1/*
2 * Basic four-word fraction declaration and manipulation.
3 *
4 * When adding quadword support for 32 bit machines, we need
5 * to be a little careful as double multiply uses some of these
6 * macros: (in op-2.h)
7 * _FP_MUL_MEAT_2_wide() uses _FP_FRAC_DECL_4, _FP_FRAC_WORD_4,
8 * _FP_FRAC_ADD_4, _FP_FRAC_SRS_4
9 * _FP_MUL_MEAT_2_gmp() uses _FP_FRAC_SRS_4 (and should use
10 * _FP_FRAC_DECL_4: it appears to be broken and is not used
11 * anywhere anyway. )
12 *
13 * I've now fixed all the macros that were here from the sparc64 code.
14 * [*none* of the shift macros were correct!] -- PMM 02/1998
15 *
16 * The only quadword stuff that remains to be coded is:
17 * 1) the conversion to/from ints, which requires
18 * that we check (in op-common.h) that the following do the right thing
19 * for quadwords: _FP_TO_INT(Q,4,r,X,rsz,rsg), _FP_FROM_INT(Q,4,X,r,rs,rt)
20 * 2) multiply, divide and sqrt, which require:
21 * _FP_MUL_MEAT_4_*(R,X,Y), _FP_DIV_MEAT_4_*(R,X,Y), _FP_SQRT_MEAT_4(R,S,T,X,q),
22 * This also needs _FP_MUL_MEAT_Q and _FP_DIV_MEAT_Q to be defined to
23 * some suitable _FP_MUL_MEAT_4_* macros in sfp-machine.h.
24 * [we're free to choose whatever FP_MUL_MEAT_4_* macros we need for
25 * these; they are used nowhere else. ]
26 */
27
28#define _FP_FRAC_DECL_4(X)	_FP_W_TYPE X##_f[4]
29#define _FP_FRAC_COPY_4(D,S)			\
30  (D##_f[0] = S##_f[0], D##_f[1] = S##_f[1],	\
31   D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
32/* The _FP_FRAC_SET_n(X,I) macro is intended for use with another
33 * macro such as _FP_ZEROFRAC_n which returns n comma separated values.
34 * The result is that we get an expansion of __FP_FRAC_SET_n(X,I0,I1,I2,I3)
35 * which just assigns the In values to the array X##_f[].
36 * This is why the number of parameters doesn't appear to match
37 * at first glance...      -- PMM
38 */
39#define _FP_FRAC_SET_4(X,I)	__FP_FRAC_SET_4(X, I)
40#define _FP_FRAC_HIGH_4(X)	(X##_f[3])
41#define _FP_FRAC_LOW_4(X)	(X##_f[0])
42#define _FP_FRAC_WORD_4(X,w)	(X##_f[w])
43
44#define _FP_FRAC_SLL_4(X,N)						\
45  do {									\
46    _FP_I_TYPE _up, _down, _skip, _i;					\
47    _skip = (N) / _FP_W_TYPE_SIZE;					\
48    _up = (N) % _FP_W_TYPE_SIZE;					\
49    _down = _FP_W_TYPE_SIZE - _up;					\
50    for (_i = 3; _i > _skip; --_i)					\
51      X##_f[_i] = X##_f[_i-_skip] << _up | X##_f[_i-_skip-1] >> _down;	\
52/* bugfixed: was X##_f[_i] <<= _up;  -- PMM 02/1998 */                  \
53    X##_f[_i] = X##_f[0] << _up; 	                                \
54    for (--_i; _i >= 0; --_i)						\
55      X##_f[_i] = 0;							\
56  } while (0)
57
58/* This one was broken too */
59#define _FP_FRAC_SRL_4(X,N)						\
60  do {									\
61    _FP_I_TYPE _up, _down, _skip, _i;					\
62    _skip = (N) / _FP_W_TYPE_SIZE;					\
63    _down = (N) % _FP_W_TYPE_SIZE;					\
64    _up = _FP_W_TYPE_SIZE - _down;					\
65    for (_i = 0; _i < 3-_skip; ++_i)					\
66      X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up;	\
67    X##_f[_i] = X##_f[3] >> _down;			         	\
68    for (++_i; _i < 4; ++_i)						\
69      X##_f[_i] = 0;							\
70  } while (0)
71
72
73/* Right shift with sticky-lsb.
74 * What this actually means is that we do a standard right-shift,
75 * but that if any of the bits that fall off the right hand side
76 * were one then we always set the LSbit.
