1/*
2 * Architecture-specific setup.
3 *
4 * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co
5 *	David Mosberger-Tang <davidm@hpl.hp.com>
6 *	Stephane Eranian <eranian@hpl.hp.com>
7 * Copyright (C) 2000, 2004 Intel Corp
8 * 	Rohit Seth <rohit.seth@intel.com>
9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
10 * 	Gordon Jin <gordon.jin@intel.com>
11 * Copyright (C) 1999 VA Linux Systems
12 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
13 *
14 * 12/26/04 S.Siddha, G.Jin, R.Seth
15 *			Add multi-threading and multi-core detection
16 * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo().
17 * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map
18 * 03/31/00 R.Seth	cpu_initialized and current->processor fixes
19 * 02/04/00 D.Mosberger	some more get_cpuinfo fixes...
20 * 02/01/00 R.Seth	fixed get_cpuinfo for SMP
21 * 01/07/99 S.Eranian	added the support for command line argument
22 * 06/24/99 W.Drummond	added boot_cpu_data.
23 * 05/28/05 Z. Menyhart	Dynamic stride size for "flush_icache_range()"
24 */
25#include <linux/module.h>
26#include <linux/init.h>
27
28#include <linux/acpi.h>
29#include <linux/bootmem.h>
30#include <linux/console.h>
31#include <linux/delay.h>
32#include <linux/kernel.h>
33#include <linux/reboot.h>
34#include <linux/sched.h>
35#include <linux/seq_file.h>
36#include <linux/string.h>
37#include <linux/threads.h>
38#include <linux/screen_info.h>
39#include <linux/dmi.h>
40#include <linux/serial.h>
41#include <linux/serial_core.h>
42#include <linux/efi.h>
43#include <linux/initrd.h>
44#include <linux/pm.h>
45#include <linux/cpufreq.h>
46#include <linux/kexec.h>
47#include <linux/crash_dump.h>
48
49#include <asm/ia32.h>
50#include <asm/machvec.h>
51#include <asm/mca.h>
52#include <asm/meminit.h>
53#include <asm/page.h>
54#include <asm/patch.h>
55#include <asm/pgtable.h>
56#include <asm/processor.h>
57#include <asm/sal.h>
58#include <asm/sections.h>
59#include <asm/setup.h>
60#include <asm/smp.h>
61#include <asm/system.h>
62#include <asm/unistd.h>
63#include <asm/system.h>
64
65#if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE)
66# error "struct cpuinfo_ia64 too big!"
67#endif
68
69#ifdef CONFIG_SMP
70unsigned long __per_cpu_offset[NR_CPUS];
71EXPORT_SYMBOL(__per_cpu_offset);
72#endif
73
74extern void ia64_setup_printk_clock(void);
75
76DEFINE_PER_CPU(struct cpuinfo_ia64, cpu_info);
77DEFINE_PER_CPU(unsigned long, local_per_cpu_offset);
78unsigned long ia64_cycles_per_usec;
79struct ia64_boot_param *ia64_boot_param;
80struct screen_info screen_info;
81unsigned long vga_console_iobase;
82unsigned long vga_console_membase;
83
84static struct resource data_resource = {
85	.name	= "Kernel data",
86	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
87};
88
89static struct resource code_resource = {
90	.name	= "Kernel code",
91	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
92};
93extern char _text[], _end[], _etext[];
94
95unsigned long ia64_max_cacheline_size;
96
97int dma_get_cache_alignment(void)
98{
99        return ia64_max_cacheline_size;
100}
101EXPORT_SYMBOL(dma_get_cache_alignment);
102
103unsigned long ia64_iobase;	/* virtual address for I/O accesses */
104EXPORT_SYMBOL(ia64_iobase);
105struct io_space io_space[MAX_IO_SPACES];
106EXPORT_SYMBOL(io_space);
107unsigned int num_io_spaces;
108
109/*
110 * "flush_icache_range()" needs to know what processor dependent stride size to use
111 * when it makes i-cache(s) coherent with d-caches.
