1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 *	David Mosberger-Tang <davidm@hpl.hp.com>
6 *
7 * Derived from the x86 and Alpha versions.
8 */
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/mm.h>
13#include <linux/errno.h>
14#include <linux/ptrace.h>
15#include <linux/smp_lock.h>
16#include <linux/user.h>
17#include <linux/security.h>
18#include <linux/audit.h>
19#include <linux/signal.h>
20
21#include <asm/pgtable.h>
22#include <asm/processor.h>
23#include <asm/ptrace_offsets.h>
24#include <asm/rse.h>
25#include <asm/system.h>
26#include <asm/uaccess.h>
27#include <asm/unwind.h>
28#ifdef CONFIG_PERFMON
29#include <asm/perfmon.h>
30#endif
31
32#include "entry.h"
33
34/*
35 * Bits in the PSR that we allow ptrace() to change:
36 *	be, up, ac, mfl, mfh (the user mask; five bits total)
37 *	db (debug breakpoint fault; one bit)
38 *	id (instruction debug fault disable; one bit)
39 *	dd (data debug fault disable; one bit)
40 *	ri (restart instruction; two bits)
41 *	is (instruction set; one bit)
42 */
43#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
44		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
45
46#define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
47#define PFM_MASK	MASK(38)
48
49#define PTRACE_DEBUG	0
50
51#if PTRACE_DEBUG
52# define dprintk(format...)	printk(format)
53# define inline
54#else
55# define dprintk(format...)
56#endif
57
58/* Return TRUE if PT was created due to kernel-entry via a system-call.  */
59
60static inline int
61in_syscall (struct pt_regs *pt)
62{
63	return (long) pt->cr_ifs >= 0;
64}
65
66/*
67 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
68 * bitset where bit i is set iff the NaT bit of register i is set.
69 */
70unsigned long
71ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
72{
73#	define GET_BITS(first, last, unat)				\
74	({								\
75		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
76		unsigned long nbits = (last - first + 1);		\
77		unsigned long mask = MASK(nbits) << first;		\
78		unsigned long dist;					\
79		if (bit < first)					\
80			dist = 64 + bit - first;			\
81		else							\
82			dist = bit - first;				\
83		ia64_rotr(unat, dist) & mask;				\
84	})
85	unsigned long val;
86
87	/*
88	 * Registers that are stored consecutively in struct pt_regs
89	 * can be handled in parallel.  If the register order in
90	 * struct_pt_regs changes, this code MUST be updated.
91	 */
92	val  = GET_BITS( 1,  1, scratch_unat);
93	val |= GET_BITS( 2,  3, scratch_unat);
94	val |= GET_BITS(12, 13, scratch_unat);
95	val |= GET_BITS(14, 14, scratch_unat);
96	val |= GET_BITS(15, 15, scratch_unat);
97	val |= GET_BITS( 8, 11, scratch_unat);
98	val |= GET_BITS(16, 31, scratch_unat);
99	return val;
100
101#	undef GET_BITS
102}
103
104/*
105 * Set the NaT bits for the scratch registers according to NAT and
106 * return the resulting unat (assuming the scratch registers are
107 * stored in PT).
108 */
109unsigned long
110ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
111{
112#	define PUT_BITS(first, last, nat)				\
113	({								\
114		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
115		unsigned long nbits = (last - first + 1);		\
116		unsigned long mask = MASK(nbits) << first;		\
117		long dist;						\
118		if (bit < first)					\
119			dist = 64 + bit - first;			\
120		else							\
121			dist = bit - first;				\
122		ia64_rotl(nat & mask, dist);				\
123	})
124	unsigned long scratch_unat;
125
126	/*
127	 * Registers that are stored consecutively in struct pt_regs
128	 * can be handled in parallel.  If the register order in
129	 * struct_pt_regs changes, this code MUST be updated.
130	 */
131	scratch_unat  = PUT_BITS( 1,  1, nat);
132	scratch_unat |= PUT_BITS( 2,  3, nat);
133	scratch_unat |= PUT_BITS(12, 13, nat);
134	scratch_unat |= PUT_BITS(14, 14, nat);
135	scratch_unat |= PUT_BITS(15, 15, nat);
136	scratch_unat |= PUT_BITS( 8, 11, nat);
137	scratch_unat |= PUT_BITS(16, 31, nat);
138
139	return scratch_unat;
140
141#	undef PUT_BITS
142}
143
144#define IA64_MLX_TEMPLATE	0x2
145#define IA64_MOVL_OPCODE	6
146
147void
148ia64_increment_ip (struct pt_regs *regs)
149{
150	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
151
152	if (ri > 2) {
153		ri = 0;
154		regs->cr_iip += 16;
155	} else if (ri == 2) {
156		get_user(w0, (char __user *) regs->cr_iip + 0);
157		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
158			/*
159			 * rfi'ing to slot 2 of an MLX bundle causes
160			 * an illegal operation fault.  We don't want
161			 * that to happen...
162			 */
163			ri = 0;
164			regs->cr_iip += 16;
165		}
166	}
167	ia64_psr(regs)->ri = ri;
168}
169
170void
171ia64_decrement_ip (struct pt_regs *regs)
172{
173	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
174
175	if (ia64_psr(regs)->ri == 0) {
176		regs->cr_iip -= 16;
177		ri = 2;
178		get_user(w0, (char __user *) regs->cr_iip + 0);
179		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
180			/*
181			 * rfi'ing to slot 2 of an MLX bundle causes
182			 * an illegal operation fault.  We don't want
183			 * that to happen...
184			 */
185			ri = 1;
186		}
187	}
188	ia64_psr(regs)->ri = ri;
189}
190
191/*
192 * This routine is used to read an rnat bits that are stored on the
193 * kernel backing store.  Since, in general, the alignment of the user
194 * and kernel are different, this is not completely trivial.  In
195 * essence, we need to construct the user RNAT based on up to two
196 * kernel RNAT values and/or the RNAT value saved in the child's
197 * pt_regs.
