1/* Optimized version of the standard memset() function.
2
3   Copyright (c) 2002 Hewlett-Packard Co/CERN
4	Sverre Jarp <Sverre.Jarp@cern.ch>
5
6   Return: dest
7
8   Inputs:
9        in0:    dest
10        in1:    value
11        in2:    count
12
13   The algorithm is fairly straightforward: set byte by byte until we
14   we get to a 16B-aligned address, then loop on 128 B chunks using an
15   early store as prefetching, then loop on 32B chucks, then clear remaining
16   words, finally clear remaining bytes.
17   Since a stf.spill f0 can store 16B in one go, we use this instruction
18   to get peak speed when value = 0.  */
19
20#include <asm/asmmacro.h>
21#undef ret
22
23#define dest		in0
24#define value		in1
25#define	cnt		in2
26
27#define tmp		r31
28#define save_lc		r30
29#define ptr0		r29
30#define ptr1		r28
31#define ptr2		r27
32#define ptr3		r26
33#define ptr9 		r24
34#define	loopcnt		r23
35#define linecnt		r22
36#define bytecnt		r21
37
38#define fvalue		f6
39
40// This routine uses only scratch predicate registers (p6 - p15)
41#define p_scr		p6			// default register for same-cycle branches
42#define p_nz		p7
43#define p_zr		p8
44#define p_unalgn	p9
45#define p_y		p11
46#define p_n		p12
47#define p_yy		p13
48#define p_nn		p14
49
50#define MIN1		15
51#define MIN1P1HALF	8
52#define LINE_SIZE	128
53#define LSIZE_SH        7			// shift amount
54#define PREF_AHEAD	8
55
56GLOBAL_ENTRY(memset)
57{ .mmi
58	.prologue
59	alloc	tmp = ar.pfs, 3, 0, 0, 0
60	lfetch.nt1 [dest]			//
61	.save   ar.lc, save_lc
62	mov.i	save_lc = ar.lc
63	.body
64} { .mmi
65	mov	ret0 = dest			// return value
66	cmp.ne	p_nz, p_zr = value, r0		// use stf.spill if value is zero
67	cmp.eq	p_scr, p0 = cnt, r0
68;; }
69{ .mmi
70	and	ptr2 = -(MIN1+1), dest		// aligned address
71	and	tmp = MIN1, dest		// prepare to check for correct alignment
72	tbit.nz p_y, p_n = dest, 0		// Do we have an odd address? (M_B_U)
73} { .mib
74	mov	ptr1 = dest
75	mux1	value = value, @brcst		// create 8 identical bytes in word
76(p_scr)	br.ret.dpnt.many rp			// return immediately if count = 0
77;; }
78{ .mib
79	cmp.ne	p_unalgn, p0 = tmp, r0		//
80} { .mib
81	sub	bytecnt = (MIN1+1), tmp		// NB: # of bytes to move is 1 higher than loopcnt
82	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
83(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
84;; }
85{ .mmi
86(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
87(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
88(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
89;; }
90{ .mib
91(p_y)	add	cnt = -8, cnt			//
92(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
93} { .mib
94(p_y)	st8	[ptr2] = value,-4		//
95(p_n)	add	ptr2 = 4, ptr2			//
96;; }
97{ .mib
98(p_yy)	add	cnt = -4, cnt			//
99(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
100} { .mib
101(p_yy)	st4	[ptr2] = value,-2		//
102(p_nn)	add	ptr2 = 2, ptr2			//
103;; }
104{ .mmi
105	mov	tmp = LINE_SIZE+1		// for compare
106(p_y)	add	cnt = -2, cnt			//
107(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
108} { .mmi
109	setf.sig fvalue=value			// transfer value to FLP side
110(p_y)	st2	[ptr2] = value,-1		//
111(p_n)	add	ptr2 = 1, ptr2			//
112;; }
113
114{ .mmi
115(p_yy)	st1	[ptr2] = value 			//
116  	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
117} { .mbb
118(p_yy)	add	cnt = -1, cnt			//
119(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
120;; }
