQ)
95				printk(KERN_ERR "Unable to allocate interrupt "
96				       "number for %s\n", np->full_name);
97			else
98				count++;
99
100		}
101	}
102	/* Else use normal interrupt tree parsing */
103	else {
104		/* First try to do a proper OF tree parsing */
105		for (index = 0; of_irq_map_one(np, index, &oirq) == 0;
106		     index++) {
107			if (count > 15)
108				break;
109			virqs[count] = irq_create_of_mapping(oirq.controller,
110							    oirq.specifier,
111							    oirq.size);
112			if (virqs[count] == NO_IRQ)
113				printk(KERN_ERR "Unable to allocate interrupt "
114				       "number for %s\n", np->full_name);
115			else
116				count++;
117		}
118	}
119
120	/* Now request them */
121	for (i = 0; i < count; i++) {
122		if (request_irq(virqs[i], handler, 0, name, NULL)) {
123			printk(KERN_ERR "Unable to request interrupt %d for "
124			       "%s\n", virqs[i], np->full_name);
125			return;
126		}
127	}
128}
129
130/*
131 * Initialize handlers for the set of interrupts caused by hardware errors
132 * and power system events.
133 */
134static int __init init_ras_IRQ(void)
135{
136	struct device_node *np;
137
138	ras_get_sensor_state_token = rtas_token("get-sensor-state");
139	ras_check_exception_token = rtas_token("check-exception");
140
141	/* Internal Errors */
142	np = of_find_node_by_path("/event-sources/internal-errors");
143	if (np != NULL) {
144		request_ras_irqs(np, ras_error_interrupt, "RAS_ERROR");
145		of_node_put(np);
146	}
147
148	/* EPOW Events */
149	np = of_find_node_by_path("/event-sources/epow-events");
150	if (np != NULL) {
151		request_ras_irqs(np, ras_epow_interrupt, "RAS_EPOW");
152		of_node_put(np);
153	}
154
155	return 0;
156}
157__initcall(init_ras_IRQ);
158
159/*
160 * Handle power subsystem events (EPOW).
161 *
162 * Presently we just log the event has occurred.  This should be fixed
163 * to examine the type of power failure and take appropriate action where
164 * the time horizon permits something useful to be done.
165 */
166static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
167{
168	int status = 0xdeadbeef;
169	int state = 0;
170	int critical;
171
172	status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
173			   EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
174
175	if (state > 3)
176		critical = 1;  /* Time Critical */
177	else
178		critical = 0;
179
180	spin_lock(&ras_log_buf_lock);
181
182	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
183			   RAS_VECTOR_OFFSET,
184			   irq_map[irq].hwirq,
185			   RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
186			   critical, __pa(&ras_log_buf),
187				rtas_get_error_log_max());
188
189	udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
190		    *((unsigned long *)&ras_log_buf), status, state);
191	printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
192	       *((unsigned long *)&ras_log_buf), status, state);
193
194	/* format and print the extended information */
195	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
196
197	spin_unlock(&ras_log_buf_lock);
198	return IRQ_HANDLED;
199}
200
201/*
202 * Handle hardware error interrupts.
203 *
204 * RTAS check-exception is called to collect data on the exception.  If
205 * the error is deemed recoverable, we log a warning and return.
206 * For nonrecoverable errors, an error is logged and we stop all processing
207 * as quickly as possible in order to prevent propagation of the failure.
208 */
209static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
210{
211	struct rtas_error_log *rtas_elog;
212	int status = 0xdeadbeef;
213	int fatal;
214
215	spin_lock(&ras_log_buf_lock);
216
217	status = rtas_call(ras_check_exception_token, 6, 1, NULL,
218			   RAS_VECTOR_OFFSET,
219			   irq_map[irq].hwirq,
220			   RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
221			   __pa(&ras_log_buf),
222				rtas_get_error_log_max());
223
224	rtas_elog = (struct rtas_error_log *)ras_log_buf;
225
226	if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
227		fatal = 1;
228	else
229		fatal = 0;
230
231	/* format and print the extended information */
232	log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
233
234	if (fatal) {
235		udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
236			    *((unsigned long *)&ras_log_buf), status);
237		printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
238		       *((unsigned long *)&ras_log_buf), status);
239
240#ifndef DEBUG
241		/* Don't actually power off when debugging so we can test
242		 * without actually failing while injecting errors.