198 *
199 * user rbs
200 *
201 * +--------+ <-- lowest address
202 * | slot62 |
203 * +--------+
204 * |  rnat  | 0x....1f8
205 * +--------+
206 * | slot00 | \
207 * +--------+ |
208 * | slot01 | > child_regs->ar_rnat
209 * +--------+ |
210 * | slot02 | /				kernel rbs
211 * +--------+				+--------+
212 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
213 * +- - - - +				+--------+
214 *					| slot62 |
215 * +- - - - +				+--------+
216 *					|  rnat	 |
217 * +- - - - +				+--------+
218 *   vrnat				| slot00 |
219 * +- - - - +				+--------+
220 *					=	 =
221 *					+--------+
222 *					| slot00 | \
223 *					+--------+ |
224 *					| slot01 | > child_stack->ar_rnat
225 *					+--------+ |
226 *					| slot02 | /
227 *					+--------+
228 *						  <--- child_stack->ar_bspstore
229 *
230 * The way to think of this code is as follows: bit 0 in the user rnat
231 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
232 * value.  The kernel rnat value holding this bit is stored in
233 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
234 * form the upper bits of the user rnat value.
235 *
236 * Boundary cases:
237 *
238 * o when reading the rnat "below" the first rnat slot on the kernel
239 *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
240 *   merged in from pt->ar_rnat.
241 *
242 * o when reading the rnat "above" the last rnat slot on the kernel
243 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
244 */
245static unsigned long
246get_rnat (struct task_struct *task, struct switch_stack *sw,
247	  unsigned long *krbs, unsigned long *urnat_addr,
248	  unsigned long *urbs_end)
249{
250	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
251	unsigned long umask = 0, mask, m;
252	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
253	long num_regs, nbits;
254	struct pt_regs *pt;
255
256	pt = task_pt_regs(task);
257	kbsp = (unsigned long *) sw->ar_bspstore;
258	ubspstore = (unsigned long *) pt->ar_bspstore;
259
260	if (urbs_end < urnat_addr)
261		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
262	else
263		nbits = 63;
264	mask = MASK(nbits);
265	/*
266	 * First, figure out which bit number slot 0 in user-land maps
267	 * to in the kernel rnat.  Do this by figuring out how many
268	 * register slots we're beyond the user's backingstore and
269	 * then computing the equivalent address in kernel space.
270	 */
271	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
272	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
273	shift = ia64_rse_slot_num(slot0_kaddr);
274	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
275	rnat0_kaddr = rnat1_kaddr - 64;
276
277	if (ubspstore + 63 > urnat_addr) {
278		/* some bits need to be merged in from pt->ar_rnat */
279		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
280		urnat = (pt->ar_rnat & umask);
281		mask &= ~umask;
282		if (!mask)
283			return urnat;
284	}
285
286	m = mask << shift;
287	if (rnat0_kaddr >= kbsp)
288		rnat0 = sw->ar_rnat;
289	else if (rnat0_kaddr > krbs)
290		rnat0 = *rnat0_kaddr;
291	urnat |= (rnat0 & m) >> shift;
292
293	m = mask >> (63 - shift);
294	if (rnat1_kaddr >= kbsp)
295		rnat1 = sw->ar_rnat;
296	else if (rnat1_kaddr > krbs)
297		rnat1 = *rnat1_kaddr;
298	urnat |= (rnat1 & m) << (63 - shift);
299	return urnat;
300}
301
302/*
303 * The reverse of get_rnat.
304 */
305static void
306put_rnat (struct task_struct *task, struct switch_stack *sw,
307	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
308	  unsigned long *urbs_end)
309{
310	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
311	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
312	long num_regs, nbits;
313	struct pt_regs *pt;
314	unsigned long cfm, *urbs_kargs;
315
316	pt = task_pt_regs(task);
317	kbsp = (unsigned long *) sw->ar_bspstore;
318	ubspstore = (unsigned long *) pt->ar_bspstore;
319
320	urbs_kargs = urbs_end;
321	if (in_syscall(pt)) {
322		/*
323		 * If entered via syscall, don't allow user to set rnat bits
324		 * for syscall args.
325		 */
326		cfm = pt->cr_ifs;
327		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
328	}
329
330	if (urbs_kargs >= urnat_addr)
331		nbits = 63;
332	else {
333		if ((urnat_addr - 63) >= urbs_kargs)
334			return;
335		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
336	}
337	mask = MASK(nbits);
338
339	/*
340	 * First, figure out which bit number slot 0 in user-land maps
341	 * to in the kernel rnat.  Do this by figuring out how many
342	 * register slots we're beyond the user's backingstore and
343	 * then computing the equivalent address in kernel space.
344	 */
345	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
346	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
347	shift = ia64_rse_slot_num(slot0_kaddr);
348	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
349	rnat0_kaddr = rnat1_kaddr - 64;
350
351	if (ubspstore + 63 > urnat_addr) {
352		/* some bits need to be place in pt->ar_rnat: */
353		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
354		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
355		mask &= ~umask;
356		if (!mask)
357			return;
358	}
359	/*
360	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
361	 * rnat slot is ignored. so we don't have to clear it here.
362	 */
363	rnat0 = (urnat << shift);
364	m = mask << shift;
365	if (rnat0_kaddr >= kbsp)
366		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
367	else if (rnat0_kaddr > krbs)
368		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
369
370	rnat1 = (urnat >> (63 - shift));
371	m = mask >> (63 - shift);
372	if (rnat1_kaddr >= kbsp)
373		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
374	else if (rnat1_kaddr > krbs)
375		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
376}
377
378static inline int
379on_kernel_rbs (unsigned long addr, unsigned long bspstore,
380	       unsigned long urbs_end)
381{
382	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
383						      urbs_end);
384	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
385}
386
387/*
388 * Read a word from the user-level backing store of task CHILD.  ADDR
389 * is the user-level address to read the word from, VAL a pointer to
390 * the return value, and USER_BSP gives the end of the user-level
391 * backing store (i.e., it's the address that would be in ar.bsp after
392 * the user executed a "cover" instruction).
393 *
394 * This routine takes care of accessing the kernel register backing
395 * store for those registers that got spilled there.  It also takes
396 * care of calculating the appropriate RNaT collection words.
397 */
398long
399ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
400	   unsigned long user_rbs_end, unsigned long addr, long *val)
401{
402	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
403	struct pt_regs *child_regs;
404	size_t copied;
405	long ret;
406
407	urbs_end = (long *) user_rbs_end;
408	laddr = (unsigned long *) addr;
409	child_regs = task_pt_regs(child);
410	bspstore = (unsigned long *) child_regs->ar_bspstore;
411	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
412	if (on_kernel_rbs(addr, (unsigned long) bspstore,
413			  (unsigned long) urbs_end))
414	{
415		/*
416		 * Attempt to read the RBS in an area that's actually
417		 * on the kernel RBS => read the corresponding bits in
418		 * the kernel RBS.