112 */
113#define	I_CACHE_STRIDE_SHIFT	5	/* Safest way to go: 32 bytes by 32 bytes */
114unsigned long ia64_i_cache_stride_shift = ~0;
115
116/*
117 * The merge_mask variable needs to be set to (max(iommu_page_size(iommu)) - 1).  This
118 * mask specifies a mask of address bits that must be 0 in order for two buffers to be
119 * mergeable by the I/O MMU (i.e., the end address of the first buffer and the start
120 * address of the second buffer must be aligned to (merge_mask+1) in order to be
121 * mergeable).  By default, we assume there is no I/O MMU which can merge physically
122 * discontiguous buffers, so we set the merge_mask to ~0UL, which corresponds to a iommu
123 * page-size of 2^64.
124 */
125unsigned long ia64_max_iommu_merge_mask = ~0UL;
126EXPORT_SYMBOL(ia64_max_iommu_merge_mask);
127
128/*
129 * We use a special marker for the end of memory and it uses the extra (+1) slot
130 */
131struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata;
132int num_rsvd_regions __initdata;
133
134
135/*
136 * Filter incoming memory segments based on the primitive map created from the boot
137 * parameters. Segments contained in the map are removed from the memory ranges. A
138 * caller-specified function is called with the memory ranges that remain after filtering.
139 * This routine does not assume the incoming segments are sorted.
140 */
141int __init
142filter_rsvd_memory (unsigned long start, unsigned long end, void *arg)
143{
144	unsigned long range_start, range_end, prev_start;
145	void (*func)(unsigned long, unsigned long, int);
146	int i;
147
148#if IGNORE_PFN0
149	if (start == PAGE_OFFSET) {
150		printk(KERN_WARNING "warning: skipping physical page 0\n");
151		start += PAGE_SIZE;
152		if (start >= end) return 0;
153	}
154#endif
155	/*
156	 * lowest possible address(walker uses virtual)
157	 */
158	prev_start = PAGE_OFFSET;
159	func = arg;
160
161	for (i = 0; i < num_rsvd_regions; ++i) {
162		range_start = max(start, prev_start);
163		range_end   = min(end, rsvd_region[i].start);
164
165		if (range_start < range_end)
166			call_pernode_memory(__pa(range_start), range_end - range_start, func);
167
168		/* nothing more available in this segment */
169		if (range_end == end) return 0;
170
171		prev_start = rsvd_region[i].end;
172	}
173	/* end of memory marker allows full processing inside loop body */
174	return 0;
175}
176
177static void __init
178sort_regions (struct rsvd_region *rsvd_region, int max)
179{
180	int j;
181
182	/* simple bubble sorting */
183	while (max--) {
184		for (j = 0; j < max; ++j) {
185			if (rsvd_region[j].start > rsvd_region[j+1].start) {
186				struct rsvd_region tmp;
187				tmp = rsvd_region[j];
188				rsvd_region[j] = rsvd_region[j + 1];
189				rsvd_region[j + 1] = tmp;
190			}
191		}
192	}
193}
194
195/*
196 * Request address space for all standard resources
197 */
198static int __init register_memory(void)
199{
200	code_resource.start = ia64_tpa(_text);
201	code_resource.end   = ia64_tpa(_etext) - 1;
202	data_resource.start = ia64_tpa(_etext);
203	data_resource.end   = ia64_tpa(_end) - 1;
204	efi_initialize_iomem_resources(&code_resource, &data_resource);
205
206	return 0;
207}
208
209__initcall(register_memory);
210
211/**
212 * reserve_memory - setup reserved memory areas
213 *
214 * Setup the reserved memory areas set aside for the boot parameters,
215 * initrd, etc.  There are currently %IA64_MAX_RSVD_REGIONS defined,
216 * see include/asm-ia64/meminit.h if you need to define more.
