1/*
2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
3 *
4 *	PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 *    This program is free software; you can redistribute it and/or modify
17 *    it under the terms of the GNU General Public License as published by
18 *    the Free Software Foundation; either version 2 of the License, or
19 *    (at your option) any later version.
20 *
21 */
22
23/*	I think it would be in everyone's best interest to follow this
24 *	guidelines when writing PDC wrappers:
25 *
26 *	 - the name of the pdc wrapper should match one of the macros
27 *	   used for the first two arguments
28 *	 - don't use caps for random parts of the name
29 *	 - use the static PDC result buffers and "copyout" to structs
30 *	   supplied by the caller to encapsulate alignment restrictions
31 *	 - hold pdc_lock while in PDC or using static result buffers
32 *	 - use __pa() to convert virtual (kernel) pointers to physical
33 *	   ones.
34 *	 - the name of the struct used for pdc return values should equal
35 *	   one of the macros used for the first two arguments to the
36 *	   corresponding PDC call
37 *	 - keep the order of arguments
38 *	 - don't be smart (setting trailing NUL bytes for strings, return
39 *	   something useful even if the call failed) unless you are sure
40 *	   it's not going to affect functionality or performance
41 *
42 *	Example:
43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44 *	{
45 *		int retval;
46 *
47 *		spin_lock_irq(&pdc_lock);
48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 *		convert_to_wide(pdc_result);
50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 *		spin_unlock_irq(&pdc_lock);
52 *
53 *		return retval;
54 *	}
55 *					prumpf	991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/system.h>
71#include <asm/processor.h>	/* for boot_cpu_data */
72
73static DEFINE_SPINLOCK(pdc_lock);
74static unsigned long pdc_result[32] __attribute__ ((aligned (8)));
75static unsigned long pdc_result2[32] __attribute__ ((aligned (8)));
76
77#ifdef CONFIG_64BIT
78#define WIDE_FIRMWARE 0x1
79#define NARROW_FIRMWARE 0x2
80
81/* Firmware needs to be initially set to narrow to determine the
82 * actual firmware width. */
83int parisc_narrow_firmware __read_mostly = 1;
84#endif
85
86/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
87 * and MEM_PDC calls are always the same width as the OS.
88 * Some PAT boxes may have 64-bit IODC I/O.
89 *
90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
92 * This allowed wide kernels to run on Cxxx boxes.
93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
95 */
96
97#ifdef CONFIG_64BIT
98long real64_call(unsigned long function, ...);
99#endif
100long real32_call(unsigned long function, ...);
101
102#ifdef CONFIG_64BIT
103#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
104#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
105#else
106#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
107#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
108#endif
109
110
111/**
112 * f_extend - Convert PDC addresses to kernel addresses.
113 * @address: Address returned from PDC.
114 *
115 * This function is used to convert PDC addresses into kernel addresses
116 * when the PDC address size and kernel address size are different.
117 */
118static unsigned long f_extend(unsigned long address)
119{
120#ifdef CONFIG_64BIT
121	if(unlikely(parisc_narrow_firmware)) {
122		if((address & 0xff000000) == 0xf0000000)
123			return 0xf0f0f0f000000000UL | (u32)address;
124
125		if((address & 0xf0000000) == 0xf0000000)
126			return 0xffffffff00000000UL | (u32)address;
127	}
128#endif
129	return address;
130}
131
132/**
133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
134 * @address: The return buffer from PDC.
135 *
136 * This function is used to convert the return buffer addresses retrieved from PDC
137 * into kernel addresses when the PDC address size and kernel address size are
138 * different.
139 */
140static void convert_to_wide(unsigned long *addr)
141{
142#ifdef CONFIG_64BIT
143	int i;
144	unsigned int *p = (unsigned int *)addr;
145
146	if(unlikely(parisc_narrow_firmware)) {
147		for(i = 31; i >= 0; --i)
148			addr[i] = p[i];
149	}
150#endif
151}
152
153/**
154 * set_firmware_width - Determine if the firmware is wide or narrow.
155 *
156 * This function must be called before any pdc_* function that uses the convert_to_wide
157 * function.
158 */
159void __init set_firmware_width(void)
160{
161#ifdef CONFIG_64BIT
162	int retval;
163	unsigned long flags;
164
165        spin_lock_irqsave(&pdc_lock, flags);
166	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
167	convert_to_wide(pdc_result);
168	if(pdc_result[0] != NARROW_FIRMWARE)
169		parisc_narrow_firmware = 0;
170        spin_unlock_irqrestore(&pdc_lock, flags);
171#endif
172}
173
174/**
175 * pdc_emergency_unlock - Unlock the linux pdc lock
176 *
177 * This call unlocks the linux pdc lock in case we need some PDC functions
178 * (like pdc_add_valid) during kernel stack dump.
179 */
180void pdc_emergency_unlock(void)
181{
182 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
183        if (spin_is_locked(&pdc_lock))
184		spin_unlock(&pdc_lock);
185}
186
187
188/**
189 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
190 * @address: Address to be verified.
191 *
192 * This PDC call attempts to read from the specified address and verifies
193 * if the address is valid.
194 *
195 * The return value is PDC_OK (0) in case accessing this address is valid.