419		 */
420		rnat_addr = ia64_rse_rnat_addr(laddr);
421		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
422
423		if (laddr == rnat_addr) {
424			/* return NaT collection word itself */
425			*val = ret;
426			return 0;
427		}
428
429		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
430			/*
431			 * It is implementation dependent whether the
432			 * data portion of a NaT value gets saved on a
433			 * st8.spill or RSE spill (e.g., see EAS 2.6,
434			 * 4.4.4.6 Register Spill and Fill).  To get
435			 * consistent behavior across all possible
436			 * IA-64 implementations, we return zero in
437			 * this case.
438			 */
439			*val = 0;
440			return 0;
441		}
442
443		if (laddr < urbs_end) {
444			/*
445			 * The desired word is on the kernel RBS and
446			 * is not a NaT.
447			 */
448			regnum = ia64_rse_num_regs(bspstore, laddr);
449			*val = *ia64_rse_skip_regs(krbs, regnum);
450			return 0;
451		}
452	}
453	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
454	if (copied != sizeof(ret))
455		return -EIO;
456	*val = ret;
457	return 0;
458}
459
460long
461ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
462	   unsigned long user_rbs_end, unsigned long addr, long val)
463{
464	unsigned long *bspstore, *krbs, regnum, *laddr;
465	unsigned long *urbs_end = (long *) user_rbs_end;
466	struct pt_regs *child_regs;
467
468	laddr = (unsigned long *) addr;
469	child_regs = task_pt_regs(child);
470	bspstore = (unsigned long *) child_regs->ar_bspstore;
471	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
472	if (on_kernel_rbs(addr, (unsigned long) bspstore,
473			  (unsigned long) urbs_end))
474	{
475		/*
476		 * Attempt to write the RBS in an area that's actually
477		 * on the kernel RBS => write the corresponding bits
478		 * in the kernel RBS.
479		 */
480		if (ia64_rse_is_rnat_slot(laddr))
481			put_rnat(child, child_stack, krbs, laddr, val,
482				 urbs_end);
483		else {
484			if (laddr < urbs_end) {
485				regnum = ia64_rse_num_regs(bspstore, laddr);
486				*ia64_rse_skip_regs(krbs, regnum) = val;
487			}
488		}
489	} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
490		   != sizeof(val))
491		return -EIO;
492	return 0;
493}
494
495/*
496 * Calculate the address of the end of the user-level register backing
497 * store.  This is the address that would have been stored in ar.bsp
498 * if the user had executed a "cover" instruction right before
499 * entering the kernel.  If CFMP is not NULL, it is used to return the
500 * "current frame mask" that was active at the time the kernel was
501 * entered.
502 */
503unsigned long
504ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
505		       unsigned long *cfmp)
506{
507	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
508	long ndirty;
509
510	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
511	bspstore = (unsigned long *) pt->ar_bspstore;
512	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
513
514	if (in_syscall(pt))
515		ndirty += (cfm & 0x7f);
516	else
517		cfm &= ~(1UL << 63);	/* clear valid bit */
518
519	if (cfmp)
520		*cfmp = cfm;
521	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
522}
523
524/*
525 * Synchronize (i.e, write) the RSE backing store living in kernel
526 * space to the VM of the CHILD task.  SW and PT are the pointers to
527 * the switch_stack and pt_regs structures, respectively.
528 * USER_RBS_END is the user-level address at which the backing store
529 * ends.
530 */
531long
532ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
533		    unsigned long user_rbs_start, unsigned long user_rbs_end)
534{
535	unsigned long addr, val;
536	long ret;
537
538	/* now copy word for word from kernel rbs to user rbs: */
539	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
540		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
541		if (ret < 0)
542			return ret;
543		if (access_process_vm(child, addr, &val, sizeof(val), 1)
544		    != sizeof(val))
545			return -EIO;
546	}
547	return 0;
548}
549
550static inline int
551thread_matches (struct task_struct *thread, unsigned long addr)
552{
553	unsigned long thread_rbs_end;
554	struct pt_regs *thread_regs;
555
556	if (ptrace_check_attach(thread, 0) < 0)
557		/*
558		 * If the thread is not in an attachable state, we'll
559		 * ignore it.  The net effect is that if ADDR happens
560		 * to overlap with the portion of the thread's
561		 * register backing store that is currently residing
562		 * on the thread's kernel stack, then ptrace() may end
563		 * up accessing a stale value.  But if the thread
564		 * isn't stopped, that's a problem anyhow, so we're
565		 * doing as well as we can...
566		 */
567		return 0;
568
569	thread_regs = task_pt_regs(thread);
570	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
571	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
572		return 0;
573
574	return 1;	/* looks like we've got a winner */
575}
576
577/*
578 * GDB apparently wants to be able to read the register-backing store
579 * of any thread when attached to a given process.  If we are peeking
580 * or poking an address that happens to reside in the kernel-backing
581 * store of another thread, we need to attach to that thread, because
582 * otherwise we end up accessing stale data.
583 *
584 * task_list_lock must be read-locked before calling this routine!
585 */
586static struct task_struct *
587find_thread_for_addr (struct task_struct *child, unsigned long addr)
588{
589	struct task_struct *p;
590	struct mm_struct *mm;
591	struct list_head *this, *next;
592	int mm_users;
593
594	if (!(mm = get_task_mm(child)))
595		return child;
596
597	/* -1 because of our get_task_mm(): */
598	mm_users = atomic_read(&mm->mm_users) - 1;
599	if (mm_users <= 1)
600		goto out;		/* not multi-threaded */
601
602	/*
603	 * Traverse the current process' children list.  Every task that
604	 * one attaches to becomes a child.  And it is only attached children
605	 * of the debugger that are of interest (ptrace_check_attach checks
606	 * for this).
607	 */
608 	list_for_each_safe(this, next, &current->children) {
609		p = list_entry(this, struct task_struct, sibling);
610		if (p->tgid != child->tgid)
611			continue;
612		if (thread_matches(p, addr)) {
613			child = p;
614			goto out;
615		}
616	}
617
618  out:
619	mmput(mm);
620	return child;
621}
622
623/*
624 * Write f32-f127 back to task->thread.fph if it has been modified.