217 */
218void __init
219reserve_memory (void)
220{
221	int n = 0;
222
223	/*
224	 * none of the entries in this table overlap
225	 */
226	rsvd_region[n].start = (unsigned long) ia64_boot_param;
227	rsvd_region[n].end   = rsvd_region[n].start + sizeof(*ia64_boot_param);
228	n++;
229
230	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap);
231	rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->efi_memmap_size;
232	n++;
233
234	rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line);
235	rsvd_region[n].end   = (rsvd_region[n].start
236				+ strlen(__va(ia64_boot_param->command_line)) + 1);
237	n++;
238
239	rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START);
240	rsvd_region[n].end   = (unsigned long) ia64_imva(_end);
241	n++;
242
243#ifdef CONFIG_BLK_DEV_INITRD
244	if (ia64_boot_param->initrd_start) {
245		rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start);
246		rsvd_region[n].end   = rsvd_region[n].start + ia64_boot_param->initrd_size;
247		n++;
248	}
249#endif
250
251#ifdef CONFIG_PROC_VMCORE
252	if (reserve_elfcorehdr(&rsvd_region[n].start,
253			       &rsvd_region[n].end) == 0)
254		n++;
255#endif
256
257	efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end);
258	n++;
259
260#ifdef CONFIG_KEXEC
261	/* crashkernel=size@offset specifies the size to reserve for a crash
262	 * kernel. If offset is 0, then it is determined automatically.
263	 * By reserving this memory we guarantee that linux never set's it
264	 * up as a DMA target.Useful for holding code to do something
265	 * appropriate after a kernel panic.
266	 */
267	{
268		char *from = strstr(boot_command_line, "crashkernel=");
269		unsigned long base, size;
270		if (from) {
271			size = memparse(from + 12, &from);
272			if (*from == '@')
273				base = memparse(from+1, &from);
274			else
275				base = 0;
276			if (size) {
277				if (!base) {
278					sort_regions(rsvd_region, n);
279					base = kdump_find_rsvd_region(size,
280							      	rsvd_region, n);
281					}
282				if (base != ~0UL) {
283					rsvd_region[n].start =
284						(unsigned long)__va(base);
285					rsvd_region[n].end =
286						(unsigned long)__va(base + size);
287					n++;
288					crashk_res.start = base;
289					crashk_res.end = base + size - 1;
290				}
291			}
292		}
293		efi_memmap_res.start = ia64_boot_param->efi_memmap;
294                efi_memmap_res.end = efi_memmap_res.start +
295                        ia64_boot_param->efi_memmap_size;
296                boot_param_res.start = __pa(ia64_boot_param);
297                boot_param_res.end = boot_param_res.start +
298                        sizeof(*ia64_boot_param);
299	}
300#endif
301	/* end of memory marker */
302	rsvd_region[n].start = ~0UL;
303	rsvd_region[n].end   = ~0UL;
304	n++;
305
306	num_rsvd_regions = n;
307	BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n);
308
309	sort_regions(rsvd_region, num_rsvd_regions);
310}
311
312
313/**
314 * find_initrd - get initrd parameters from the boot parameter structure
315 *
316 * Grab the initrd start and end from the boot parameter struct given us by
317 * the boot loader.
318 */
319void __init
320find_initrd (void)
321{
322#ifdef CONFIG_BLK_DEV_INITRD
323	if (ia64_boot_param->initrd_start) {
324		initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start);
325		initrd_end   = initrd_start+ia64_boot_param->initrd_size;
326
327		printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
328		       initrd_start, ia64_boot_param->initrd_size);
329	}
330#endif
331}
332
333static void __init
334io_port_init (void)
335{
336	unsigned long phys_iobase;
337
338	/*
339	 * Set `iobase' based on the EFI memory map or, failing that, the
340	 * value firmware left in ar.k0.
341	 *
342	 * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute
343	 * the port's virtual address, so ia32_load_state() loads it with a
344	 * user virtual address.  But in ia64 mode, glibc uses the
345	 * *physical* address in ar.k0 to mmap the appropriate area from
346	 * /dev/mem, and the inX()/outX() interfaces use MMIO.  In both
347	 * cases, user-mode can only use the legacy 0-64K I/O port space.
348	 *
349	 * ar.k0 is not involved in kernel I/O port accesses, which can use
350	 * any of the I/O port spaces and are done via MMIO using the
351	 * virtual mmio_base from the appropriate io_space[].
352	 */
353	phys_iobase = efi_get_iobase();
354	if (!phys_iobase) {
355		phys_iobase = ia64_get_kr(IA64_KR_IO_BASE);
356		printk(KERN_INFO "No I/O port range found in EFI memory map, "
357			"falling back to AR.KR0 (0x%lx)\n", phys_iobase);
358	}
359	ia64_iobase = (unsigned long) ioremap(phys_iobase, 0);
360	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
361
362	/* setup legacy IO port space */
363	io_space[0].mmio_base = ia64_iobase;
364	io_space[0].sparse = 1;
365	num_io_spaces = 1;
366}
367
368/**
369 * early_console_setup - setup debugging console
370 *
371 * Consoles started here require little enough setup that we can start using
372 * them very early in the boot process, either right after the machine
373 * vector initialization, or even before if the drivers can detect their hw.