196 */
197int pdc_add_valid(unsigned long address)
198{
199        int retval;
200	unsigned long flags;
201
202        spin_lock_irqsave(&pdc_lock, flags);
203        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
204        spin_unlock_irqrestore(&pdc_lock, flags);
205
206        return retval;
207}
208EXPORT_SYMBOL(pdc_add_valid);
209
210/**
211 * pdc_chassis_info - Return chassis information.
212 * @result: The return buffer.
213 * @chassis_info: The memory buffer address.
214 * @len: The size of the memory buffer address.
215 *
216 * An HVERSION dependent call for returning the chassis information.
217 */
218int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
219{
220        int retval;
221	unsigned long flags;
222
223        spin_lock_irqsave(&pdc_lock, flags);
224        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
225        memcpy(&pdc_result2, led_info, len);
226        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
227                              __pa(pdc_result), __pa(pdc_result2), len);
228        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
229        memcpy(led_info, pdc_result2, len);
230        spin_unlock_irqrestore(&pdc_lock, flags);
231
232        return retval;
233}
234
235/**
236 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
237 * @retval: -1 on error, 0 on success. Other value are PDC errors
238 *
239 * Must be correctly formatted or expect system crash
240 */
241#ifdef CONFIG_64BIT
242int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
243{
244	int retval = 0;
245	unsigned long flags;
246
247	if (!is_pdc_pat())
248		return -1;
249
250	spin_lock_irqsave(&pdc_lock, flags);
251	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
252	spin_unlock_irqrestore(&pdc_lock, flags);
253
254	return retval;
255}
256#endif
257
258/**
259 * pdc_chassis_disp - Updates chassis code
260 * @retval: -1 on error, 0 on success
261 */
262int pdc_chassis_disp(unsigned long disp)
263{
264	int retval = 0;
265	unsigned long flags;
266
267	spin_lock_irqsave(&pdc_lock, flags);
268	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
269	spin_unlock_irqrestore(&pdc_lock, flags);
270
271	return retval;
272}
273
274/**
275 * pdc_chassis_warn - Fetches chassis warnings
276 * @retval: -1 on error, 0 on success
277 */
278int pdc_chassis_warn(unsigned long *warn)
279{
280	int retval = 0;
281	unsigned long flags;
282
283	spin_lock_irqsave(&pdc_lock, flags);
284	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
285	*warn = pdc_result[0];
286	spin_unlock_irqrestore(&pdc_lock, flags);
287
288	return retval;
289}
290
291/**
292 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
293 * @pdc_coproc_info: Return buffer address.
294 *
295 * This PDC call returns the presence and status of all the coprocessors
296 * attached to the processor.
297 */
298int __init pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
299{
300        int retval;
301	unsigned long flags;
302
303        spin_lock_irqsave(&pdc_lock, flags);
304        retval = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
305        convert_to_wide(pdc_result);
306        pdc_coproc_info->ccr_functional = pdc_result[0];
307        pdc_coproc_info->ccr_present = pdc_result[1];
308        pdc_coproc_info->revision = pdc_result[17];
309        pdc_coproc_info->model = pdc_result[18];
310        spin_unlock_irqrestore(&pdc_lock, flags);
311
312        return retval;
313}
314
315/**
316 * pdc_iodc_read - Read data from the modules IODC.
317 * @actcnt: The actual number of bytes.
318 * @hpa: The HPA of the module for the iodc read.
319 * @index: The iodc entry point.
320 * @iodc_data: A buffer memory for the iodc options.
321 * @iodc_data_size: Size of the memory buffer.
322 *
323 * This PDC call reads from the IODC of the module specified by the hpa
324 * argument.
325 */
326int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
327		  void *iodc_data, unsigned int iodc_data_size)
328{
329	int retval;
330	unsigned long flags;
331
332	spin_lock_irqsave(&pdc_lock, flags);
333	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
334			      index, __pa(pdc_result2), iodc_data_size);
335	convert_to_wide(pdc_result);
336	*actcnt = pdc_result[0];
337	memcpy(iodc_data, pdc_result2, iodc_data_size);
338	spin_unlock_irqrestore(&pdc_lock, flags);
339
340	return retval;
341}
342EXPORT_SYMBOL(pdc_iodc_read);
343
344/**
345 * pdc_system_map_find_mods - Locate unarchitected modules.
346 * @pdc_mod_info: Return buffer address.
347 * @mod_path: pointer to dev path structure.
348 * @mod_index: fixed address module index.
349 *
350 * To locate and identify modules which reside at fixed I/O addresses, which
351 * do not self-identify via architected bus walks.
352 */
353int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
354			     struct pdc_module_path *mod_path, long mod_index)
355{
356	int retval;
357	unsigned long flags;
358
359	spin_lock_irqsave(&pdc_lock, flags);
360	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
361			      __pa(pdc_result2), mod_index);
362	convert_to_wide(pdc_result);
363	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
364	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
365	spin_unlock_irqrestore(&pdc_lock, flags);
366
367	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
368	return retval;
369}
370
371/**
372 * pdc_system_map_find_addrs - Retrieve additional address ranges.
373 * @pdc_addr_info: Return buffer address.
374 * @mod_index: Fixed address module index.
375 * @addr_index: Address range index.
376 *
377 * Retrieve additional information about subsequent address ranges for modules
378 * with multiple address ranges.