625 */
626inline void
627ia64_flush_fph (struct task_struct *task)
628{
629	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
630
631	/*
632	 * Prevent migrating this task while
633	 * we're fiddling with the FPU state
634	 */
635	preempt_disable();
636	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
637		psr->mfh = 0;
638		task->thread.flags |= IA64_THREAD_FPH_VALID;
639		ia64_save_fpu(&task->thread.fph[0]);
640	}
641	preempt_enable();
642}
643
644/*
645 * Sync the fph state of the task so that it can be manipulated
646 * through thread.fph.  If necessary, f32-f127 are written back to
647 * thread.fph or, if the fph state hasn't been used before, thread.fph
648 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
649 * ensure that the task picks up the state from thread.fph when it
650 * executes again.
651 */
652void
653ia64_sync_fph (struct task_struct *task)
654{
655	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
656
657	ia64_flush_fph(task);
658	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
659		task->thread.flags |= IA64_THREAD_FPH_VALID;
660		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
661	}
662	ia64_drop_fpu(task);
663	psr->dfh = 1;
664}
665
666static int
667access_fr (struct unw_frame_info *info, int regnum, int hi,
668	   unsigned long *data, int write_access)
669{
670	struct ia64_fpreg fpval;
671	int ret;
672
673	ret = unw_get_fr(info, regnum, &fpval);
674	if (ret < 0)
675		return ret;
676
677	if (write_access) {
678		fpval.u.bits[hi] = *data;
679		ret = unw_set_fr(info, regnum, fpval);
680	} else
681		*data = fpval.u.bits[hi];
682	return ret;
683}
684
685/*
686 * Change the machine-state of CHILD such that it will return via the normal
687 * kernel exit-path, rather than the syscall-exit path.
688 */
689static void
690convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
691			unsigned long cfm)
692{
693	struct unw_frame_info info, prev_info;
694	unsigned long ip, sp, pr;
695
696	unw_init_from_blocked_task(&info, child);
697	while (1) {
698		prev_info = info;
699		if (unw_unwind(&info) < 0)
700			return;
701
702		unw_get_sp(&info, &sp);
703		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
704		    < IA64_PT_REGS_SIZE) {
705			dprintk("ptrace.%s: ran off the top of the kernel "
706				"stack\n", __FUNCTION__);
707			return;
708		}
709		if (unw_get_pr (&prev_info, &pr) < 0) {
710			unw_get_rp(&prev_info, &ip);
711			dprintk("ptrace.%s: failed to read "
712				"predicate register (ip=0x%lx)\n",
713				__FUNCTION__, ip);
714			return;
715		}
716		if (unw_is_intr_frame(&info)
717		    && (pr & (1UL << PRED_USER_STACK)))
718			break;
719	}
720
721	/*
722	 * Note: at the time of this call, the target task is blocked
723	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
724	 * (aka, "pLvSys") we redirect execution from
725	 * .work_pending_syscall_end to .work_processed_kernel.
726	 */
727	unw_get_pr(&prev_info, &pr);
728	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
729	pr |=  (1UL << PRED_NON_SYSCALL);
730	unw_set_pr(&prev_info, pr);
731
732	pt->cr_ifs = (1UL << 63) | cfm;
733	/*
734	 * Clear the memory that is NOT written on syscall-entry to
735	 * ensure we do not leak kernel-state to user when execution
736	 * resumes.
737	 */
738	pt->r2 = 0;
739	pt->r3 = 0;
740	pt->r14 = 0;
741	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
742	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
743	pt->b7 = 0;
744	pt->ar_ccv = 0;
745	pt->ar_csd = 0;
746	pt->ar_ssd = 0;
747}
748
749static int
750access_nat_bits (struct task_struct *child, struct pt_regs *pt,
751		 struct unw_frame_info *info,
752		 unsigned long *data, int write_access)
753{
754	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
755	char nat = 0;
756
757	if (write_access) {
758		nat_bits = *data;
759		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
760		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
761			dprintk("ptrace: failed to set ar.unat\n");
762			return -1;
763		}
764		for (regnum = 4; regnum <= 7; ++regnum) {
765			unw_get_gr(info, regnum, &dummy, &nat);
766			unw_set_gr(info, regnum, dummy,
767				   (nat_bits >> regnum) & 1);
768		}
769	} else {
770		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
771			dprintk("ptrace: failed to read ar.unat\n");
772			return -1;
773		}
774		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
775		for (regnum = 4; regnum <= 7; ++regnum) {
776			unw_get_gr(info, regnum, &dummy, &nat);
777			nat_bits |= (nat != 0) << regnum;
778		}
779		*data = nat_bits;
780	}
781	return 0;
782}
783
784static int
785access_uarea (struct task_struct *child, unsigned long addr,
786	      unsigned long *data, int write_access)
787{
788	unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
789	struct switch_stack *sw;
790	struct pt_regs *pt;
791#	define pt_reg_addr(pt, reg)	((void *)			    \
792					 ((unsigned long) (pt)		    \
793					  + offsetof(struct pt_regs, reg)))
794
795
796	pt = task_pt_regs(child);
797	sw = (struct switch_stack *) (child->thread.ksp + 16);
798
799	if ((addr & 0x7) != 0) {
800		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
801		return -1;
802	}
803
804	if (addr < PT_F127 + 16) {
805		/* accessing fph */
806		if (write_access)
807			ia64_sync_fph(child);
808		else
809			ia64_flush_fph(child);
810		ptr = (unsigned long *)
811			((unsigned long) &child->thread.fph + addr);
812	} else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
813		/* scratch registers untouched by kernel (saved in pt_regs) */
814		ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
815	} else if (addr >= PT_F12 && addr < PT_F15 + 16) {
816		/*
817		 * Scratch registers untouched by kernel (saved in
818		 * switch_stack).