243		 * Error data will not be logged to syslog.
244		 */
245		ppc_md.power_off();
246#endif
247	} else {
248		udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
249			    *((unsigned long *)&ras_log_buf), status);
250		printk(KERN_WARNING
251		       "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
252		       *((unsigned long *)&ras_log_buf), status);
253	}
254
255	spin_unlock(&ras_log_buf_lock);
256	return IRQ_HANDLED;
257}
258
259/* Get the error information for errors coming through the
260 * FWNMI vectors.  The pt_regs' r3 will be updated to reflect
261 * the actual r3 if possible, and a ptr to the error log entry
262 * will be returned if found.
263 *
264 * The mce_data_buf does not have any locks or protection around it,
265 * if a second machine check comes in, or a system reset is done
266 * before we have logged the error, then we will get corruption in the
267 * error log.  This is preferable over holding off on calling
268 * ibm,nmi-interlock which would result in us checkstopping if a
269 * second machine check did come in.
270 */
271static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
272{
273	unsigned long errdata = regs->gpr[3];
274	struct rtas_error_log *errhdr = NULL;
275	unsigned long *savep;
276
277	if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
278	    (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
279		savep = __va(errdata);
280		regs->gpr[3] = savep[0];	/* restore original r3 */
281		memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
282		memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
283		errhdr = (struct rtas_error_log *)mce_data_buf;
284	} else {
285		printk("FWNMI: corrupt r3\n");
286	}
287	return errhdr;
288}
289
290/* Call this when done with the data returned by FWNMI_get_errinfo.
291 * It will release the saved data area for other CPUs in the
292 * partition to receive FWNMI errors.
293 */
294static void fwnmi_release_errinfo(void)
295{
296	int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
297	if (ret != 0)
298		printk("FWNMI: nmi-interlock failed: %d\n", ret);
299}
300
301int pSeries_system_reset_exception(struct pt_regs *regs)
302{
303	if (fwnmi_active) {
304		struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
305		if (errhdr) {
306		}
307		fwnmi_release_errinfo();
308	}
309	return 0; /* need to perform reset */
310}
311
312/*
313 * See if we can recover from a machine check exception.
314 * This is only called on power4 (or above) and only via
315 * the Firmware Non-Maskable Interrupts (fwnmi) handler
316 * which provides the error analysis for us.
317 *
318 * Return 1 if corrected (or delivered a signal).
319 * Return 0 if there is nothing we can do.
320 */
321static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
322{
323	int nonfatal = 0;
324
325	if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
326		/* Platform corrected itself */
327		nonfatal = 1;
328	} else if ((regs->msr & MSR_RI) &&
329		   user_mode(regs) &&
330		   err->severity == RTAS_SEVERITY_ERROR_SYNC &&
331		   err->disposition == RTAS_DISP_NOT_RECOVERED &&
332		   err->target == RTAS_TARGET_MEMORY &&
333		   err->type == RTAS_TYPE_ECC_UNCORR &&
334		   !(current->pid == 0 || is_init(current))) {
335		/* Kill off a user process with an ECC error */
336		printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
337		       current->pid);
338		_exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
339		nonfatal = 1;
340	}
341
342	log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
343
344	return nonfatal;
345}
346
347/*
348 * Handle a machine check.
349 *
350 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
351 * should be present.  If so the handler which called us tells us if the
352 * error was recovered (never true if RI=0).
353 *
354 * On hardware prior to Power 4 these exceptions were asynchronous which
355 * means we can't tell exactly where it occurred and so we can't recover.
356 */
357int pSeries_machine_check_exception(struct pt_regs *regs)
358{
359	struct rtas_error_log *errp;
360
361	if (fwnmi_active) {
362		errp = fwnmi_get_errinfo(regs);
363		fwnmi_release_errinfo();
364		if (errp && recover_mce(regs, errp))
365			return 1;
366	}
367
368	return 0;
369}
370