379 */
380int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
381			      long mod_index, long addr_index)
382{
383	int retval;
384	unsigned long flags;
385
386	spin_lock_irqsave(&pdc_lock, flags);
387	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
388			      mod_index, addr_index);
389	convert_to_wide(pdc_result);
390	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
391	spin_unlock_irqrestore(&pdc_lock, flags);
392
393	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
394	return retval;
395}
396
397/**
398 * pdc_model_info - Return model information about the processor.
399 * @model: The return buffer.
400 *
401 * Returns the version numbers, identifiers, and capabilities from the processor module.
402 */
403int pdc_model_info(struct pdc_model *model)
404{
405	int retval;
406	unsigned long flags;
407
408	spin_lock_irqsave(&pdc_lock, flags);
409	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
410	convert_to_wide(pdc_result);
411	memcpy(model, pdc_result, sizeof(*model));
412	spin_unlock_irqrestore(&pdc_lock, flags);
413
414	return retval;
415}
416
417/**
418 * pdc_model_sysmodel - Get the system model name.
419 * @name: A char array of at least 81 characters.
420 *
421 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
422 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
423 * on HP/UX.
424 */
425int pdc_model_sysmodel(char *name)
426{
427        int retval;
428	unsigned long flags;
429
430        spin_lock_irqsave(&pdc_lock, flags);
431        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
432                              OS_ID_HPUX, __pa(name));
433        convert_to_wide(pdc_result);
434
435        if (retval == PDC_OK) {
436                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
437        } else {
438                name[0] = 0;
439        }
440        spin_unlock_irqrestore(&pdc_lock, flags);
441
442        return retval;
443}
444
445/**
446 * pdc_model_versions - Identify the version number of each processor.
447 * @cpu_id: The return buffer.
448 * @id: The id of the processor to check.
449 *
450 * Returns the version number for each processor component.
451 *
452 * This comment was here before, but I do not know what it means :( -RB
453 * id: 0 = cpu revision, 1 = boot-rom-version
454 */
455int pdc_model_versions(unsigned long *versions, int id)
456{
457        int retval;
458	unsigned long flags;
459
460        spin_lock_irqsave(&pdc_lock, flags);
461        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
462        convert_to_wide(pdc_result);
463        *versions = pdc_result[0];
464        spin_unlock_irqrestore(&pdc_lock, flags);
465
466        return retval;
467}
468
469/**
470 * pdc_model_cpuid - Returns the CPU_ID.
471 * @cpu_id: The return buffer.
472 *
473 * Returns the CPU_ID value which uniquely identifies the cpu portion of
474 * the processor module.
475 */
476int pdc_model_cpuid(unsigned long *cpu_id)
477{
478        int retval;
479	unsigned long flags;
480
481        spin_lock_irqsave(&pdc_lock, flags);
482        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
483        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
484        convert_to_wide(pdc_result);
485        *cpu_id = pdc_result[0];
486        spin_unlock_irqrestore(&pdc_lock, flags);
487
488        return retval;
489}
490
491/**
492 * pdc_model_capabilities - Returns the platform capabilities.
493 * @capabilities: The return buffer.
494 *
495 * Returns information about platform support for 32- and/or 64-bit
496 * OSes, IO-PDIR coherency, and virtual aliasing.
497 */
498int pdc_model_capabilities(unsigned long *capabilities)
499{
500        int retval;
501	unsigned long flags;
502
503        spin_lock_irqsave(&pdc_lock, flags);
504        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
505        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
506        convert_to_wide(pdc_result);
507        *capabilities = pdc_result[0];
508        spin_unlock_irqrestore(&pdc_lock, flags);
509
510        return retval;
511}
512
513/**
514 * pdc_cache_info - Return cache and TLB information.
515 * @cache_info: The return buffer.
516 *
517 * Returns information about the processor's cache and TLB.
518 */
519int pdc_cache_info(struct pdc_cache_info *cache_info)
520{
521        int retval;
522	unsigned long flags;
523
524        spin_lock_irqsave(&pdc_lock, flags);
525        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
526        convert_to_wide(pdc_result);
527        memcpy(cache_info, pdc_result, sizeof(*cache_info));
528        spin_unlock_irqrestore(&pdc_lock, flags);
529
530        return retval;
531}
532
533/**
534 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
535 * @space_bits: Should be 0, if not, bad mojo!
536 *
537 * Returns information about Space ID hashing.
538 */
539int pdc_spaceid_bits(unsigned long *space_bits)
540{
541	int retval;
542	unsigned long flags;
543
544	spin_lock_irqsave(&pdc_lock, flags);
545	pdc_result[0] = 0;
546	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
547	convert_to_wide(pdc_result);
548	*space_bits = pdc_result[0];
549	spin_unlock_irqrestore(&pdc_lock, flags);
550
551	return retval;
552}
553
554#ifndef CONFIG_PA20
555/**
556 * pdc_btlb_info - Return block TLB information.
557 * @btlb: The return buffer.
558 *
559 * Returns information about the hardware Block TLB.