819		 */
820		ptr = (unsigned long *) ((long) sw
821					 + (addr - PT_NAT_BITS - 32));
822	} else if (addr < PT_AR_LC + 8) {
823		/* preserved state: */
824		struct unw_frame_info info;
825		char nat = 0;
826		int ret;
827
828		unw_init_from_blocked_task(&info, child);
829		if (unw_unwind_to_user(&info) < 0)
830			return -1;
831
832		switch (addr) {
833		      case PT_NAT_BITS:
834			return access_nat_bits(child, pt, &info,
835					       data, write_access);
836
837		      case PT_R4: case PT_R5: case PT_R6: case PT_R7:
838			if (write_access) {
839				/* read NaT bit first: */
840				unsigned long dummy;
841
842				ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
843						 &dummy, &nat);
844				if (ret < 0)
845					return ret;
846			}
847			return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
848					     &nat, write_access);
849
850		      case PT_B1: case PT_B2: case PT_B3:
851		      case PT_B4: case PT_B5:
852			return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
853					     write_access);
854
855		      case PT_AR_EC:
856			return unw_access_ar(&info, UNW_AR_EC, data,
857					     write_access);
858
859		      case PT_AR_LC:
860			return unw_access_ar(&info, UNW_AR_LC, data,
861					     write_access);
862
863		      default:
864			if (addr >= PT_F2 && addr < PT_F5 + 16)
865				return access_fr(&info, (addr - PT_F2)/16 + 2,
866						 (addr & 8) != 0, data,
867						 write_access);
868			else if (addr >= PT_F16 && addr < PT_F31 + 16)
869				return access_fr(&info,
870						 (addr - PT_F16)/16 + 16,
871						 (addr & 8) != 0,
872						 data, write_access);
873			else {
874				dprintk("ptrace: rejecting access to register "
875					"address 0x%lx\n", addr);
876				return -1;
877			}
878		}
879	} else if (addr < PT_F9+16) {
880		/* scratch state */
881		switch (addr) {
882		      case PT_AR_BSP:
883			/*
884			 * By convention, we use PT_AR_BSP to refer to
885			 * the end of the user-level backing store.
886			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
887			 * to get the real value of ar.bsp at the time
888			 * the kernel was entered.
889			 *
890			 * Furthermore, when changing the contents of
891			 * PT_AR_BSP (or PT_CFM) we MUST copy any
892			 * users-level stacked registers that are
893			 * stored on the kernel stack back to
894			 * user-space because otherwise, we might end
895			 * up clobbering kernel stacked registers.
896			 * Also, if this happens while the task is
897			 * blocked in a system call, which convert the
898			 * state such that the non-system-call exit
899			 * path is used.  This ensures that the proper
900			 * state will be picked up when resuming
901			 * execution.  However, it *also* means that
902			 * once we write PT_AR_BSP/PT_CFM, it won't be
903			 * possible to modify the syscall arguments of
904			 * the pending system call any longer.  This
905			 * shouldn't be an issue because modifying
906			 * PT_AR_BSP/PT_CFM generally implies that
907			 * we're either abandoning the pending system
908			 * call or that we defer it's re-execution
909			 * (e.g., due to GDB doing an inferior
910			 * function call).
911			 */
912			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
913			if (write_access) {
914				if (*data != urbs_end) {
915					if (ia64_sync_user_rbs(child, sw,
916							       pt->ar_bspstore,
917							       urbs_end) < 0)
918						return -1;
919					if (in_syscall(pt))
920						convert_to_non_syscall(child,
921								       pt,
922								       cfm);
923					/*
924					 * Simulate user-level write
925					 * of ar.bsp:
926					 */
927					pt->loadrs = 0;
928					pt->ar_bspstore = *data;
929				}
930			} else
931				*data = urbs_end;
932			return 0;
933
934		      case PT_CFM:
935			urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
936			if (write_access) {
937				if (((cfm ^ *data) & PFM_MASK) != 0) {
938					if (ia64_sync_user_rbs(child, sw,
939							       pt->ar_bspstore,
940							       urbs_end) < 0)
941						return -1;
942					if (in_syscall(pt))
943						convert_to_non_syscall(child,
944								       pt,
945								       cfm);
946					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
947						      | (*data & PFM_MASK));
948				}
949			} else
950				*data = cfm;
951			return 0;
952
953		      case PT_CR_IPSR:
954			if (write_access)
955				pt->cr_ipsr = ((*data & IPSR_MASK)
956					       | (pt->cr_ipsr & ~IPSR_MASK));
957			else
958				*data = (pt->cr_ipsr & IPSR_MASK);
959			return 0;
960
961		      case PT_AR_RSC:
962			if (write_access)
963				pt->ar_rsc = *data | (3 << 2); /* force PL3 */
964			else
965				*data = pt->ar_rsc;
966			return 0;
967
968		      case PT_AR_RNAT:
969			urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
970			rnat_addr = (long) ia64_rse_rnat_addr((long *)
971							      urbs_end);
972			if (write_access)
973				return ia64_poke(child, sw, urbs_end,
974						 rnat_addr, *data);
975			else
976				return ia64_peek(child, sw, urbs_end,
977						 rnat_addr, data);
978
979		      case PT_R1:
980			ptr = pt_reg_addr(pt, r1);
981			break;
982		      case PT_R2:  case PT_R3:
983			ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
984			break;
985		      case PT_R8:  case PT_R9:  case PT_R10: case PT_R11:
986			ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
987			break;
988		      case PT_R12: case PT_R13:
989			ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
990			break;
991		      case PT_R14:
992			ptr = pt_reg_addr(pt, r14);
993			break;
994		      case PT_R15:
995			ptr = pt_reg_addr(pt, r15);
996			break;
997		      case PT_R16: case PT_R17: case PT_R18: case PT_R19:
998		      case PT_R20: case PT_R21: case PT_R22: case PT_R23:
999		      case PT_R24: case PT_R25: case PT_R26: case PT_R27:
1000		      case PT_R28: case PT_R29: case PT_R30: case PT_R31:
1001			ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
1002			break;
1003		      case PT_B0:
1004			ptr = pt_reg_addr(pt, b0);
1005			break;
1006		      case PT_B6:
1007			ptr = pt_reg_addr(pt, b6);
1008			break;
1009		      case PT_B7:
1010			ptr = pt_reg_addr(pt, b7);
1011			break;
1012		      case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8:
1013		      case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8:
1014			ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
1015			break;
1016		      case PT_AR_BSPSTORE:
1017			ptr = pt_reg_addr(pt, ar_bspstore);
1018			break;
1019		      case PT_AR_UNAT:
1020			ptr = pt_reg_addr(pt, ar_unat);
1021			break;
1022		      case PT_AR_PFS:
1023			ptr = pt_reg_addr(pt, ar_pfs);
1024			break;
1025		      case PT_AR_CCV:
1026			ptr = pt_reg_addr(pt, ar_ccv);
1027			break;
1028		      case PT_AR_FPSR:
1029			ptr = pt_reg_addr(pt, ar_fpsr);
1030			break;
1031		      case PT_CR_IIP:
1032			ptr = pt_reg_addr(pt, cr_iip);
1033			break;
1034		      case PT_PR:
1035			ptr = pt_reg_addr(pt, pr);
1036			break;
1037			/* scratch register */
1038
1039		      default:
1040			/* disallow accessing anything else... */
1041			dprintk("ptrace: rejecting access to register "
1042				"address 0x%lx\n", addr);
1043			return -1;
1044		}
1045	} else if (addr <= PT_AR_SSD) {
1046		ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
1047	} else {
1048		/* access debug registers */
1049
1050		if (addr >= PT_IBR) {
1051			regnum = (addr - PT_IBR) >> 3;
1052			ptr = &child->thread.ibr[0];
1053		} else {
1054			regnum = (addr - PT_DBR) >> 3;
1055			ptr = &child->thread.dbr[0];
1056		}
1057
1058		if (regnum >= 8) {
1059			dprintk("ptrace: rejecting access to register "
1060				"address 0x%lx\n", addr);
1061			return -1;
1062		}
1063#ifdef CONFIG_PERFMON
1064		/*
1065		 * Check if debug registers are used by perfmon. This
1066		 * test must be done once we know that we can do the
1067		 * operation, i.e. the arguments are all valid, but
1068		 * before we start modifying the state.
