1/*
2 * Extensible Firmware Interface
3 *
4 * Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
5 *
6 * Copyright (C) 1999 VA Linux Systems
7 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
8 * Copyright (C) 1999-2003 Hewlett-Packard Co.
9 *	David Mosberger-Tang <davidm@hpl.hp.com>
10 *	Stephane Eranian <eranian@hpl.hp.com>
11 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
12 *	Bjorn Helgaas <bjorn.helgaas@hp.com>
13 *
14 * All EFI Runtime Services are not implemented yet as EFI only
15 * supports physical mode addressing on SoftSDV. This is to be fixed
16 * in a future version.  --drummond 1999-07-20
17 *
18 * Implemented EFI runtime services and virtual mode calls.  --davidm
19 *
20 * Goutham Rao: <goutham.rao@intel.com>
21 *	Skip non-WB memory and ignore empty memory ranges.
22 */
23#include <linux/module.h>
24#include <linux/bootmem.h>
25#include <linux/kernel.h>
26#include <linux/init.h>
27#include <linux/types.h>
28#include <linux/time.h>
29#include <linux/efi.h>
30#include <linux/kexec.h>
31
32#include <asm/io.h>
33#include <asm/kregs.h>
34#include <asm/meminit.h>
35#include <asm/pgtable.h>
36#include <asm/processor.h>
37#include <asm/mca.h>
38
39#define EFI_DEBUG	0
40
41extern efi_status_t efi_call_phys (void *, ...);
42
43struct efi efi;
44EXPORT_SYMBOL(efi);
45static efi_runtime_services_t *runtime;
46static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
47
48#define efi_call_virt(f, args...)	(*(f))(args)
49
50#define STUB_GET_TIME(prefix, adjust_arg)							  \
51static efi_status_t										  \
52prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)						  \
53{												  \
54	struct ia64_fpreg fr[6];								  \
55	efi_time_cap_t *atc = NULL;								  \
56	efi_status_t ret;									  \
57												  \
58	if (tc)											  \
59		atc = adjust_arg(tc);								  \
60	ia64_save_scratch_fpregs(fr);								  \
61	ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
62	ia64_load_scratch_fpregs(fr);								  \
63	return ret;										  \
64}
65
66#define STUB_SET_TIME(prefix, adjust_arg)							\
67static efi_status_t										\
68prefix##_set_time (efi_time_t *tm)								\
69{												\
70	struct ia64_fpreg fr[6];								\
71	efi_status_t ret;									\
72												\
73	ia64_save_scratch_fpregs(fr);								\
74	ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm));	\
75	ia64_load_scratch_fpregs(fr);								\
76	return ret;										\
77}
78
79#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)						\
80static efi_status_t										\
81prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm)		\
82{												\
83	struct ia64_fpreg fr[6];								\
84	efi_status_t ret;									\
85												\
86	ia64_save_scratch_fpregs(fr);								\
87	ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),	\
88				adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));	\
89	ia64_load_scratch_fpregs(fr);								\
90	return ret;										\
91}
92
93#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)						\
94static efi_status_t										\
95prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)					\
96{												\
97	struct ia64_fpreg fr[6];								\
98	efi_time_t *atm = NULL;									\
99	efi_status_t ret;									\
100												\
101	if (tm)											\
102		atm = adjust_arg(tm);								\
103	ia64_save_scratch_fpregs(fr);								\
104	ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),	\
105				enabled, atm);							\
106	ia64_load_scratch_fpregs(fr);								\
107	return ret;										\
108}
109
110#define STUB_GET_VARIABLE(prefix, adjust_arg)						\
111static efi_status_t									\
112prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,		\
113		       unsigned long *data_size, void *data)				\
114{											\
115	struct ia64_fpreg fr[6];							\
116	u32 *aattr = NULL;									\
117	efi_status_t ret;								\
118											\
119	if (attr)									\
120		aattr = adjust_arg(attr);						\
121	ia64_save_scratch_fpregs(fr);							\
122	ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable),	\
123				adjust_arg(name), adjust_arg(vendor), aattr,		\
124				adjust_arg(data_size), adjust_arg(data));		\
125	ia64_load_scratch_fpregs(fr);							\
126	return ret;									\
127}
128
129#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)						\
130static efi_status_t										\
131prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor)	\
132{												\
133	struct ia64_fpreg fr[6];								\
134	efi_status_t ret;									\
135												\
136	ia64_save_scratch_fpregs(fr);								\
137	ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable),	\
138				adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));	\
139	ia64_load_scratch_fpregs(fr);								\
140	return ret;										\
141}
142