560 */
561int pdc_btlb_info(struct pdc_btlb_info *btlb)
562{
563        int retval;
564	unsigned long flags;
565
566        spin_lock_irqsave(&pdc_lock, flags);
567        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
568        memcpy(btlb, pdc_result, sizeof(*btlb));
569        spin_unlock_irqrestore(&pdc_lock, flags);
570
571        if(retval < 0) {
572                btlb->max_size = 0;
573        }
574        return retval;
575}
576
577/**
578 * pdc_mem_map_hpa - Find fixed module information.
579 * @address: The return buffer
580 * @mod_path: pointer to dev path structure.
581 *
582 * This call was developed for S700 workstations to allow the kernel to find
583 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
584 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
585 * call.
586 *
587 * This call is supported by all existing S700 workstations (up to  Gecko).
588 */
589int pdc_mem_map_hpa(struct pdc_memory_map *address,
590		struct pdc_module_path *mod_path)
591{
592        int retval;
593	unsigned long flags;
594
595        spin_lock_irqsave(&pdc_lock, flags);
596        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
597        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
598				__pa(pdc_result2));
599        memcpy(address, pdc_result, sizeof(*address));
600        spin_unlock_irqrestore(&pdc_lock, flags);
601
602        return retval;
603}
604#endif	/* !CONFIG_PA20 */
605
606/**
607 * pdc_lan_station_id - Get the LAN address.
608 * @lan_addr: The return buffer.
609 * @hpa: The network device HPA.
610 *
611 * Get the LAN station address when it is not directly available from the LAN hardware.
612 */
613int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
614{
615	int retval;
616	unsigned long flags;
617
618	spin_lock_irqsave(&pdc_lock, flags);
619	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
620			__pa(pdc_result), hpa);
621	if (retval < 0) {
622		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
623	} else {
624		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
625	}
626	spin_unlock_irqrestore(&pdc_lock, flags);
627
628	return retval;
629}
630EXPORT_SYMBOL(pdc_lan_station_id);
631
632/**
633 * pdc_stable_read - Read data from Stable Storage.
634 * @staddr: Stable Storage address to access.
635 * @memaddr: The memory address where Stable Storage data shall be copied.
636 * @count: number of bytes to transfer. count is multiple of 4.
637 *
638 * This PDC call reads from the Stable Storage address supplied in staddr
639 * and copies count bytes to the memory address memaddr.
640 * The call will fail if staddr+count > PDC_STABLE size.
641 */
642int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
643{
644       int retval;
645	unsigned long flags;
646
647       spin_lock_irqsave(&pdc_lock, flags);
648       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
649               __pa(pdc_result), count);
650       convert_to_wide(pdc_result);
651       memcpy(memaddr, pdc_result, count);
652       spin_unlock_irqrestore(&pdc_lock, flags);
653
654       return retval;
655}
656EXPORT_SYMBOL(pdc_stable_read);
657
658/**
659 * pdc_stable_write - Write data to Stable Storage.
660 * @staddr: Stable Storage address to access.
661 * @memaddr: The memory address where Stable Storage data shall be read from.
662 * @count: number of bytes to transfer. count is multiple of 4.
663 *
664 * This PDC call reads count bytes from the supplied memaddr address,
665 * and copies count bytes to the Stable Storage address staddr.
666 * The call will fail if staddr+count > PDC_STABLE size.
667 */
668int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
669{
670       int retval;
671	unsigned long flags;
672
673       spin_lock_irqsave(&pdc_lock, flags);
674       memcpy(pdc_result, memaddr, count);
675       convert_to_wide(pdc_result);
676       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
677               __pa(pdc_result), count);
678       spin_unlock_irqrestore(&pdc_lock, flags);
679
680       return retval;
681}
682EXPORT_SYMBOL(pdc_stable_write);
683
684/**
685 * pdc_stable_get_size - Get Stable Storage size in bytes.
686 * @size: pointer where the size will be stored.
687 *
688 * This PDC call returns the number of bytes in the processor's Stable
689 * Storage, which is the number of contiguous bytes implemented in Stable
690 * Storage starting from staddr=0. size in an unsigned 64-bit integer
691 * which is a multiple of four.
692 */
693int pdc_stable_get_size(unsigned long *size)
694{
695       int retval;
696	unsigned long flags;
697
698       spin_lock_irqsave(&pdc_lock, flags);
699       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
700       *size = pdc_result[0];
701       spin_unlock_irqrestore(&pdc_lock, flags);
702
703       return retval;
704}
705EXPORT_SYMBOL(pdc_stable_get_size);
706
707/**
708 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
709 *
710 * This PDC call is meant to be used to check the integrity of the current
711 * contents of Stable Storage.
712 */
713int pdc_stable_verify_contents(void)
714{
715       int retval;
716	unsigned long flags;
717
718       spin_lock_irqsave(&pdc_lock, flags);
719       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
720       spin_unlock_irqrestore(&pdc_lock, flags);
721
722       return retval;
723}
724EXPORT_SYMBOL(pdc_stable_verify_contents);
725
726/**
727 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
728 * the validity indicator.
729 *
730 * This PDC call will erase all contents of Stable Storage. Use with care!
731 */
732int pdc_stable_initialize(void)
733{
734       int retval;
735	unsigned long flags;
736
737       spin_lock_irqsave(&pdc_lock, flags);
738       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
739       spin_unlock_irqrestore(&pdc_lock, flags);
740
741       return retval;
742}
743EXPORT_SYMBOL(pdc_stable_initialize);
744
745/**
746 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
747 * @hwpath: fully bc.mod style path to the device.