374 *
375 * Returns non-zero if a console couldn't be setup.
376 */
377static inline int __init
378early_console_setup (char *cmdline)
379{
380	int earlycons = 0;
381
382#ifdef CONFIG_SERIAL_SGI_L1_CONSOLE
383	{
384		extern int sn_serial_console_early_setup(void);
385		if (!sn_serial_console_early_setup())
386			earlycons++;
387	}
388#endif
389#ifdef CONFIG_EFI_PCDP
390	if (!efi_setup_pcdp_console(cmdline))
391		earlycons++;
392#endif
393#ifdef CONFIG_SERIAL_8250_CONSOLE
394	if (!early_serial_console_init(cmdline))
395		earlycons++;
396#endif
397
398	return (earlycons) ? 0 : -1;
399}
400
401static inline void
402mark_bsp_online (void)
403{
404#ifdef CONFIG_SMP
405	/* If we register an early console, allow CPU 0 to printk */
406	cpu_set(smp_processor_id(), cpu_online_map);
407#endif
408}
409
410#ifdef CONFIG_SMP
411static void __init
412check_for_logical_procs (void)
413{
414	pal_logical_to_physical_t info;
415	s64 status;
416
417	status = ia64_pal_logical_to_phys(0, &info);
418	if (status == -1) {
419		printk(KERN_INFO "No logical to physical processor mapping "
420		       "available\n");
421		return;
422	}
423	if (status) {
424		printk(KERN_ERR "ia64_pal_logical_to_phys failed with %ld\n",
425		       status);
426		return;
427	}
428	/*
429	 * Total number of siblings that BSP has.  Though not all of them
430	 * may have booted successfully. The correct number of siblings
431	 * booted is in info.overview_num_log.
432	 */
433	smp_num_siblings = info.overview_tpc;
434	smp_num_cpucores = info.overview_cpp;
435}
436#endif
437
438static __initdata int nomca;
439static __init int setup_nomca(char *s)
440{
441	nomca = 1;
442	return 0;
443}
444early_param("nomca", setup_nomca);
445
446#ifdef CONFIG_PROC_VMCORE
447/* elfcorehdr= specifies the location of elf core header
448 * stored by the crashed kernel.
449 */
450static int __init parse_elfcorehdr(char *arg)
451{
452	if (!arg)
453		return -EINVAL;
454
455        elfcorehdr_addr = memparse(arg, &arg);
456	return 0;
457}
458early_param("elfcorehdr", parse_elfcorehdr);
459
460int __init reserve_elfcorehdr(unsigned long *start, unsigned long *end)
461{
462	unsigned long length;
463
464	/* We get the address using the kernel command line,
465	 * but the size is extracted from the EFI tables.
466	 * Both address and size are required for reservation
467	 * to work properly.