143#define STUB_SET_VARIABLE(prefix, adjust_arg)						\
144static efi_status_t									\
145prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr,	\
146		       unsigned long data_size, void *data)				\
147{											\
148	struct ia64_fpreg fr[6];							\
149	efi_status_t ret;								\
150											\
151	ia64_save_scratch_fpregs(fr);							\
152	ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable),	\
153				adjust_arg(name), adjust_arg(vendor), attr, data_size,	\
154				adjust_arg(data));					\
155	ia64_load_scratch_fpregs(fr);							\
156	return ret;									\
157}
158
159#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)					\
160static efi_status_t										\
161prefix##_get_next_high_mono_count (u32 *count)							\
162{												\
163	struct ia64_fpreg fr[6];								\
164	efi_status_t ret;									\
165												\
166	ia64_save_scratch_fpregs(fr);								\
167	ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)				\
168				__va(runtime->get_next_high_mono_count), adjust_arg(count));	\
169	ia64_load_scratch_fpregs(fr);								\
170	return ret;										\
171}
172
173#define STUB_RESET_SYSTEM(prefix, adjust_arg)					\
174static void									\
175prefix##_reset_system (int reset_type, efi_status_t status,			\
176		       unsigned long data_size, efi_char16_t *data)		\
177{										\
178	struct ia64_fpreg fr[6];						\
179	efi_char16_t *adata = NULL;						\
180										\
181	if (data)								\
182		adata = adjust_arg(data);					\
183										\
184	ia64_save_scratch_fpregs(fr);						\
185	efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system),	\
186			  reset_type, status, data_size, adata);		\
187	/* should not return, but just in case... */				\
188	ia64_load_scratch_fpregs(fr);						\
189}
190
191#define phys_ptr(arg)	((__typeof__(arg)) ia64_tpa(arg))
192
193STUB_GET_TIME(phys, phys_ptr)
194STUB_SET_TIME(phys, phys_ptr)
195STUB_GET_WAKEUP_TIME(phys, phys_ptr)
196STUB_SET_WAKEUP_TIME(phys, phys_ptr)
197STUB_GET_VARIABLE(phys, phys_ptr)
198STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
199STUB_SET_VARIABLE(phys, phys_ptr)
200STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
201STUB_RESET_SYSTEM(phys, phys_ptr)
202
203#define id(arg)	arg
204
205STUB_GET_TIME(virt, id)
206STUB_SET_TIME(virt, id)
207STUB_GET_WAKEUP_TIME(virt, id)
208STUB_SET_WAKEUP_TIME(virt, id)
209STUB_GET_VARIABLE(virt, id)
210STUB_GET_NEXT_VARIABLE(virt, id)
211STUB_SET_VARIABLE(virt, id)
212STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
213STUB_RESET_SYSTEM(virt, id)
214
215void
216efi_gettimeofday (struct timespec *ts)
217{
218	efi_time_t tm;
219
220	memset(ts, 0, sizeof(ts));
221	if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS)
222		return;
223
224	ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
225	ts->tv_nsec = tm.nanosecond;
226}
227
228static int
229is_memory_available (efi_memory_desc_t *md)
230{
231	if (!(md->attribute & EFI_MEMORY_WB))
232		return 0;
233
234	switch (md->type) {
235	      case EFI_LOADER_CODE:
236	      case EFI_LOADER_DATA:
237	      case EFI_BOOT_SERVICES_CODE:
238	      case EFI_BOOT_SERVICES_DATA:
239	      case EFI_CONVENTIONAL_MEMORY:
240		return 1;
241	}
242	return 0;
243}
244
245typedef struct kern_memdesc {
246	u64 attribute;
247	u64 start;
248	u64 num_pages;
249} kern_memdesc_t;
250
251static kern_memdesc_t *kern_memmap;
252
253#define efi_md_size(md)	(md->num_pages << EFI_PAGE_SHIFT)
254
255static inline u64
256kmd_end(kern_memdesc_t *kmd)
257{
258	return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
259}
260
261static inline u64
262efi_md_end(efi_memory_desc_t *md)
263{
264	return (md->phys_addr + efi_md_size(md));
265}
266
267static inline int
268efi_wb(efi_memory_desc_t *md)
269{
270	return (md->attribute & EFI_MEMORY_WB);
271}
272
273static inline int
274efi_uc(efi_memory_desc_t *md)
275{
276	return (md->attribute & EFI_MEMORY_UC);
277}
278
279static void
280walk (efi_freemem_callback_t callback, void *arg, u64 attr)
281{
282	kern_memdesc_t *k;
283	u64 start, end, voff;
284
285	voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
286	for (k = kern_memmap; k->start != ~0UL; k++) {
287		if (k->attribute != attr)
288			continue;
289		start = PAGE_ALIGN(k->start);
290		end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
291		if (start < end)
292			if ((*callback)(start + voff, end + voff, arg) < 0)
293				return;
294	}
295}
296
297/*
298 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
299 * has memory that is available for OS use.
300 */
301void
302efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
303{
304	walk(callback, arg, EFI_MEMORY_WB);
305}
306
307/*
308 * Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
309 * has memory that is available for uncached allocator.