748 * @initiator: the array to return the result into
749 *
750 * Get the SCSI operational parameters from PDC.
751 * Needed since HPUX never used BIOS or symbios card NVRAM.
752 * Most ncr/sym cards won't have an entry and just use whatever
753 * capabilities of the card are (eg Ultra, LVD). But there are
754 * several cases where it's useful:
755 *    o set SCSI id for Multi-initiator clusters,
756 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
757 *    o bus width exported is less than what the interface chip supports.
758 */
759int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
760{
761	int retval;
762	unsigned long flags;
763
764	spin_lock_irqsave(&pdc_lock, flags);
765
766#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
767	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
768
769	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
770			      __pa(pdc_result), __pa(hwpath));
771	if (retval < PDC_OK)
772		goto out;
773
774	if (pdc_result[0] < 16) {
775		initiator->host_id = pdc_result[0];
776	} else {
777		initiator->host_id = -1;
778	}
779
780	/*
781	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
782	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
783	 */
784	switch (pdc_result[1]) {
785		case  1: initiator->factor = 50; break;
786		case  2: initiator->factor = 25; break;
787		case  5: initiator->factor = 12; break;
788		case 25: initiator->factor = 10; break;
789		case 20: initiator->factor = 12; break;
790		case 40: initiator->factor = 10; break;
791		default: initiator->factor = -1; break;
792	}
793
794	if (IS_SPROCKETS()) {
795		initiator->width = pdc_result[4];
796		initiator->mode = pdc_result[5];
797	} else {
798		initiator->width = -1;
799		initiator->mode = -1;
800	}
801
802 out:
803	spin_unlock_irqrestore(&pdc_lock, flags);
804
805	return (retval >= PDC_OK);
806}
807EXPORT_SYMBOL(pdc_get_initiator);
808
809
810/**
811 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
812 * @num_entries: The return value.
813 * @hpa: The HPA for the device.
814 *
815 * This PDC function returns the number of entries in the specified cell's
816 * interrupt table.
817 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
818 */
819int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
820{
821	int retval;
822	unsigned long flags;
823
824	spin_lock_irqsave(&pdc_lock, flags);
825	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
826			      __pa(pdc_result), hpa);
827	convert_to_wide(pdc_result);
828	*num_entries = pdc_result[0];
829	spin_unlock_irqrestore(&pdc_lock, flags);
830
831	return retval;
832}
833
834/**
835 * pdc_pci_irt - Get the PCI interrupt routing table.
836 * @num_entries: The number of entries in the table.
837 * @hpa: The Hard Physical Address of the device.
838 * @tbl:
839 *
840 * Get the PCI interrupt routing table for the device at the given HPA.
841 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
842 */
843int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
844{
845	int retval;
846	unsigned long flags;
847
848	BUG_ON((unsigned long)tbl & 0x7);
849
850	spin_lock_irqsave(&pdc_lock, flags);
851	pdc_result[0] = num_entries;
852	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
853			      __pa(pdc_result), hpa, __pa(tbl));
854	spin_unlock_irqrestore(&pdc_lock, flags);
855
856	return retval;
857}
858
859
860
861/**
862 * pdc_tod_read - Read the Time-Of-Day clock.
863 * @tod: The return buffer:
864 *
865 * Read the Time-Of-Day clock
866 */
867int pdc_tod_read(struct pdc_tod *tod)
868{
869        int retval;
870	unsigned long flags;
871
872        spin_lock_irqsave(&pdc_lock, flags);
873        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
874        convert_to_wide(pdc_result);
875        memcpy(tod, pdc_result, sizeof(*tod));
876        spin_unlock_irqrestore(&pdc_lock, flags);
877
878        return retval;
879}
880EXPORT_SYMBOL(pdc_tod_read);
881
882/**
883 * pdc_tod_set - Set the Time-Of-Day clock.
884 * @sec: The number of seconds since epoch.
885 * @usec: The number of micro seconds.
886 *
887 * Set the Time-Of-Day clock.
888 */
889int pdc_tod_set(unsigned long sec, unsigned long usec)
890{
891        int retval;
892	unsigned long flags;
893
894        spin_lock_irqsave(&pdc_lock, flags);
895        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
896        spin_unlock_irqrestore(&pdc_lock, flags);
897
898        return retval;
899}
900EXPORT_SYMBOL(pdc_tod_set);
901
902#ifdef CONFIG_64BIT
903int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
904		struct pdc_memory_table *tbl, unsigned long entries)
905{
906	int retval;
907	unsigned long flags;
908
909	spin_lock_irqsave(&pdc_lock, flags);
910	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
911	convert_to_wide(pdc_result);
912	memcpy(r_addr, pdc_result, sizeof(*r_addr));
913	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
914	spin_unlock_irqrestore(&pdc_lock, flags);
915
916	return retval;
917}
918#endif /* CONFIG_64BIT */
919
920int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
921{
922        int retval;
923	unsigned long flags;
924
925        spin_lock_irqsave(&pdc_lock, flags);
926        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
927                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
928        spin_unlock_irqrestore(&pdc_lock, flags);
929
930        return retval;
931}
932
933/*
934 * pdc_do_reset - Reset the system.
935 *
936 * Reset the system.