1069		 *
1070		 * Perfmon needs to keep a count of how many processes
1071		 * are trying to modify the debug registers for system
1072		 * wide monitoring sessions.
1073		 *
1074		 * We also include read access here, because they may
1075		 * cause the PMU-installed debug register state
1076		 * (dbr[], ibr[]) to be reset. The two arrays are also
1077		 * used by perfmon, but we do not use
1078		 * IA64_THREAD_DBG_VALID. The registers are restored
1079		 * by the PMU context switch code.
1080		 */
1081		if (pfm_use_debug_registers(child)) return -1;
1082#endif
1083
1084		if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1085			child->thread.flags |= IA64_THREAD_DBG_VALID;
1086			memset(child->thread.dbr, 0,
1087			       sizeof(child->thread.dbr));
1088			memset(child->thread.ibr, 0,
1089			       sizeof(child->thread.ibr));
1090		}
1091
1092		ptr += regnum;
1093
1094		if ((regnum & 1) && write_access) {
1095			/* don't let the user set kernel-level breakpoints: */
1096			*ptr = *data & ~(7UL << 56);
1097			return 0;
1098		}
1099	}
1100	if (write_access)
1101		*ptr = *data;
1102	else
1103		*data = *ptr;
1104	return 0;
1105}
1106
1107static long
1108ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1109{
1110	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
1111	struct unw_frame_info info;
1112	struct ia64_fpreg fpval;
1113	struct switch_stack *sw;
1114	struct pt_regs *pt;
1115	long ret, retval = 0;
1116	char nat = 0;
1117	int i;
1118
1119	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
1120		return -EIO;
1121
1122	pt = task_pt_regs(child);
1123	sw = (struct switch_stack *) (child->thread.ksp + 16);
1124	unw_init_from_blocked_task(&info, child);
1125	if (unw_unwind_to_user(&info) < 0) {
1126		return -EIO;
1127	}
1128
1129	if (((unsigned long) ppr & 0x7) != 0) {
1130		dprintk("ptrace:unaligned register address %p\n", ppr);
1131		return -EIO;
1132	}
1133
1134	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
1135	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
1136	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
1137	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
1138	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
1139	    || access_uarea(child, PT_CFM, &cfm, 0)
1140	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
1141		return -EIO;
1142
1143	/* control regs */
1144
1145	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
1146	retval |= __put_user(psr, &ppr->cr_ipsr);
1147
1148	/* app regs */
1149
1150	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1151	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
1152	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1153	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1154	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1155	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1156
1157	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
1158	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
1159	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1160	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
1161	retval |= __put_user(cfm, &ppr->cfm);
1162
1163	/* gr1-gr3 */
1164
1165	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
1166	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
1167
1168	/* gr4-gr7 */
1169
1170	for (i = 4; i < 8; i++) {
1171		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
1172			return -EIO;
1173		retval |= __put_user(val, &ppr->gr[i]);
1174	}
1175
1176	/* gr8-gr11 */
1177
1178	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
1179
1180	/* gr12-gr15 */
1181
1182	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
1183	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
1184	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
1185
1186	/* gr16-gr31 */
1187
1188	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
1189
1190	/* b0 */
1191
1192	retval |= __put_user(pt->b0, &ppr->br[0]);
1193
1194	/* b1-b5 */
1195
1196	for (i = 1; i < 6; i++) {
1197		if (unw_access_br(&info, i, &val, 0) < 0)
1198			return -EIO;
1199		__put_user(val, &ppr->br[i]);
1200	}
1201
1202	/* b6-b7 */
1203
1204	retval |= __put_user(pt->b6, &ppr->br[6]);
1205	retval |= __put_user(pt->b7, &ppr->br[7]);
1206
1207	/* fr2-fr5 */
1208
1209	for (i = 2; i < 6; i++) {
1210		if (unw_get_fr(&info, i, &fpval) < 0)
1211			return -EIO;
1212		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1213	}
1214
1215	/* fr6-fr11 */
1216
1217	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
1218				 sizeof(struct ia64_fpreg) * 6);
1219
1220	/* fp scratch regs(12-15) */
1221
1222	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
1223				 sizeof(struct ia64_fpreg) * 4);
1224
1225	/* fr16-fr31 */
1226
1227	for (i = 16; i < 32; i++) {
1228		if (unw_get_fr(&info, i, &fpval) < 0)
1229			return -EIO;
1230		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
1231	}
1232
1233	/* fph */
1234
1235	ia64_flush_fph(child);
1236	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
1237				 sizeof(ppr->fr[32]) * 96);
1238
1239	/*  preds */
1240
1241	retval |= __put_user(pt->pr, &ppr->pr);
1242
1243	/* nat bits */
1244
1245	retval |= __put_user(nat_bits, &ppr->nat);
1246
1247	ret = retval ? -EIO : 0;
1248	return ret;
1249}
1250
1251static long
1252ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
1253{
1254	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
1255	struct unw_frame_info info;
1256	struct switch_stack *sw;
1257	struct ia64_fpreg fpval;
1258	struct pt_regs *pt;
1259	long ret, retval = 0;
1260	int i;
1261
1262	memset(&fpval, 0, sizeof(fpval));
1263
1264	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
1265		return -EIO;
1266