468	 */
469
470	if (elfcorehdr_addr >= ELFCORE_ADDR_MAX)
471		return -EINVAL;
472
473	if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) {
474		elfcorehdr_addr = ELFCORE_ADDR_MAX;
475		return -EINVAL;
476	}
477
478	*start = (unsigned long)__va(elfcorehdr_addr);
479	*end = *start + length;
480	return 0;
481}
482
483#endif /* CONFIG_PROC_VMCORE */
484
485void __init
486setup_arch (char **cmdline_p)
487{
488	unw_init();
489
490	ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist);
491
492	*cmdline_p = __va(ia64_boot_param->command_line);
493	strlcpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE);
494
495	efi_init();
496	io_port_init();
497
498	parse_early_param();
499
500#ifdef CONFIG_IA64_GENERIC
501	machvec_init(NULL);
502#endif
503
504	if (early_console_setup(*cmdline_p) == 0)
505		mark_bsp_online();
506
507#ifdef CONFIG_ACPI
508	/* Initialize the ACPI boot-time table parser */
509	acpi_table_init();
510# ifdef CONFIG_ACPI_NUMA
511	acpi_numa_init();
512# endif
513#else
514# ifdef CONFIG_SMP
515	smp_build_cpu_map();	/* happens, e.g., with the Ski simulator */
516# endif
517#endif /* CONFIG_APCI_BOOT */
518
519	find_memory();
520
521	/* process SAL system table: */
522	ia64_sal_init(__va(efi.sal_systab));
523
524	ia64_setup_printk_clock();
525
526#ifdef CONFIG_SMP
527	cpu_physical_id(0) = hard_smp_processor_id();
528
529	cpu_set(0, cpu_sibling_map[0]);
530	cpu_set(0, cpu_core_map[0]);
531
532	check_for_logical_procs();
533	if (smp_num_cpucores > 1)
534		printk(KERN_INFO
535		       "cpu package is Multi-Core capable: number of cores=%d\n",
536		       smp_num_cpucores);
537	if (smp_num_siblings > 1)
538		printk(KERN_INFO
539		       "cpu package is Multi-Threading capable: number of siblings=%d\n",
540		       smp_num_siblings);
541#endif
542
543	cpu_init();	/* initialize the bootstrap CPU */
544	mmu_context_init();	/* initialize context_id bitmap */
545
546	check_sal_cache_flush();
547
548#ifdef CONFIG_ACPI
549	acpi_boot_init();
550#endif
551
552#ifdef CONFIG_VT
553	if (!conswitchp) {
554# if defined(CONFIG_DUMMY_CONSOLE)
555		conswitchp = &dummy_con;
556# endif
557# if defined(CONFIG_VGA_CONSOLE)
558		/*
559		 * Non-legacy systems may route legacy VGA MMIO range to system
560		 * memory.  vga_con probes the MMIO hole, so memory looks like
561		 * a VGA device to it.  The EFI memory map can tell us if it's
562		 * memory so we can avoid this problem.
563		 */
564		if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY)
565			conswitchp = &vga_con;
566# endif
567	}
568#endif
569
570	/* enable IA-64 Machine Check Abort Handling unless disabled */
571	if (!nomca)
572		ia64_mca_init();
573
574	platform_setup(cmdline_p);
575	paging_init();
576}
577
578/*
579 * Display cpu info for all CPUs.
580 */
581static int
582show_cpuinfo (struct seq_file *m, void *v)
583{
584#ifdef CONFIG_SMP
585#	define lpj	c->loops_per_jiffy
586#	define cpunum	c->cpu
587#else
588#	define lpj	loops_per_jiffy
589#	define cpunum	0
590#endif
591	static struct {
592		unsigned long mask;
593		const char *feature_name;
594	} feature_bits[] = {
595		{ 1UL << 0, "branchlong" },
596		{ 1UL << 1, "spontaneous deferral"},
597		{ 1UL << 2, "16-byte atomic ops" }
598	};
599	char features[128], *cp, *sep;
600	struct cpuinfo_ia64 *c = v;
601	unsigned long mask;
602	unsigned long proc_freq;
603	int i, size;
604
605	mask = c->features;
606
607	/* build the feature string: */
608	memcpy(features, "standard", 9);
609	cp = features;
610	size = sizeof(features);
611	sep = "";
612	for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) {
613		if (mask & feature_bits[i].mask) {
614			cp += snprintf(cp, size, "%s%s", sep,
615				       feature_bits[i].feature_name),
616			sep = ", ";
617			mask &= ~feature_bits[i].mask;
618			size = sizeof(features) - (cp - features);
619		}
620	}
621	if (mask && size > 1) {
622		/* print unknown features as a hex value */
623		snprintf(cp, size, "%s0x%lx", sep, mask);
624	}
625
626	proc_freq = cpufreq_quick_get(cpunum);
627	if (!proc_freq)
628		proc_freq = c->proc_freq / 1000;
629
630	seq_printf(m,
631		   "processor  : %d\n"
632		   "vendor     : %s\n"
633		   "arch       : IA-64\n"
634		   "family     : %u\n"
635		   "model      : %u\n"
636		   "model name : %s\n"
637		   "revision   : %u\n"
638		   "archrev    : %u\n"
639		   "features   : %s\n"
640		   "cpu number : %lu\n"