310 */
311void
312efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
313{
314	walk(callback, arg, EFI_MEMORY_UC);
315}
316
317/*
318 * Look for the PAL_CODE region reported by EFI and maps it using an
319 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
320 * Abstraction Layer chapter 11 in ADAG
321 */
322
323void *
324efi_get_pal_addr (void)
325{
326	void *efi_map_start, *efi_map_end, *p;
327	efi_memory_desc_t *md;
328	u64 efi_desc_size;
329	int pal_code_count = 0;
330	u64 vaddr, mask;
331
332	efi_map_start = __va(ia64_boot_param->efi_memmap);
333	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
334	efi_desc_size = ia64_boot_param->efi_memdesc_size;
335
336	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
337		md = p;
338		if (md->type != EFI_PAL_CODE)
339			continue;
340
341		if (++pal_code_count > 1) {
342			printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
343			       md->phys_addr);
344			continue;
345		}
346		/*
347		 * The only ITLB entry in region 7 that is used is the one installed by
348		 * __start().  That entry covers a 64MB range.
349		 */
350		mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
351		vaddr = PAGE_OFFSET + md->phys_addr;
352
353		/*
354		 * We must check that the PAL mapping won't overlap with the kernel
355		 * mapping.
356		 *
357		 * PAL code is guaranteed to be aligned on a power of 2 between 4k and
358		 * 256KB and that only one ITR is needed to map it. This implies that the
359		 * PAL code is always aligned on its size, i.e., the closest matching page
360		 * size supported by the TLB. Therefore PAL code is guaranteed never to
361		 * cross a 64MB unless it is bigger than 64MB (very unlikely!).  So for
362		 * now the following test is enough to determine whether or not we need a
363		 * dedicated ITR for the PAL code.
364		 */
365		if ((vaddr & mask) == (KERNEL_START & mask)) {
366			printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
367			       __FUNCTION__);
368			continue;
369		}
370
371		if (md->num_pages << EFI_PAGE_SHIFT > IA64_GRANULE_SIZE)
372			panic("Woah!  PAL code size bigger than a granule!");
373
374#if EFI_DEBUG
375		mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
376
377		printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
378			smp_processor_id(), md->phys_addr,
379			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
380			vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
381#endif
382		return __va(md->phys_addr);
383	}
384	printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
385	       __FUNCTION__);
386	return NULL;
387}
388
389void
390efi_map_pal_code (void)
391{
392	void *pal_vaddr = efi_get_pal_addr ();
393	u64 psr;
394
395	if (!pal_vaddr)
396		return;
397
398	/*
399	 * Cannot write to CRx with PSR.ic=1
400	 */
401	psr = ia64_clear_ic();
402	ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
403		 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
404		 IA64_GRANULE_SHIFT);
405	ia64_set_psr(psr);		/* restore psr */
406	ia64_srlz_i();
407}
408
409void __init
410efi_init (void)
411{
412	void *efi_map_start, *efi_map_end;
413	efi_config_table_t *config_tables;
414	efi_char16_t *c16;
415	u64 efi_desc_size;
416	char *cp, vendor[100] = "unknown";
417	int i;
418
419	/* it's too early to be able to use the standard kernel command line support... */
420	for (cp = boot_command_line; *cp; ) {
421		if (memcmp(cp, "mem=", 4) == 0) {
422			mem_limit = memparse(cp + 4, &cp);
423		} else if (memcmp(cp, "max_addr=", 9) == 0) {
424			max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
425		} else if (memcmp(cp, "min_addr=", 9) == 0) {
426			min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
427		} else {
428			while (*cp != ' ' && *cp)
429				++cp;
430			while (*cp == ' ')
431				++cp;
432		}
433	}
434	if (min_addr != 0UL)
435		printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
436	if (max_addr != ~0UL)
437		printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
438
439	efi.systab = __va(ia64_boot_param->efi_systab);
440
441	/*
442	 * Verify the EFI Table
443	 */
444	if (efi.systab == NULL)
445		panic("Woah! Can't find EFI system table.\n");
446	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
447		panic("Woah! EFI system table signature incorrect\n");
448	if ((efi.systab->hdr.revision >> 16) == 0)
449		printk(KERN_WARNING "Warning: EFI system table version "
450		       "%d.%02d, expected 1.00 or greater\n",
451		       efi.systab->hdr.revision >> 16,
452		       efi.systab->hdr.revision & 0xffff);
453
454	config_tables = __va(efi.systab->tables);
455
456	/* Show what we know for posterity */
457	c16 = __va(efi.systab->fw_vendor);
458	if (c16) {
459		for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
460			vendor[i] = *c16++;
461		vendor[i] = '\0';
462	}
463
464	printk(KERN_INFO "EFI v%u.%.02u by %s:",