121
122{ .mib
123	nop.m 0
124	shr.u	linecnt = cnt, LSIZE_SH
125(p_zr)	br.cond.dptk.many .l1b			// Jump to use stf.spill
126;; }
127
128	TEXT_ALIGN(32) // --------------------- //  L1A: store ahead into cache lines; fill later
129{ .mmi
130	and	tmp = -(LINE_SIZE), cnt		// compute end of range
131	mov	ptr9 = ptr1			// used for prefetching
132	and	cnt = (LINE_SIZE-1), cnt	// remainder
133} { .mmi
134	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
135	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
136;; }
137{ .mmi
138(p_scr)	add	loopcnt = -1, linecnt		//
139	add	ptr2 = 8, ptr1			// start of stores (beyond prefetch stores)
140	add	ptr1 = tmp, ptr1		// first address beyond total range
141;; }
142{ .mmi
143	add	tmp = -1, linecnt		// next loop count
144	mov.i	ar.lc = loopcnt			//
145;; }
146.pref_l1a:
147{ .mib
148	stf8 [ptr9] = fvalue, 128		// Do stores one cache line apart
149	nop.i	0
150	br.cloop.dptk.few .pref_l1a
151;; }
152{ .mmi
153	add	ptr0 = 16, ptr2			// Two stores in parallel
154	mov.i	ar.lc = tmp			//
155;; }
156.l1ax:
157 { .mmi
158	stf8 [ptr2] = fvalue, 8
159	stf8 [ptr0] = fvalue, 8
160 ;; }
161 { .mmi
162	stf8 [ptr2] = fvalue, 24
163	stf8 [ptr0] = fvalue, 24
164 ;; }
165 { .mmi
166	stf8 [ptr2] = fvalue, 8
167	stf8 [ptr0] = fvalue, 8
168 ;; }
169 { .mmi
170	stf8 [ptr2] = fvalue, 24
171	stf8 [ptr0] = fvalue, 24
172 ;; }
173 { .mmi
174	stf8 [ptr2] = fvalue, 8
175	stf8 [ptr0] = fvalue, 8
176 ;; }
177 { .mmi
178	stf8 [ptr2] = fvalue, 24
179	stf8 [ptr0] = fvalue, 24
180 ;; }
181 { .mmi
182	stf8 [ptr2] = fvalue, 8
183	stf8 [ptr0] = fvalue, 32
184 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
185 ;; }
186{ .mmb
187	stf8 [ptr2] = fvalue, 24
188(p_scr)	stf8 [ptr9] = fvalue, 128
189	br.cloop.dptk.few .l1ax
190;; }
191{ .mbb
192	cmp.le  p_scr, p0 = 8, cnt		// just a few bytes left ?
193(p_scr) br.cond.dpnt.many  .fraction_of_line	// Branch no. 2
194	br.cond.dpnt.many  .move_bytes_from_alignment	// Branch no. 3
195;; }
196
197	TEXT_ALIGN(32)
198.l1b:	// ------------------------------------ //  L1B: store ahead into cache lines; fill later
199{ .mmi
200	and	tmp = -(LINE_SIZE), cnt		// compute end of range
201	mov	ptr9 = ptr1			// used for prefetching
202	and	cnt = (LINE_SIZE-1), cnt	// remainder
203} { .mmi
204	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
205	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
206;; }
207{ .mmi
208(p_scr)	add	loopcnt = -1, linecnt
209	add	ptr2 = 16, ptr1			// start of stores (beyond prefetch stores)
210	add	ptr1 = tmp, ptr1		// first address beyond total range
211;; }
212{ .mmi
213	add	tmp = -1, linecnt		// next loop count
214	mov.i	ar.lc = loopcnt
215;; }
216.pref_l1b:
217{ .mib
218	stf.spill [ptr9] = f0, 128		// Do stores one cache line apart
219	nop.i   0
220	br.cloop.dptk.few .pref_l1b
221;; }
222{ .mmi
223	add	ptr0 = 16, ptr2			// Two stores in parallel
224	mov.i	ar.lc = tmp
225;; }
226.l1bx:
227 { .mmi
228	stf.spill [ptr2] = f0, 32
229	stf.spill [ptr0] = f0, 32
230 ;; }
231 { .mmi
232	stf.spill [ptr2] = f0, 32
233	stf.spill [ptr0] = f0, 32
234 ;; }
235 { .mmi
236	stf.spill [ptr2] = f0, 32
237	stf.spill [ptr0] = f0, 64
238 	cmp.lt	p_scr, p0 = ptr9, ptr1		// do we need more prefetching?
239 ;; }
240{ .mmb
241	stf.spill [ptr2] = f0, 32
242(p_scr)	stf.spill [ptr9] = f0, 128
243	br.cloop.dptk.few .l1bx
244;; }
245{ .mib
246	cmp.gt  p_scr, p0 = 8, cnt		// just a few bytes left ?