641		   "cpu regs   : %u\n"
642		   "cpu MHz    : %lu.%03lu\n"
643		   "itc MHz    : %lu.%06lu\n"
644		   "BogoMIPS   : %lu.%02lu\n",
645		   cpunum, c->vendor, c->family, c->model,
646		   c->model_name, c->revision, c->archrev,
647		   features, c->ppn, c->number,
648		   proc_freq / 1000, proc_freq % 1000,
649		   c->itc_freq / 1000000, c->itc_freq % 1000000,
650		   lpj*HZ/500000, (lpj*HZ/5000) % 100);
651#ifdef CONFIG_SMP
652	seq_printf(m, "siblings   : %u\n", cpus_weight(cpu_core_map[cpunum]));
653	if (c->threads_per_core > 1 || c->cores_per_socket > 1)
654		seq_printf(m,
655		   	   "physical id: %u\n"
656		   	   "core id    : %u\n"
657		   	   "thread id  : %u\n",
658		   	   c->socket_id, c->core_id, c->thread_id);
659#endif
660	seq_printf(m,"\n");
661
662	return 0;
663}
664
665static void *
666c_start (struct seq_file *m, loff_t *pos)
667{
668#ifdef CONFIG_SMP
669	while (*pos < NR_CPUS && !cpu_isset(*pos, cpu_online_map))
670		++*pos;
671#endif
672	return *pos < NR_CPUS ? cpu_data(*pos) : NULL;
673}
674
675static void *
676c_next (struct seq_file *m, void *v, loff_t *pos)
677{
678	++*pos;
679	return c_start(m, pos);
680}
681
682static void
683c_stop (struct seq_file *m, void *v)
684{
685}
686
687struct seq_operations cpuinfo_op = {
688	.start =	c_start,
689	.next =		c_next,
690	.stop =		c_stop,
691	.show =		show_cpuinfo
692};
693
694#define MAX_BRANDS	8
695static char brandname[MAX_BRANDS][128];
696
697static char * __cpuinit
698get_model_name(__u8 family, __u8 model)
699{
700	static int overflow;
701	char brand[128];
702	int i;
703
704	memcpy(brand, "Unknown", 8);
705	if (ia64_pal_get_brand_info(brand)) {
706		if (family == 0x7)
707			memcpy(brand, "Merced", 7);
708		else if (family == 0x1f) switch (model) {
709			case 0: memcpy(brand, "McKinley", 9); break;
710			case 1: memcpy(brand, "Madison", 8); break;
711			case 2: memcpy(brand, "Madison up to 9M cache", 23); break;
712		}
713	}
714	for (i = 0; i < MAX_BRANDS; i++)
715		if (strcmp(brandname[i], brand) == 0)
716			return brandname[i];
717	for (i = 0; i < MAX_BRANDS; i++)
718		if (brandname[i][0] == '\0')
719			return strcpy(brandname[i], brand);
720	if (overflow++ == 0)
721		printk(KERN_ERR
722		       "%s: Table overflow. Some processor model information will be missing\n",
723		       __FUNCTION__);
724	return "Unknown";
725}
726
727static void __cpuinit
728identify_cpu (struct cpuinfo_ia64 *c)
729{
730	union {
731		unsigned long bits[5];
732		struct {
733			/* id 0 & 1: */
734			char vendor[16];
735
736			/* id 2 */
737			u64 ppn;		/* processor serial number */
738
739			/* id 3: */
740			unsigned number		:  8;
741			unsigned revision	:  8;
742			unsigned model		:  8;
743			unsigned family		:  8;
744			unsigned archrev	:  8;
745			unsigned reserved	: 24;
746
747			/* id 4: */
748			u64 features;
749		} field;
750	} cpuid;
751	pal_vm_info_1_u_t vm1;
752	pal_vm_info_2_u_t vm2;
753	pal_status_t status;
754	unsigned long impl_va_msb = 50, phys_addr_size = 44;	/* Itanium defaults */
755	int i;
756	for (i = 0; i < 5; ++i)
757		cpuid.bits[i] = ia64_get_cpuid(i);
758
759	memcpy(c->vendor, cpuid.field.vendor, 16);
760#ifdef CONFIG_SMP
761	c->cpu = smp_processor_id();
762
763	/* below default values will be overwritten  by identify_siblings()
764	 * for Multi-Threading/Multi-Core capable CPUs
765	 */
766	c->threads_per_core = c->cores_per_socket = c->num_log = 1;
767	c->socket_id = -1;
768
769	identify_siblings(c);
770#endif
771	c->ppn = cpuid.field.ppn;
772	c->number = cpuid.field.number;
773	c->revision = cpuid.field.revision;
774	c->model = cpuid.field.model;
775	c->family = cpuid.field.family;
776	c->archrev = cpuid.field.archrev;
777	c->features = cpuid.field.features;
778	c->model_name = get_model_name(c->family, c->model);
779
780	status = ia64_pal_vm_summary(&vm1, &vm2);
781	if (status == PAL_STATUS_SUCCESS) {
782		impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb;
783		phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size;
784	}
785	c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1));
786	c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1));
787}
788
789void __init
790setup_per_cpu_areas (void)
791{
792	/* start_kernel() requires this... */
793#ifdef CONFIG_ACPI_HOTPLUG_CPU
794	prefill_possible_map();
795#endif
796}
797
798/*
799 * Calculate the max. cache line size.