465	       efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
466
467	efi.mps        = EFI_INVALID_TABLE_ADDR;
468	efi.acpi       = EFI_INVALID_TABLE_ADDR;
469	efi.acpi20     = EFI_INVALID_TABLE_ADDR;
470	efi.smbios     = EFI_INVALID_TABLE_ADDR;
471	efi.sal_systab = EFI_INVALID_TABLE_ADDR;
472	efi.boot_info  = EFI_INVALID_TABLE_ADDR;
473	efi.hcdp       = EFI_INVALID_TABLE_ADDR;
474	efi.uga        = EFI_INVALID_TABLE_ADDR;
475
476	for (i = 0; i < (int) efi.systab->nr_tables; i++) {
477		if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
478			efi.mps = config_tables[i].table;
479			printk(" MPS=0x%lx", config_tables[i].table);
480		} else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
481			efi.acpi20 = config_tables[i].table;
482			printk(" ACPI 2.0=0x%lx", config_tables[i].table);
483		} else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
484			efi.acpi = config_tables[i].table;
485			printk(" ACPI=0x%lx", config_tables[i].table);
486		} else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
487			efi.smbios = config_tables[i].table;
488			printk(" SMBIOS=0x%lx", config_tables[i].table);
489		} else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
490			efi.sal_systab = config_tables[i].table;
491			printk(" SALsystab=0x%lx", config_tables[i].table);
492		} else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
493			efi.hcdp = config_tables[i].table;
494			printk(" HCDP=0x%lx", config_tables[i].table);
495		}
496	}
497	printk("\n");
498
499	runtime = __va(efi.systab->runtime);
500	efi.get_time = phys_get_time;
501	efi.set_time = phys_set_time;
502	efi.get_wakeup_time = phys_get_wakeup_time;
503	efi.set_wakeup_time = phys_set_wakeup_time;
504	efi.get_variable = phys_get_variable;
505	efi.get_next_variable = phys_get_next_variable;
506	efi.set_variable = phys_set_variable;
507	efi.get_next_high_mono_count = phys_get_next_high_mono_count;
508	efi.reset_system = phys_reset_system;
509
510	efi_map_start = __va(ia64_boot_param->efi_memmap);
511	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
512	efi_desc_size = ia64_boot_param->efi_memdesc_size;
513
514#if EFI_DEBUG
515	/* print EFI memory map: */
516	{
517		efi_memory_desc_t *md;
518		void *p;
519
520		for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
521			md = p;
522			printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
523			       i, md->type, md->attribute, md->phys_addr,
524			       md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
525			       md->num_pages >> (20 - EFI_PAGE_SHIFT));
526		}
527	}
528#endif
529
530	efi_map_pal_code();
531	efi_enter_virtual_mode();
532}
533
534void
535efi_enter_virtual_mode (void)
536{
537	void *efi_map_start, *efi_map_end, *p;
538	efi_memory_desc_t *md;
539	efi_status_t status;
540	u64 efi_desc_size;
541
542	efi_map_start = __va(ia64_boot_param->efi_memmap);
543	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
544	efi_desc_size = ia64_boot_param->efi_memdesc_size;
545
546	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
547		md = p;
548		if (md->attribute & EFI_MEMORY_RUNTIME) {
549			/*
550			 * Some descriptors have multiple bits set, so the order of
551			 * the tests is relevant.
552			 */
553			if (md->attribute & EFI_MEMORY_WB) {
554				md->virt_addr = (u64) __va(md->phys_addr);
555			} else if (md->attribute & EFI_MEMORY_UC) {
556				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
557			} else if (md->attribute & EFI_MEMORY_WC) {
558				printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
559				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
560			} else if (md->attribute & EFI_MEMORY_WT) {
561				printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
562				md->virt_addr = (u64) ioremap(md->phys_addr, 0);
563			}
564		}
565	}
566
567	status = efi_call_phys(__va(runtime->set_virtual_address_map),
568			       ia64_boot_param->efi_memmap_size,
569			       efi_desc_size, ia64_boot_param->efi_memdesc_version,
570			       ia64_boot_param->efi_memmap);
571	if (status != EFI_SUCCESS) {
572		printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
573		       "(status=%lu)\n", status);
574		return;
575	}
576
577	/*
578	 * Now that EFI is in virtual mode, we call the EFI functions more efficiently:
579	 */
580	efi.get_time = virt_get_time;
581	efi.set_time = virt_set_time;
582	efi.get_wakeup_time = virt_get_wakeup_time;
583	efi.set_wakeup_time = virt_set_wakeup_time;
584	efi.get_variable = virt_get_variable;
585	efi.get_next_variable = virt_get_next_variable;
586	efi.set_variable = virt_set_variable;
587	efi.get_next_high_mono_count = virt_get_next_high_mono_count;
588	efi.reset_system = virt_reset_system;
589}
590
591/*
592 * Walk the EFI memory map looking for the I/O port range.  There can only be one entry of
593 * this type, other I/O port ranges should be described via ACPI.