937 */
938int pdc_do_reset(void)
939{
940        int retval;
941	unsigned long flags;
942
943        spin_lock_irqsave(&pdc_lock, flags);
944        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
945        spin_unlock_irqrestore(&pdc_lock, flags);
946
947        return retval;
948}
949
950/*
951 * pdc_soft_power_info - Enable soft power switch.
952 * @power_reg: address of soft power register
953 *
954 * Return the absolute address of the soft power switch register
955 */
956int __init pdc_soft_power_info(unsigned long *power_reg)
957{
958	int retval;
959	unsigned long flags;
960
961	*power_reg = (unsigned long) (-1);
962
963	spin_lock_irqsave(&pdc_lock, flags);
964	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
965	if (retval == PDC_OK) {
966                convert_to_wide(pdc_result);
967                *power_reg = f_extend(pdc_result[0]);
968	}
969	spin_unlock_irqrestore(&pdc_lock, flags);
970
971	return retval;
972}
973
974/*
975 * pdc_soft_power_button - Control the soft power button behaviour
976 * @sw_control: 0 for hardware control, 1 for software control
977 *
978 *
979 * This PDC function places the soft power button under software or
980 * hardware control.
981 * Under software control the OS may control to when to allow to shut
982 * down the system. Under hardware control pressing the power button
983 * powers off the system immediately.
984 */
985int pdc_soft_power_button(int sw_control)
986{
987	int retval;
988	unsigned long flags;
989
990	spin_lock_irqsave(&pdc_lock, flags);
991	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
992	spin_unlock_irqrestore(&pdc_lock, flags);
993
994	return retval;
995}
996
997/*
998 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
999 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1000 * who knows what other platform firmware might do with this OS "hook".
1001 */
1002void pdc_io_reset(void)
1003{
1004	unsigned long flags;
1005
1006	spin_lock_irqsave(&pdc_lock, flags);
1007	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1008	spin_unlock_irqrestore(&pdc_lock, flags);
1009}
1010
1011/*
1012 * pdc_io_reset_devices - Hack to Stop USB controller
1013 *
1014 * If PDC used the usb controller, the usb controller
1015 * is still running and will crash the machines during iommu
1016 * setup, because of still running DMA. This PDC call
1017 * stops the USB controller.
1018 * Normally called after calling pdc_io_reset().
1019 */
1020void pdc_io_reset_devices(void)
1021{
1022	unsigned long flags;
1023
1024	spin_lock_irqsave(&pdc_lock, flags);
1025	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1026	spin_unlock_irqrestore(&pdc_lock, flags);
1027}
1028
1029
1030/**
1031 * pdc_iodc_putc - Console character print using IODC.
1032 * @c: the character to output.
1033 *
1034 * Note that only these special chars are architected for console IODC io:
1035 * BEL, BS, CR, and LF. Others are passed through.
1036 * Since the HP console requires CR+LF to perform a 'newline', we translate
1037 * "\n" to "\r\n".
1038 */
1039void pdc_iodc_putc(unsigned char c)
1040{
1041        static int posx;        /* for simple TAB-Simulation... */
1042        static int __attribute__((aligned(8)))   iodc_retbuf[32];
1043        static char __attribute__((aligned(64))) iodc_dbuf[4096];
1044        unsigned int n;
1045	unsigned long flags;
1046
1047        switch (c) {
1048        case '\n':
1049                iodc_dbuf[0] = '\r';
1050                iodc_dbuf[1] = '\n';
1051                n = 2;
1052                posx = 0;
1053                break;
1054        case '\t':
1055                pdc_iodc_putc(' ');
1056                while (posx & 7)        /* expand TAB */
1057                        pdc_iodc_putc(' ');
1058                return;         /* return since IODC can't handle this */
1059        case '\b':
1060                posx-=2;                /* BS */
1061        default:
1062                iodc_dbuf[0] = c;
1063                n = 1;
1064                posx++;
1065                break;
1066        }
1067
1068        spin_lock_irqsave(&pdc_lock, flags);
1069        real32_call(PAGE0->mem_cons.iodc_io,
1070                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1071                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1072                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1073        spin_unlock_irqrestore(&pdc_lock, flags);
1074}
1075
1076/**
1077 * pdc_iodc_outc - Console character print using IODC (without conversions).
1078 * @c: the character to output.
1079 *
1080 * Write the character directly to the IODC console.
1081 */
1082void pdc_iodc_outc(unsigned char c)
1083{
1084	unsigned int n;
1085	unsigned long flags;
1086
1087	/* fill buffer with one caracter and print it */
1088        static int __attribute__((aligned(8)))   iodc_retbuf[32];
1089        static char __attribute__((aligned(64))) iodc_dbuf[4096];
1090
1091	n = 1;
1092	iodc_dbuf[0] = c;
1093
1094	spin_lock_irqsave(&pdc_lock, flags);
1095	real32_call(PAGE0->mem_cons.iodc_io,
1096		    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1097		    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1098		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), n, 0);
1099	spin_unlock_irqrestore(&pdc_lock, flags);
1100}
1101
1102/**
1103 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1104 *
1105 * Read a character (non-blocking) from the PDC console, returns -1 if
1106 * key is not present.