800 *
801 * In addition, the minimum of the i-cache stride sizes is calculated for
802 * "flush_icache_range()".
803 */
804static void __cpuinit
805get_max_cacheline_size (void)
806{
807	unsigned long line_size, max = 1;
808	u64 l, levels, unique_caches;
809        pal_cache_config_info_t cci;
810        s64 status;
811
812        status = ia64_pal_cache_summary(&levels, &unique_caches);
813        if (status != 0) {
814                printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",
815                       __FUNCTION__, status);
816                max = SMP_CACHE_BYTES;
817		/* Safest setup for "flush_icache_range()" */
818		ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT;
819		goto out;
820        }
821
822	for (l = 0; l < levels; ++l) {
823		status = ia64_pal_cache_config_info(l, /* cache_type (data_or_unified)= */ 2,
824						    &cci);
825		if (status != 0) {
826			printk(KERN_ERR
827			       "%s: ia64_pal_cache_config_info(l=%lu, 2) failed (status=%ld)\n",
828			       __FUNCTION__, l, status);
829			max = SMP_CACHE_BYTES;
830			/* The safest setup for "flush_icache_range()" */
831			cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
832			cci.pcci_unified = 1;
833		}
834		line_size = 1 << cci.pcci_line_size;
835		if (line_size > max)
836			max = line_size;
837		if (!cci.pcci_unified) {
838			status = ia64_pal_cache_config_info(l,
839						    /* cache_type (instruction)= */ 1,
840						    &cci);
841			if (status != 0) {
842				printk(KERN_ERR
843				"%s: ia64_pal_cache_config_info(l=%lu, 1) failed (status=%ld)\n",
844					__FUNCTION__, l, status);
845				/* The safest setup for "flush_icache_range()" */
846				cci.pcci_stride = I_CACHE_STRIDE_SHIFT;
847			}
848		}
849		if (cci.pcci_stride < ia64_i_cache_stride_shift)
850			ia64_i_cache_stride_shift = cci.pcci_stride;
851	}
852  out:
853	if (max > ia64_max_cacheline_size)
854		ia64_max_cacheline_size = max;
855}
856
857/*
858 * cpu_init() initializes state that is per-CPU.  This function acts
859 * as a 'CPU state barrier', nothing should get across.
860 */
861void __cpuinit
862cpu_init (void)
863{
864	extern void __cpuinit ia64_mmu_init (void *);
865	static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG;
866	unsigned long num_phys_stacked;
867	pal_vm_info_2_u_t vmi;
868	unsigned int max_ctx;
869	struct cpuinfo_ia64 *cpu_info;
870	void *cpu_data;
871
872	cpu_data = per_cpu_init();
873
874	/*
875	 * We set ar.k3 so that assembly code in MCA handler can compute
876	 * physical addresses of per cpu variables with a simple:
877	 *   phys = ar.k3 + &per_cpu_var
878	 */
879	ia64_set_kr(IA64_KR_PER_CPU_DATA,
880		    ia64_tpa(cpu_data) - (long) __per_cpu_start);
881
882	get_max_cacheline_size();
883
884	/*
885	 * We can't pass "local_cpu_data" to identify_cpu() because we haven't called
886	 * ia64_mmu_init() yet.  And we can't call ia64_mmu_init() first because it
887	 * depends on the data returned by identify_cpu().  We break the dependency by
888	 * accessing cpu_data() through the canonical per-CPU address.