594 */
595u64
596efi_get_iobase (void)
597{
598	void *efi_map_start, *efi_map_end, *p;
599	efi_memory_desc_t *md;
600	u64 efi_desc_size;
601
602	efi_map_start = __va(ia64_boot_param->efi_memmap);
603	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
604	efi_desc_size = ia64_boot_param->efi_memdesc_size;
605
606	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
607		md = p;
608		if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
609			if (md->attribute & EFI_MEMORY_UC)
610				return md->phys_addr;
611		}
612	}
613	return 0;
614}
615
616static struct kern_memdesc *
617kern_memory_descriptor (unsigned long phys_addr)
618{
619	struct kern_memdesc *md;
620
621	for (md = kern_memmap; md->start != ~0UL; md++) {
622		if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
623			 return md;
624	}
625	return NULL;
626}
627
628static efi_memory_desc_t *
629efi_memory_descriptor (unsigned long phys_addr)
630{
631	void *efi_map_start, *efi_map_end, *p;
632	efi_memory_desc_t *md;
633	u64 efi_desc_size;
634
635	efi_map_start = __va(ia64_boot_param->efi_memmap);
636	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
637	efi_desc_size = ia64_boot_param->efi_memdesc_size;
638
639	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
640		md = p;
641
642		if (phys_addr - md->phys_addr < (md->num_pages << EFI_PAGE_SHIFT))
643			 return md;
644	}
645	return NULL;
646}
647
648static int
649efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
650{
651	void *efi_map_start, *efi_map_end, *p;
652	efi_memory_desc_t *md;
653	u64 efi_desc_size;
654	unsigned long end;
655
656	efi_map_start = __va(ia64_boot_param->efi_memmap);
657	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
658	efi_desc_size = ia64_boot_param->efi_memdesc_size;
659
660	end = phys_addr + size;
661
662	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
663		md = p;
664
665		if (md->phys_addr < end && efi_md_end(md) > phys_addr)
666			return 1;
667	}
668	return 0;
669}
670
671u32
672efi_mem_type (unsigned long phys_addr)
673{
674	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
675
676	if (md)
677		return md->type;
678	return 0;
679}
680
681u64
682efi_mem_attributes (unsigned long phys_addr)
683{
684	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
685
686	if (md)
687		return md->attribute;
688	return 0;
689}
690EXPORT_SYMBOL(efi_mem_attributes);
691
692u64
693efi_mem_attribute (unsigned long phys_addr, unsigned long size)
694{
695	unsigned long end = phys_addr + size;
696	efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
697	u64 attr;
698
699	if (!md)
700		return 0;
701
702	/*
703	 * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
704	 * the kernel that firmware needs this region mapped.
705	 */
706	attr = md->attribute & ~EFI_MEMORY_RUNTIME;
707	do {
708		unsigned long md_end = efi_md_end(md);
709
710		if (end <= md_end)
711			return attr;
712
713		md = efi_memory_descriptor(md_end);
714		if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
715			return 0;
716	} while (md);
717	return 0;
718}
719
720u64
721kern_mem_attribute (unsigned long phys_addr, unsigned long size)
722{
723	unsigned long end = phys_addr + size;
724	struct kern_memdesc *md;
725	u64 attr;
726
727	/*
728	 * This is a hack for ioremap calls before we set up kern_memmap.
729	 * Maybe we should do efi_memmap_init() earlier instead.
730	 */
731	if (!kern_memmap) {
732		attr = efi_mem_attribute(phys_addr, size);
733		if (attr & EFI_MEMORY_WB)
734			return EFI_MEMORY_WB;
735		return 0;
736	}
737
738	md = kern_memory_descriptor(phys_addr);
739	if (!md)
740		return 0;
741
742	attr = md->attribute;
743	do {
744		unsigned long md_end = kmd_end(md);
745
746		if (end <= md_end)
747			return attr;
748
749		md = kern_memory_descriptor(md_end);
750		if (!md || md->attribute != attr)
751			return 0;
752	} while (md);
753	return 0;
754}
755EXPORT_SYMBOL(kern_mem_attribute);
756
757int
758valid_phys_addr_range (unsigned long phys_addr, unsigned long size)
759{
760	u64 attr;
761
762	/*
763	 * /dev/mem reads and writes use copy_to_user(), which implicitly
764	 * uses a granule-sized kernel identity mapping.  It's really
765	 * only safe to do this for regions in kern_memmap.  For more
766	 * details, see Documentation/ia64/aliasing.txt.