77 */
78#define _FP_FRAC_SRS_4(X,N,size)					\
79  do {									\
80    _FP_I_TYPE _up, _down, _skip, _i;					\
81    _FP_W_TYPE _s;							\
82    _skip = (N) / _FP_W_TYPE_SIZE;					\
83    _down = (N) % _FP_W_TYPE_SIZE;					\
84    _up = _FP_W_TYPE_SIZE - _down;					\
85    for (_s = _i = 0; _i < _skip; ++_i)					\
86      _s |= X##_f[_i];							\
87    _s |= X##_f[_i] << _up;						\
88/* s is now != 0 if we want to set the LSbit */                         \
89    for (_i = 0; _i < 3-_skip; ++_i)					\
90      X##_f[_i] = X##_f[_i+_skip] >> _down | X##_f[_i+_skip+1] << _up;	\
91    X##_f[_i] = X##_f[3] >> _down;					\
92    for (++_i; _i < 4; ++_i)						\
93      X##_f[_i] = 0;							\
94    /* don't fix the LSB until the very end when we're sure f[0] is stable */ \
95    X##_f[0] |= (_s != 0);                                              \
96  } while (0)
97
98#define _FP_FRAC_ADD_4(R,X,Y)						\
99  __FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],		\
100		  X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\
101		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
102
103#define _FP_FRAC_SUB_4(R,X,Y)                                           \
104  __FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0],		\
105		  X##_f[3], X##_f[2], X##_f[1], X##_f[0],		\
106		  Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
107
108#define _FP_FRAC_ADDI_4(X,I)                                            \
109  __FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
110
111#define _FP_ZEROFRAC_4  0,0,0,0
112#define _FP_MINFRAC_4   0,0,0,1
113
114#define _FP_FRAC_ZEROP_4(X)     ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
115#define _FP_FRAC_NEGP_4(X)      ((_FP_WS_TYPE)X##_f[3] < 0)
116#define _FP_FRAC_OVERP_4(fs,X)  (X##_f[0] & _FP_OVERFLOW_##fs)
117
118#define _FP_FRAC_EQ_4(X,Y)                              \
119 (X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1]          \
120  && X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
121
122#define _FP_FRAC_GT_4(X,Y)                              \
123 (X##_f[3] > Y##_f[3] ||                                \
124  (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||      \
125   (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||     \
126    (X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0])       \
127   ))                                                   \
128  ))                                                    \
129 )
130
131#define _FP_FRAC_GE_4(X,Y)                              \
132 (X##_f[3] > Y##_f[3] ||                                \
133  (X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] ||      \
134   (X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] ||     \
135    (X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0])      \
136   ))                                                   \
137  ))                                                    \
138 )
139
140
141#define _FP_FRAC_CLZ_4(R,X)             \
142  do {                                  \
143    if (X##_f[3])                       \
144    {                                   \
145        __FP_CLZ(R,X##_f[3]);           \
146    }                                   \
147    else if (X##_f[2])                  \
148    {                                   \
149        __FP_CLZ(R,X##_f[2]);           \
150        R += _FP_W_TYPE_SIZE;           \
151    }                                   \
152    else if (X##_f[1])                  \
153    {                                   \
154        __FP_CLZ(R,X##_f[2]);           \
155        R += _FP_W_TYPE_SIZE*2;         \
156    }                                   \
157    else                                \
158    {                                   \
159        __FP_CLZ(R,X##_f[0]);           \
160        R += _FP_W_TYPE_SIZE*3;         \
161    }                                   \
162  } while(0)
163
164
165#define _FP_UNPACK_RAW_4(fs, X, val)                            \
166  do {                                                          \
167    union _FP_UNION_##fs _flo; _flo.flt = (val);        	\
168    X##_f[0] = _flo.bits.frac0;                                 \
169    X##_f[1] = _flo.bits.frac1;                                 \
170    X##_f[2] = _flo.bits.frac2;                                 \
171    X##_f[3] = _flo.bits.frac3;                                 \
172    X##_e  = _flo.bits.exp;                                     \
173    X##_s  = _flo.bits.sign;                                    \
174  } while (0)
175
176#define _FP_PACK_RAW_4(fs, val, X)                              \
177  do {                                                          \
178    union _FP_UNION_##fs _flo;					\
179    _flo.bits.frac0 = X##_f[0];                                 \
180    _flo.bits.frac1 = X##_f[1];                                 \
181    _flo.bits.frac2 = X##_f[2];                                 \
182    _flo.bits.frac3 = X##_f[3];                                 \
183    _flo.bits.exp   = X##_e;                                    \
184    _flo.bits.sign  = X##_s;                                    \
185    (val) = _flo.flt;                                   	\
186  } while (0)
187
188
189/*
190 * Internals
191 */
192
193#define __FP_FRAC_SET_4(X,I3,I2,I1,I0)					\
194  (X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
195
196#ifndef __FP_FRAC_ADD_4
197#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\
198  (r0 = x0 + y0,							\
199   r1 = x1 + y1 + (r0 < x0),						\