1267	pt = task_pt_regs(child);
1268	sw = (struct switch_stack *) (child->thread.ksp + 16);
1269	unw_init_from_blocked_task(&info, child);
1270	if (unw_unwind_to_user(&info) < 0) {
1271		return -EIO;
1272	}
1273
1274	if (((unsigned long) ppr & 0x7) != 0) {
1275		dprintk("ptrace:unaligned register address %p\n", ppr);
1276		return -EIO;
1277	}
1278
1279	/* control regs */
1280
1281	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
1282	retval |= __get_user(psr, &ppr->cr_ipsr);
1283
1284	/* app regs */
1285
1286	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1287	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1288	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1289	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1290	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1291	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1292
1293	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1294	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1295	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1296	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1297	retval |= __get_user(cfm, &ppr->cfm);
1298
1299	/* gr1-gr3 */
1300
1301	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1302	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1303
1304	/* gr4-gr7 */
1305
1306	for (i = 4; i < 8; i++) {
1307		retval |= __get_user(val, &ppr->gr[i]);
1308		/* NaT bit will be set via PT_NAT_BITS: */
1309		if (unw_set_gr(&info, i, val, 0) < 0)
1310			return -EIO;
1311	}
1312
1313	/* gr8-gr11 */
1314
1315	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1316
1317	/* gr12-gr15 */
1318
1319	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1320	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1321	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1322
1323	/* gr16-gr31 */
1324
1325	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1326
1327	/* b0 */
1328
1329	retval |= __get_user(pt->b0, &ppr->br[0]);
1330
1331	/* b1-b5 */
1332
1333	for (i = 1; i < 6; i++) {
1334		retval |= __get_user(val, &ppr->br[i]);
1335		unw_set_br(&info, i, val);
1336	}
1337
1338	/* b6-b7 */
1339
1340	retval |= __get_user(pt->b6, &ppr->br[6]);
1341	retval |= __get_user(pt->b7, &ppr->br[7]);
1342
1343	/* fr2-fr5 */
1344
1345	for (i = 2; i < 6; i++) {
1346		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1347		if (unw_set_fr(&info, i, fpval) < 0)
1348			return -EIO;
1349	}
1350
1351	/* fr6-fr11 */
1352
1353	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1354				   sizeof(ppr->fr[6]) * 6);
1355
1356	/* fp scratch regs(12-15) */
1357
1358	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1359				   sizeof(ppr->fr[12]) * 4);
1360
1361	/* fr16-fr31 */
1362
1363	for (i = 16; i < 32; i++) {
1364		retval |= __copy_from_user(&fpval, &ppr->fr[i],
1365					   sizeof(fpval));
1366		if (unw_set_fr(&info, i, fpval) < 0)
1367			return -EIO;
1368	}
1369
1370	/* fph */
1371
1372	ia64_sync_fph(child);
1373	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1374				   sizeof(ppr->fr[32]) * 96);
1375
1376	/* preds */
1377
1378	retval |= __get_user(pt->pr, &ppr->pr);
1379
1380	/* nat bits */
1381
1382	retval |= __get_user(nat_bits, &ppr->nat);
1383
1384	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1385	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1386	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1387	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1388	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1389	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1390	retval |= access_uarea(child, PT_CFM, &cfm, 1);
1391	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1392
1393	ret = retval ? -EIO : 0;
1394	return ret;
1395}
1396
1397/*
1398 * Called by kernel/ptrace.c when detaching..
1399 *
1400 * Make sure the single step bit is not set.
1401 */
1402void
1403ptrace_disable (struct task_struct *child)
1404{
1405	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1406
1407	/* make sure the single step/taken-branch trap bits are not set: */
1408	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1409	child_psr->ss = 0;
1410	child_psr->tb = 0;
1411}
1412
1413asmlinkage long
1414sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
1415{
1416	struct pt_regs *pt;
1417	unsigned long urbs_end, peek_or_poke;
1418	struct task_struct *child;
1419	struct switch_stack *sw;
1420	long ret;
1421
1422	lock_kernel();
1423	ret = -EPERM;
1424	if (request == PTRACE_TRACEME) {
1425		ret = ptrace_traceme();
1426		goto out;
1427	}
1428
1429	peek_or_poke = (request == PTRACE_PEEKTEXT
1430			|| request == PTRACE_PEEKDATA
1431			|| request == PTRACE_POKETEXT
1432			|| request == PTRACE_POKEDATA);
1433	ret = -ESRCH;
1434	read_lock(&tasklist_lock);
1435	{
1436		child = find_task_by_pid(pid);
1437		if (child) {
1438			if (peek_or_poke)
1439				child = find_thread_for_addr(child, addr);
1440			get_task_struct(child);
1441		}
1442	}
1443	read_unlock(&tasklist_lock);
1444	if (!child)
1445		goto out;
1446	ret = -EPERM;
1447	if (pid == 1)		/* no messing around with init! */
1448		goto out_tsk;
1449
1450	if (request == PTRACE_ATTACH) {
1451		ret = ptrace_attach(child);
1452		goto out_tsk;
1453	}
1454
1455	ret = ptrace_check_attach(child, request == PTRACE_KILL);
1456	if (ret < 0)
1457		goto out_tsk;
1458
1459	pt = task_pt_regs(child);
1460	sw = (struct switch_stack *) (child->thread.ksp + 16);
1461
1462	switch (request) {
1463	      case PTRACE_PEEKTEXT:
1464	      case PTRACE_PEEKDATA:
1465		/* read word at location addr */
1466		urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1467		ret = ia64_peek(child, sw, urbs_end, addr, &data);
1468		if (ret == 0) {
1469			ret = data;