889	 */
890	cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(cpu_info) - __per_cpu_start);
891	identify_cpu(cpu_info);
892
893#ifdef CONFIG_MCKINLEY
894	{
895#		define FEATURE_SET 16
896		struct ia64_pal_retval iprv;
897
898		if (cpu_info->family == 0x1f) {
899			PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0);
900			if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80))
901				PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES,
902				              (iprv.v1 | 0x80), FEATURE_SET, 0);
903		}
904	}
905#endif
906
907	/* Clear the stack memory reserved for pt_regs: */
908	memset(task_pt_regs(current), 0, sizeof(struct pt_regs));
909
910	ia64_set_kr(IA64_KR_FPU_OWNER, 0);
911
912	/*
913	 * Initialize the page-table base register to a global
914	 * directory with all zeroes.  This ensure that we can handle
915	 * TLB-misses to user address-space even before we created the
916	 * first user address-space.  This may happen, e.g., due to
917	 * aggressive use of lfetch.fault.
918	 */
919	ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page)));
920
921	/*
922	 * Initialize default control register to defer speculative faults except
923	 * for those arising from TLB misses, which are not deferred.  The
924	 * kernel MUST NOT depend on a particular setting of these bits (in other words,
925	 * the kernel must have recovery code for all speculative accesses).  Turn on
926	 * dcr.lc as per recommendation by the architecture team.  Most IA-32 apps
927	 * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll
928	 * be fine).
929	 */
930	ia64_setreg(_IA64_REG_CR_DCR,  (  IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR
931					| IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC));
932	atomic_inc(&init_mm.mm_count);
933	current->active_mm = &init_mm;
934	if (current->mm)
935		BUG();
936
937	ia64_mmu_init(ia64_imva(cpu_data));
938	ia64_mca_cpu_init(ia64_imva(cpu_data));
939
940#ifdef CONFIG_IA32_SUPPORT
941	ia32_cpu_init();
942#endif
943
944	/* Clear ITC to eliminate sched_clock() overflows in human time.  */
945	ia64_set_itc(0);
946
947	/* disable all local interrupt sources: */
948	ia64_set_itv(1 << 16);
949	ia64_set_lrr0(1 << 16);
950	ia64_set_lrr1(1 << 16);
951	ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
952	ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
953
954	/* clear TPR & XTP to enable all interrupt classes: */
955	ia64_setreg(_IA64_REG_CR_TPR, 0);
956#ifdef CONFIG_SMP
957	normal_xtp();
958#endif
959
960	/* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */
961	if (ia64_pal_vm_summary(NULL, &vmi) == 0)
962		max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1;
963	else {
964		printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n");
965		max_ctx = (1U << 15) - 1;	/* use architected minimum */
966	}
967	while (max_ctx < ia64_ctx.max_ctx) {
968		unsigned int old = ia64_ctx.max_ctx;
969		if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old)
970			break;
971	}
972
973	if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) {
974		printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical "
975		       "stacked regs\n");
976		num_phys_stacked = 96;
977	}
978	/* size of physical stacked register partition plus 8 bytes: */
979	if (num_phys_stacked > max_num_phys_stacked) {
980		ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8);
981		max_num_phys_stacked = num_phys_stacked;
982	}
983	platform_cpu_init();
984	pm_idle = default_idle;
985}
986
987/*
988 * On SMP systems, when the scheduler does migration-cost autodetection,
989 * it needs a way to flush as much of the CPU's caches as possible.
990 */
991void sched_cacheflush(void)
992{
993	ia64_sal_cache_flush(3);
994}
995
996void __init
997check_bugs (void)
998{
999	ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles,
1000			       (unsigned long) __end___mckinley_e9_bundles);
1001}
1002
1003static int __init run_dmi_scan(void)
1004{
1005	dmi_scan_machine();
1006	return 0;
1007}
1008core_initcall(run_dmi_scan);
1009