1107 */
1108int pdc_iodc_getc(void)
1109{
1110	unsigned long flags;
1111        static int __attribute__((aligned(8)))   iodc_retbuf[32];
1112        static char __attribute__((aligned(64))) iodc_dbuf[4096];
1113	int ch;
1114	int status;
1115
1116	/* Bail if no console input device. */
1117	if (!PAGE0->mem_kbd.iodc_io)
1118		return 0;
1119
1120	/* wait for a keyboard (rs232)-input */
1121	spin_lock_irqsave(&pdc_lock, flags);
1122	real32_call(PAGE0->mem_kbd.iodc_io,
1123		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1124		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1125		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1126
1127	ch = *iodc_dbuf;
1128	status = *iodc_retbuf;
1129	spin_unlock_irqrestore(&pdc_lock, flags);
1130
1131	if (status == 0)
1132	    return -1;
1133
1134	return ch;
1135}
1136
1137int pdc_sti_call(unsigned long func, unsigned long flags,
1138                 unsigned long inptr, unsigned long outputr,
1139                 unsigned long glob_cfg)
1140{
1141        int retval;
1142	unsigned long irqflags;
1143
1144        spin_lock_irqsave(&pdc_lock, irqflags);
1145        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1146        spin_unlock_irqrestore(&pdc_lock, irqflags);
1147
1148        return retval;
1149}
1150EXPORT_SYMBOL(pdc_sti_call);
1151
1152#ifdef CONFIG_64BIT
1153/**
1154 * pdc_pat_cell_get_number - Returns the cell number.
1155 * @cell_info: The return buffer.
1156 *
1157 * This PDC call returns the cell number of the cell from which the call
1158 * is made.
1159 */
1160int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1161{
1162	int retval;
1163	unsigned long flags;
1164
1165	spin_lock_irqsave(&pdc_lock, flags);
1166	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1167	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1168	spin_unlock_irqrestore(&pdc_lock, flags);
1169
1170	return retval;
1171}
1172
1173/**
1174 * pdc_pat_cell_module - Retrieve the cell's module information.
1175 * @actcnt: The number of bytes written to mem_addr.
1176 * @ploc: The physical location.
1177 * @mod: The module index.
1178 * @view_type: The view of the address type.
1179 * @mem_addr: The return buffer.
1180 *
1181 * This PDC call returns information about each module attached to the cell
1182 * at the specified location.
1183 */
1184int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1185			unsigned long view_type, void *mem_addr)
1186{
1187	int retval;
1188	unsigned long flags;
1189	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1190
1191	spin_lock_irqsave(&pdc_lock, flags);
1192	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1193			      ploc, mod, view_type, __pa(&result));
1194	if(!retval) {
1195		*actcnt = pdc_result[0];
1196		memcpy(mem_addr, &result, *actcnt);
1197	}
1198	spin_unlock_irqrestore(&pdc_lock, flags);
1199
1200	return retval;
1201}
1202
1203/**
1204 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1205 * @cpu_info: The return buffer.
1206 * @hpa: The Hard Physical Address of the CPU.
1207 *
1208 * Retrieve the cpu number for the cpu at the specified HPA.
1209 */
1210int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1211{
1212	int retval;
1213	unsigned long flags;
1214
1215	spin_lock_irqsave(&pdc_lock, flags);
1216	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1217			      __pa(&pdc_result), hpa);
1218	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1219	spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221	return retval;
1222}
1223
1224/**
1225 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1226 * @num_entries: The return value.
1227 * @cell_num: The target cell.
1228 *
1229 * This PDC function returns the number of entries in the specified cell's
1230 * interrupt table.
1231 */
1232int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1233{
1234	int retval;
1235	unsigned long flags;
1236
1237	spin_lock_irqsave(&pdc_lock, flags);
1238	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1239			      __pa(pdc_result), cell_num);
1240	*num_entries = pdc_result[0];
1241	spin_unlock_irqrestore(&pdc_lock, flags);
1242
1243	return retval;
1244}
1245
1246/**
1247 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1248 * @r_addr: The return buffer.
1249 * @cell_num: The target cell.
1250 *
1251 * This PDC function returns the actual interrupt table for the specified cell.
1252 */
1253int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1254{
1255	int retval;
1256	unsigned long flags;
1257
1258	spin_lock_irqsave(&pdc_lock, flags);
1259	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1260			      __pa(r_addr), cell_num);
1261	spin_unlock_irqrestore(&pdc_lock, flags);
1262
1263	return retval;
1264}
1265
1266/**
1267 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1268 * @actlen: The return buffer.
1269 * @mem_addr: Pointer to the memory buffer.
1270 * @count: The number of bytes to read from the buffer.
1271 * @offset: The offset with respect to the beginning of the buffer.
1272 *
1273 */
1274int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1275			    unsigned long count, unsigned long offset)
1276{
1277	int retval;
1278	unsigned long flags;
1279
1280	spin_lock_irqsave(&pdc_lock, flags);
1281	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1282			      __pa(pdc_result2), count, offset);
1283	*actual_len = pdc_result[0];
1284	memcpy(mem_addr, pdc_result2, *actual_len);
1285	spin_unlock_irqrestore(&pdc_lock, flags);
1286
1287	return retval;
1288}
1289
1290/**
1291 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1292 * @pci_addr: PCI configuration space address for which the read request is being made.