1470			/* ensure "ret" is not mistaken as an error code: */
1471			force_successful_syscall_return();
1472		}
1473		goto out_tsk;
1474
1475	      case PTRACE_POKETEXT:
1476	      case PTRACE_POKEDATA:
1477		/* write the word at location addr */
1478		urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
1479		ret = ia64_poke(child, sw, urbs_end, addr, data);
1480		goto out_tsk;
1481
1482	      case PTRACE_PEEKUSR:
1483		/* read the word at addr in the USER area */
1484		if (access_uarea(child, addr, &data, 0) < 0) {
1485			ret = -EIO;
1486			goto out_tsk;
1487		}
1488		ret = data;
1489		/* ensure "ret" is not mistaken as an error code */
1490		force_successful_syscall_return();
1491		goto out_tsk;
1492
1493	      case PTRACE_POKEUSR:
1494		/* write the word at addr in the USER area */
1495		if (access_uarea(child, addr, &data, 1) < 0) {
1496			ret = -EIO;
1497			goto out_tsk;
1498		}
1499		ret = 0;
1500		goto out_tsk;
1501
1502	      case PTRACE_OLD_GETSIGINFO:
1503		/* for backwards-compatibility */
1504		ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1505		goto out_tsk;
1506
1507	      case PTRACE_OLD_SETSIGINFO:
1508		/* for backwards-compatibility */
1509		ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1510		goto out_tsk;
1511
1512	      case PTRACE_SYSCALL:
1513		/* continue and stop at next (return from) syscall */
1514	      case PTRACE_CONT:
1515		/* restart after signal. */
1516		ret = -EIO;
1517		if (!valid_signal(data))
1518			goto out_tsk;
1519		if (request == PTRACE_SYSCALL)
1520			set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1521		else
1522			clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1523		child->exit_code = data;
1524
1525		/*
1526		 * Make sure the single step/taken-branch trap bits
1527		 * are not set:
1528		 */
1529		clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1530		ia64_psr(pt)->ss = 0;
1531		ia64_psr(pt)->tb = 0;
1532
1533		wake_up_process(child);
1534		ret = 0;
1535		goto out_tsk;
1536
1537	      case PTRACE_KILL:
1538		/*
1539		 * Make the child exit.  Best I can do is send it a
1540		 * sigkill.  Perhaps it should be put in the status
1541		 * that it wants to exit.
1542		 */
1543		if (child->exit_state == EXIT_ZOMBIE)
1544			/* already dead */
1545			goto out_tsk;
1546		child->exit_code = SIGKILL;
1547
1548		ptrace_disable(child);
1549		wake_up_process(child);
1550		ret = 0;
1551		goto out_tsk;
1552
1553	      case PTRACE_SINGLESTEP:
1554		/* let child execute for one instruction */
1555	      case PTRACE_SINGLEBLOCK:
1556		ret = -EIO;
1557		if (!valid_signal(data))
1558			goto out_tsk;
1559
1560		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1561		set_tsk_thread_flag(child, TIF_SINGLESTEP);
1562		if (request == PTRACE_SINGLESTEP) {
1563			ia64_psr(pt)->ss = 1;
1564		} else {
1565			ia64_psr(pt)->tb = 1;
1566		}
1567		child->exit_code = data;
1568
1569		/* give it a chance to run. */
1570		wake_up_process(child);
1571		ret = 0;
1572		goto out_tsk;
1573
1574	      case PTRACE_DETACH:
1575		/* detach a process that was attached. */
1576		clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
1577		ret = ptrace_detach(child, data);
1578		goto out_tsk;
1579
1580	      case PTRACE_GETREGS:
1581		ret = ptrace_getregs(child,
1582				     (struct pt_all_user_regs __user *) data);
1583		goto out_tsk;
1584
1585	      case PTRACE_SETREGS:
1586		ret = ptrace_setregs(child,
1587				     (struct pt_all_user_regs __user *) data);
1588		goto out_tsk;
1589
1590	      default:
1591		ret = ptrace_request(child, request, addr, data);
1592		goto out_tsk;
1593	}
1594  out_tsk:
1595	put_task_struct(child);
1596  out:
1597	unlock_kernel();
1598	return ret;
1599}
1600
1601
1602static void
1603syscall_trace (void)
1604{
1605	/*
1606	 * The 0x80 provides a way for the tracing parent to
1607	 * distinguish between a syscall stop and SIGTRAP delivery.
1608	 */
1609	ptrace_notify(SIGTRAP
1610		      | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
1611
1612	/*
1613	 * This isn't the same as continuing with a signal, but it
1614	 * will do for normal use.  strace only continues with a
1615	 * signal if the stopping signal is not SIGTRAP.  -brl
1616	 */
1617	if (current->exit_code) {
1618		send_sig(current->exit_code, current, 1);
1619		current->exit_code = 0;
1620	}
1621}
1622
1623/* "asmlinkage" so the input arguments are preserved... */
1624
1625asmlinkage void
1626syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1627		     long arg4, long arg5, long arg6, long arg7,
1628		     struct pt_regs regs)
1629{
1630	if (test_thread_flag(TIF_SYSCALL_TRACE)
1631	    && (current->ptrace & PT_PTRACED))
1632		syscall_trace();
1633
1634	if (unlikely(current->audit_context)) {
1635		long syscall;
1636		int arch;
1637
1638		if (IS_IA32_PROCESS(&regs)) {
1639			syscall = regs.r1;
1640			arch = AUDIT_ARCH_I386;
1641		} else {
1642			syscall = regs.r15;
1643			arch = AUDIT_ARCH_IA64;
1644		}
1645
1646		audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
1647	}
1648
1649}
1650
1651/* "asmlinkage" so the input arguments are preserved... */
1652
1653asmlinkage void
1654syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1655		     long arg4, long arg5, long arg6, long arg7,
1656		     struct pt_regs regs)
1657{
1658	if (unlikely(current->audit_context)) {
1659		int success = AUDITSC_RESULT(regs.r10);
1660		long result = regs.r8;
1661
1662		if (success != AUDITSC_SUCCESS)
1663			result = -result;
1664		audit_syscall_exit(success, result);
1665	}
1666
1667	if ((test_thread_flag(TIF_SYSCALL_TRACE)
1668	    || test_thread_flag(TIF_SINGLESTEP))
1669	    && (current->ptrace & PT_PTRACED))
1670		syscall_trace();
1671}
1672