767	 */
768	attr = kern_mem_attribute(phys_addr, size);
769	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
770		return 1;
771	return 0;
772}
773
774int
775valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
776{
777	unsigned long phys_addr = pfn << PAGE_SHIFT;
778	u64 attr;
779
780	attr = efi_mem_attribute(phys_addr, size);
781
782	/*
783	 * /dev/mem mmap uses normal user pages, so we don't need the entire
784	 * granule, but the entire region we're mapping must support the same
785	 * attribute.
786	 */
787	if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
788		return 1;
789
790	/*
791	 * Intel firmware doesn't tell us about all the MMIO regions, so
792	 * in general we have to allow mmap requests.  But if EFI *does*
793	 * tell us about anything inside this region, we should deny it.
794	 * The user can always map a smaller region to avoid the overlap.
795	 */
796	if (efi_memmap_intersects(phys_addr, size))
797		return 0;
798
799	return 1;
800}
801
802pgprot_t
803phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
804		     pgprot_t vma_prot)
805{
806	unsigned long phys_addr = pfn << PAGE_SHIFT;
807	u64 attr;
808
809	/*
810	 * For /dev/mem mmap, we use user mappings, but if the region is
811	 * in kern_memmap (and hence may be covered by a kernel mapping),
812	 * we must use the same attribute as the kernel mapping.
813	 */
814	attr = kern_mem_attribute(phys_addr, size);
815	if (attr & EFI_MEMORY_WB)
816		return pgprot_cacheable(vma_prot);
817	else if (attr & EFI_MEMORY_UC)
818		return pgprot_noncached(vma_prot);
819
820	/*
821	 * Some chipsets don't support UC access to memory.  If
822	 * WB is supported, we prefer that.
823	 */
824	if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
825		return pgprot_cacheable(vma_prot);
826
827	return pgprot_noncached(vma_prot);
828}
829
830int __init
831efi_uart_console_only(void)
832{
833	efi_status_t status;
834	char *s, name[] = "ConOut";
835	efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
836	efi_char16_t *utf16, name_utf16[32];
837	unsigned char data[1024];
838	unsigned long size = sizeof(data);
839	struct efi_generic_dev_path *hdr, *end_addr;
840	int uart = 0;
841
842	/* Convert to UTF-16 */
843	utf16 = name_utf16;
844	s = name;
845	while (*s)
846		*utf16++ = *s++ & 0x7f;
847	*utf16 = 0;
848
849	status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
850	if (status != EFI_SUCCESS) {
851		printk(KERN_ERR "No EFI %s variable?\n", name);
852		return 0;
853	}
854
855	hdr = (struct efi_generic_dev_path *) data;
856	end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
857	while (hdr < end_addr) {
858		if (hdr->type == EFI_DEV_MSG &&
859		    hdr->sub_type == EFI_DEV_MSG_UART)
860			uart = 1;
861		else if (hdr->type == EFI_DEV_END_PATH ||
862			  hdr->type == EFI_DEV_END_PATH2) {
863			if (!uart)
864				return 0;
865			if (hdr->sub_type == EFI_DEV_END_ENTIRE)
866				return 1;
867			uart = 0;
868		}
869		hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
870	}
871	printk(KERN_ERR "Malformed %s value\n", name);
872	return 0;
873}
874
875/*
876 * Look for the first granule aligned memory descriptor memory
877 * that is big enough to hold EFI memory map. Make sure this
878 * descriptor is atleast granule sized so it does not get trimmed
879 */
880struct kern_memdesc *
881find_memmap_space (void)
882{
883	u64	contig_low=0, contig_high=0;
884	u64	as = 0, ae;
885	void *efi_map_start, *efi_map_end, *p, *q;
886	efi_memory_desc_t *md, *pmd = NULL, *check_md;
887	u64	space_needed, efi_desc_size;
888	unsigned long total_mem = 0;
889
890	efi_map_start = __va(ia64_boot_param->efi_memmap);
891	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
892	efi_desc_size = ia64_boot_param->efi_memdesc_size;
893
894	/*
895	 * Worst case: we need 3 kernel descriptors for each efi descriptor
896	 * (if every entry has a WB part in the middle, and UC head and tail),
897	 * plus one for the end marker.
898	 */
899	space_needed = sizeof(kern_memdesc_t) *
900		(3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
901
902	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
903		md = p;
904		if (!efi_wb(md)) {
905			continue;
906		}
907		if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
908			contig_low = GRANULEROUNDUP(md->phys_addr);
909			contig_high = efi_md_end(md);
910			for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
911				check_md = q;
912				if (!efi_wb(check_md))
913					break;
914				if (contig_high != check_md->phys_addr)
915					break;
916				contig_high = efi_md_end(check_md);
917			}
918			contig_high = GRANULEROUNDDOWN(contig_high);
919		}
920		if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
921			continue;
922
923		/* Round ends inward to granule boundaries */
924		as = max(contig_low, md->phys_addr);
925		ae = min(contig_high, efi_md_end(md));
926
927		/* keep within max_addr= and min_addr= command line arg */
928		as = max(as, min_addr);
929		ae = min(ae, max_addr);
930		if (ae <= as)
931			continue;
932
933		/* avoid going over mem= command line arg */
934		if (total_mem + (ae - as) > mem_limit)
935			ae -= total_mem + (ae - as) - mem_limit;
936
937		if (ae <= as)
938			continue;
939
940		if (ae - as > space_needed)
941			break;
942	}
943	if (p >= efi_map_end)
944		panic("Can't allocate space for kernel memory descriptors");
945
946	return __va(as);
947}
948
949/*
950 * Walk the EFI memory map and gather all memory available for kernel
951 * to use.  We can allocate partial granules only if the unavailable
952 * parts exist, and are WB.