1293 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1294 * @mem_addr: Pointer to return memory buffer.
1295 *
1296 */
1297int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1298{
1299	int retval;
1300	unsigned long flags;
1301
1302	spin_lock_irqsave(&pdc_lock, flags);
1303	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1304					__pa(pdc_result), pci_addr, pci_size);
1305	switch(pci_size) {
1306		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1307		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1308		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1309	}
1310	spin_unlock_irqrestore(&pdc_lock, flags);
1311
1312	return retval;
1313}
1314
1315/**
1316 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1317 * @pci_addr: PCI configuration space address for which the write  request is being made.
1318 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1319 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1320 *         written to PCI Config space.
1321 *
1322 */
1323int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1324{
1325	int retval;
1326	unsigned long flags;
1327
1328	spin_lock_irqsave(&pdc_lock, flags);
1329	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1330				pci_addr, pci_size, val);
1331	spin_unlock_irqrestore(&pdc_lock, flags);
1332
1333	return retval;
1334}
1335#endif /* CONFIG_64BIT */
1336
1337
1338/***************** 32-bit real-mode calls ***********/
1339/* The struct below is used
1340 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1341 * real32_call_asm() then uses this stack in narrow real mode
1342 */
1343
1344struct narrow_stack {
1345	/* use int, not long which is 64 bits */
1346	unsigned int arg13;
1347	unsigned int arg12;
1348	unsigned int arg11;
1349	unsigned int arg10;
1350	unsigned int arg9;
1351	unsigned int arg8;
1352	unsigned int arg7;
1353	unsigned int arg6;
1354	unsigned int arg5;
1355	unsigned int arg4;
1356	unsigned int arg3;
1357	unsigned int arg2;
1358	unsigned int arg1;
1359	unsigned int arg0;
1360	unsigned int frame_marker[8];
1361	unsigned int sp;
1362	/* in reality, there's nearly 8k of stack after this */
1363};
1364
1365long real32_call(unsigned long fn, ...)
1366{
1367	va_list args;
1368	extern struct narrow_stack real_stack;
1369	extern unsigned long real32_call_asm(unsigned int *,
1370					     unsigned int *,
1371					     unsigned int);
1372
1373	va_start(args, fn);
1374	real_stack.arg0 = va_arg(args, unsigned int);
1375	real_stack.arg1 = va_arg(args, unsigned int);
1376	real_stack.arg2 = va_arg(args, unsigned int);
1377	real_stack.arg3 = va_arg(args, unsigned int);
1378	real_stack.arg4 = va_arg(args, unsigned int);
1379	real_stack.arg5 = va_arg(args, unsigned int);
1380	real_stack.arg6 = va_arg(args, unsigned int);
1381	real_stack.arg7 = va_arg(args, unsigned int);
1382	real_stack.arg8 = va_arg(args, unsigned int);
1383	real_stack.arg9 = va_arg(args, unsigned int);
1384	real_stack.arg10 = va_arg(args, unsigned int);
1385	real_stack.arg11 = va_arg(args, unsigned int);
1386	real_stack.arg12 = va_arg(args, unsigned int);
1387	real_stack.arg13 = va_arg(args, unsigned int);
1388	va_end(args);
1389
1390	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1391}
1392
1393#ifdef CONFIG_64BIT
1394/***************** 64-bit real-mode calls ***********/
1395
1396struct wide_stack {
1397	unsigned long arg0;
1398	unsigned long arg1;
1399	unsigned long arg2;
1400	unsigned long arg3;
1401	unsigned long arg4;
1402	unsigned long arg5;
1403	unsigned long arg6;
1404	unsigned long arg7;
1405	unsigned long arg8;
1406	unsigned long arg9;
1407	unsigned long arg10;
1408	unsigned long arg11;
1409	unsigned long arg12;
1410	unsigned long arg13;
1411	unsigned long frame_marker[2];	/* rp, previous sp */
1412	unsigned long sp;
1413	/* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real64_call(unsigned long fn, ...)
1417{
1418	va_list args;
1419	extern struct wide_stack real64_stack;
1420	extern unsigned long real64_call_asm(unsigned long *,
1421					     unsigned long *,
1422					     unsigned long);
1423
1424	va_start(args, fn);
1425	real64_stack.arg0 = va_arg(args, unsigned long);
1426	real64_stack.arg1 = va_arg(args, unsigned long);
1427	real64_stack.arg2 = va_arg(args, unsigned long);
1428	real64_stack.arg3 = va_arg(args, unsigned long);
1429	real64_stack.arg4 = va_arg(args, unsigned long);
1430	real64_stack.arg5 = va_arg(args, unsigned long);
1431	real64_stack.arg6 = va_arg(args, unsigned long);
1432	real64_stack.arg7 = va_arg(args, unsigned long);
1433	real64_stack.arg8 = va_arg(args, unsigned long);
1434	real64_stack.arg9 = va_arg(args, unsigned long);
1435	real64_stack.arg10 = va_arg(args, unsigned long);
1436	real64_stack.arg11 = va_arg(args, unsigned long);
1437	real64_stack.arg12 = va_arg(args, unsigned long);
1438	real64_stack.arg13 = va_arg(args, unsigned long);
1439	va_end(args);
1440
1441	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1442}
1443
1444#endif /* CONFIG_64BIT */
1445