247(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment	//
248;; }
249
250.fraction_of_line:
251{ .mib
252	add	ptr2 = 16, ptr1
253	shr.u	loopcnt = cnt, 5   		// loopcnt = cnt / 32
254;; }
255{ .mib
256	cmp.eq	p_scr, p0 = loopcnt, r0
257	add	loopcnt = -1, loopcnt
258(p_scr)	br.cond.dpnt.many .store_words
259;; }
260{ .mib
261	and	cnt = 0x1f, cnt			// compute the remaining cnt
262	mov.i   ar.lc = loopcnt
263;; }
264	TEXT_ALIGN(32)
265.l2:	// ------------------------------------ //  L2A:  store 32B in 2 cycles
266{ .mmb
267	stf8	[ptr1] = fvalue, 8
268	stf8	[ptr2] = fvalue, 8
269;; } { .mmb
270	stf8	[ptr1] = fvalue, 24
271	stf8	[ptr2] = fvalue, 24
272	br.cloop.dptk.many .l2
273;; }
274.store_words:
275{ .mib
276	cmp.gt	p_scr, p0 = 8, cnt		// just a few bytes left ?
277(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
278;; }
279
280{ .mmi
281	stf8	[ptr1] = fvalue, 8		// store
282	cmp.le	p_y, p_n = 16, cnt
283	add	cnt = -8, cnt			// subtract
284;; }
285{ .mmi
286(p_y)	stf8	[ptr1] = fvalue, 8		// store
287(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt
288(p_y)	add	cnt = -8, cnt			// subtract
289;; }
290{ .mmi						// store
291(p_yy)	stf8	[ptr1] = fvalue, 8
292(p_yy)	add	cnt = -8, cnt			// subtract
293;; }
294
295.move_bytes_from_alignment:
296{ .mib
297	cmp.eq	p_scr, p0 = cnt, r0
298	tbit.nz.unc p_y, p0 = cnt, 2		// should we terminate with a st4 ?
299(p_scr)	br.cond.dpnt.few .restore_and_exit
300;; }
301{ .mib
302(p_y)	st4	[ptr1] = value,4
303	tbit.nz.unc p_yy, p0 = cnt, 1		// should we terminate with a st2 ?
304;; }
305{ .mib
306(p_yy)	st2	[ptr1] = value,2
307	tbit.nz.unc p_y, p0 = cnt, 0		// should we terminate with a st1 ?
308;; }
309
310{ .mib
311(p_y)	st1	[ptr1] = value
312;; }
313.restore_and_exit:
314{ .mib
315	nop.m	0
316	mov.i	ar.lc = save_lc
317	br.ret.sptk.many rp
318;; }
319
320.move_bytes_unaligned:
321{ .mmi
322       .pred.rel "mutex",p_y, p_n
323       .pred.rel "mutex",p_yy, p_nn
324(p_n)	cmp.le  p_yy, p_nn = 4, cnt
325(p_y)	cmp.le  p_yy, p_nn = 5, cnt
326(p_n)	add	ptr2 = 2, ptr1
327} { .mmi
328(p_y)	add	ptr2 = 3, ptr1
329(p_y)	st1	[ptr1] = value, 1		// fill 1 (odd-aligned) byte [15, 14 (or less) left]
330(p_y)	add	cnt = -1, cnt
331;; }
332{ .mmi
333(p_yy)	cmp.le.unc p_y, p0 = 8, cnt
334	add	ptr3 = ptr1, cnt		// prepare last store
335	mov.i	ar.lc = save_lc
336} { .mmi
337(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
338(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [11, 10 (o less) left]
339(p_yy)	add	cnt = -4, cnt
340;; }
341{ .mmi
342(p_y)	cmp.le.unc p_yy, p0 = 8, cnt
343	add	ptr3 = -1, ptr3			// last store
344	tbit.nz p_scr, p0 = cnt, 1		// will there be a st2 at the end ?
345} { .mmi
346(p_y)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
347(p_y)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [7, 6 (or less) left]
348(p_y)	add	cnt = -4, cnt
349;; }
350{ .mmi
351(p_yy)	st2	[ptr1] = value, 4		// fill 2 (aligned) bytes
352(p_yy)	st2	[ptr2] = value, 4		// fill 2 (aligned) bytes [3, 2 (or less) left]
353	tbit.nz p_y, p0 = cnt, 0		// will there be a st1 at the end ?
354} { .mmi
355(p_yy)	add	cnt = -4, cnt
356;; }
357{ .mmb
358(p_scr)	st2	[ptr1] = value			// fill 2 (aligned) bytes
359(p_y)	st1	[ptr3] = value			// fill last byte (using ptr3)
360	br.ret.sptk.many rp
361}
362END(memset)
363