953 */
954void
955efi_memmap_init(unsigned long *s, unsigned long *e)
956{
957	struct kern_memdesc *k, *prev = NULL;
958	u64	contig_low=0, contig_high=0;
959	u64	as, ae, lim;
960	void *efi_map_start, *efi_map_end, *p, *q;
961	efi_memory_desc_t *md, *pmd = NULL, *check_md;
962	u64	efi_desc_size;
963	unsigned long total_mem = 0;
964
965	k = kern_memmap = find_memmap_space();
966
967	efi_map_start = __va(ia64_boot_param->efi_memmap);
968	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
969	efi_desc_size = ia64_boot_param->efi_memdesc_size;
970
971	for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
972		md = p;
973		if (!efi_wb(md)) {
974			if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
975				    	   md->type == EFI_BOOT_SERVICES_DATA)) {
976				k->attribute = EFI_MEMORY_UC;
977				k->start = md->phys_addr;
978				k->num_pages = md->num_pages;
979				k++;
980			}
981			continue;
982		}
983		if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
984			contig_low = GRANULEROUNDUP(md->phys_addr);
985			contig_high = efi_md_end(md);
986			for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
987				check_md = q;
988				if (!efi_wb(check_md))
989					break;
990				if (contig_high != check_md->phys_addr)
991					break;
992				contig_high = efi_md_end(check_md);
993			}
994			contig_high = GRANULEROUNDDOWN(contig_high);
995		}
996		if (!is_memory_available(md))
997			continue;
998
999#ifdef CONFIG_CRASH_DUMP
1000		/* saved_max_pfn should ignore max_addr= command line arg */
1001		if (saved_max_pfn < (efi_md_end(md) >> PAGE_SHIFT))
1002			saved_max_pfn = (efi_md_end(md) >> PAGE_SHIFT);
1003#endif
1004		/*
1005		 * Round ends inward to granule boundaries
1006		 * Give trimmings to uncached allocator
1007		 */
1008		if (md->phys_addr < contig_low) {
1009			lim = min(efi_md_end(md), contig_low);
1010			if (efi_uc(md)) {
1011				if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
1012				    kmd_end(k-1) == md->phys_addr) {
1013					(k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1014				} else {
1015					k->attribute = EFI_MEMORY_UC;
1016					k->start = md->phys_addr;
1017					k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
1018					k++;
1019				}
1020			}
1021			as = contig_low;
1022		} else
1023			as = md->phys_addr;
1024
1025		if (efi_md_end(md) > contig_high) {
1026			lim = max(md->phys_addr, contig_high);
1027			if (efi_uc(md)) {
1028				if (lim == md->phys_addr && k > kern_memmap &&
1029				    (k-1)->attribute == EFI_MEMORY_UC &&
1030				    kmd_end(k-1) == md->phys_addr) {
1031					(k-1)->num_pages += md->num_pages;
1032				} else {
1033					k->attribute = EFI_MEMORY_UC;
1034					k->start = lim;
1035					k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
1036					k++;
1037				}
1038			}
1039			ae = contig_high;
1040		} else
1041			ae = efi_md_end(md);
1042
1043		/* keep within max_addr= and min_addr= command line arg */
1044		as = max(as, min_addr);
1045		ae = min(ae, max_addr);
1046		if (ae <= as)
1047			continue;
1048
1049		/* avoid going over mem= command line arg */
1050		if (total_mem + (ae - as) > mem_limit)
1051			ae -= total_mem + (ae - as) - mem_limit;
1052
1053		if (ae <= as)
1054			continue;
1055		if (prev && kmd_end(prev) == md->phys_addr) {
1056			prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1057			total_mem += ae - as;
1058			continue;
1059		}
1060		k->attribute = EFI_MEMORY_WB;
1061		k->start = as;
1062		k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1063		total_mem += ae - as;
1064		prev = k++;
1065	}
1066	k->start = ~0L; /* end-marker */
1067
1068	/* reserve the memory we are using for kern_memmap */
1069	*s = (u64)kern_memmap;
1070	*e = (u64)++k;
1071}
1072
1073void
1074efi_initialize_iomem_resources(struct resource *code_resource,
1075			       struct resource *data_resource)
1076{
1077	struct resource *res;
1078	void *efi_map_start, *efi_map_end, *p;
1079	efi_memory_desc_t *md;
1080	u64 efi_desc_size;
1081	char *name;
1082	unsigned long flags;
1083
1084	efi_map_start = __va(ia64_boot_param->efi_memmap);