200   r2 = x2 + y2 + (r1 < x1),						\
201   r3 = x3 + y3 + (r2 < x2))
202#endif
203
204#ifndef __FP_FRAC_SUB_4
205#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0)		\
206  (r0 = x0 - y0,                                                        \
207   r1 = x1 - y1 - (r0 > x0),                                            \
208   r2 = x2 - y2 - (r1 > x1),                                            \
209   r3 = x3 - y3 - (r2 > x2))
210#endif
211
212#ifndef __FP_FRAC_ADDI_4
213/* I always wanted to be a lisp programmer :-> */
214#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i)                                 \
215  (x3 += ((x2 += ((x1 += ((x0 += i) < x0)) < x1) < x2)))
216#endif
217
218/* Convert FP values between word sizes. This appears to be more
219 * complicated than I'd have expected it to be, so these might be
220 * wrong... These macros are in any case somewhat bogus because they
221 * use information about what various FRAC_n variables look like
222 * internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
223 * the ones in op-2.h and op-1.h.
224 */
225#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S)                               \
226   do {                                                                 \
227     _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),     \
228                        _FP_WFRACBITS_##sfs);                           \
229     D##_f = S##_f[0];                                                   \
230  } while (0)
231
232#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S)                               \
233   do {                                                                 \
234     _FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),     \
235                        _FP_WFRACBITS_##sfs);                           \
236     D##_f0 = S##_f[0];                                                  \
237     D##_f1 = S##_f[1];                                                  \
238  } while (0)
239
240/* Assembly/disassembly for converting to/from integral types.
241 * No shifting or overflow handled here.
242 */
243/* Put the FP value X into r, which is an integer of size rsize. */
244#define _FP_FRAC_ASSEMBLE_4(r, X, rsize)                                \
245  do {                                                                  \
246    if (rsize <= _FP_W_TYPE_SIZE)                                       \
247      r = X##_f[0];                                                     \
248    else if (rsize <= 2*_FP_W_TYPE_SIZE)                                \
249    {                                                                   \
250      r = X##_f[1];                                                     \
251      r <<= _FP_W_TYPE_SIZE;                                            \
252      r += X##_f[0];                                                    \
253    }                                                                   \
254    else                                                                \
255    {                                                                   \
256      /* I'm feeling lazy so we deal with int == 3words (implausible)*/ \
257      /* and int == 4words as a single case.                         */ \
258      r = X##_f[3];                                                     \
259      r <<= _FP_W_TYPE_SIZE;                                            \
260      r += X##_f[2];                                                    \
261      r <<= _FP_W_TYPE_SIZE;                                            \
262      r += X##_f[1];                                                    \
263      r <<= _FP_W_TYPE_SIZE;                                            \
264      r += X##_f[0];                                                    \
265    }                                                                   \
266  } while (0)
267
268/* "No disassemble Number Five!" */
269/* move an integer of size rsize into X's fractional part. We rely on
270 * the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
271 * having to mask the values we store into it.
272 */
273#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize)                             \
274  do {                                                                  \
275    X##_f[0] = r;                                                       \
276    X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);   \
277    X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \
278    X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \
279  } while (0)
280
281#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S)                               \
282   do {                                                                 \
283     D##_f[0] = S##_f;                                                  \
284     D##_f[1] = D##_f[2] = D##_f[3] = 0;                                \
285     _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));    \
286   } while (0)
287
288#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S)                               \
289   do {                                                                 \
290     D##_f[0] = S##_f0;                                                 \
291     D##_f[1] = S##_f1;                                                 \
292     D##_f[2] = D##_f[3] = 0;                                           \
293     _FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));    \
294   } while (0)
295
296#define _FP_SQRT_MEAT_4(R, S, T, X, q)
297