1085	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1086	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1087
1088	res = NULL;
1089
1090	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1091		md = p;
1092
1093		if (md->num_pages == 0) /* should not happen */
1094			continue;
1095
1096		flags = IORESOURCE_MEM;
1097		switch (md->type) {
1098
1099			case EFI_MEMORY_MAPPED_IO:
1100			case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1101				continue;
1102
1103			case EFI_LOADER_CODE:
1104			case EFI_LOADER_DATA:
1105			case EFI_BOOT_SERVICES_DATA:
1106			case EFI_BOOT_SERVICES_CODE:
1107			case EFI_CONVENTIONAL_MEMORY:
1108				if (md->attribute & EFI_MEMORY_WP) {
1109					name = "System ROM";
1110					flags |= IORESOURCE_READONLY;
1111				} else {
1112					name = "System RAM";
1113				}
1114				break;
1115
1116			case EFI_ACPI_MEMORY_NVS:
1117				name = "ACPI Non-volatile Storage";
1118				flags |= IORESOURCE_BUSY;
1119				break;
1120
1121			case EFI_UNUSABLE_MEMORY:
1122				name = "reserved";
1123				flags |= IORESOURCE_BUSY | IORESOURCE_DISABLED;
1124				break;
1125
1126			case EFI_RESERVED_TYPE:
1127			case EFI_RUNTIME_SERVICES_CODE:
1128			case EFI_RUNTIME_SERVICES_DATA:
1129			case EFI_ACPI_RECLAIM_MEMORY:
1130			default:
1131				name = "reserved";
1132				flags |= IORESOURCE_BUSY;
1133				break;
1134		}
1135
1136		if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
1137			printk(KERN_ERR "failed to alocate resource for iomem\n");
1138			return;
1139		}
1140
1141		res->name = name;
1142		res->start = md->phys_addr;
1143		res->end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
1144		res->flags = flags;
1145
1146		if (insert_resource(&iomem_resource, res) < 0)
1147			kfree(res);
1148		else {
1149			/*
1150			 * We don't know which region contains
1151			 * kernel data so we try it repeatedly and
1152			 * let the resource manager test it.
1153			 */
1154			insert_resource(res, code_resource);
1155			insert_resource(res, data_resource);
1156#ifdef CONFIG_KEXEC
1157                        insert_resource(res, &efi_memmap_res);
1158                        insert_resource(res, &boot_param_res);
1159			if (crashk_res.end > crashk_res.start)
1160				insert_resource(res, &crashk_res);
1161#endif
1162		}
1163	}
1164}
1165
1166#ifdef CONFIG_KEXEC
1167/* find a block of memory aligned to 64M exclude reserved regions
1168   rsvd_regions are sorted
1169 */
1170unsigned long __init
1171kdump_find_rsvd_region (unsigned long size,
1172		struct rsvd_region *r, int n)
1173{
1174  int i;
1175  u64 start, end;
1176  u64 alignment = 1UL << _PAGE_SIZE_64M;
1177  void *efi_map_start, *efi_map_end, *p;
1178  efi_memory_desc_t *md;
1179  u64 efi_desc_size;
1180
1181  efi_map_start = __va(ia64_boot_param->efi_memmap);
1182  efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1183  efi_desc_size = ia64_boot_param->efi_memdesc_size;
1184
1185  for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1186	  md = p;
1187	  if (!efi_wb(md))
1188		  continue;
1189	  start = ALIGN(md->phys_addr, alignment);
1190	  end = efi_md_end(md);
1191	  for (i = 0; i < n; i++) {
1192		if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1193			if (__pa(r[i].start) > start + size)
1194				return start;
1195			start = ALIGN(__pa(r[i].end), alignment);
1196			if (i < n-1 && __pa(r[i+1].start) < start + size)
1197				continue;
1198			else
1199				break;
1200		}
1201	  }
1202	  if (end > start + size)
1203		return start;
1204  }
1205
1206  printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
1207	size);
1208  return ~0UL;
1209}
1210#endif
1211
1212#ifdef CONFIG_PROC_VMCORE
1213/* locate the size find a the descriptor at a certain address */
1214unsigned long
1215vmcore_find_descriptor_size (unsigned long address)
1216{
1217	void *efi_map_start, *efi_map_end, *p;
1218	efi_memory_desc_t *md;
1219	u64 efi_desc_size;
1220	unsigned long ret = 0;
1221
1222	efi_map_start = __va(ia64_boot_param->efi_memmap);
1223	efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1224	efi_desc_size = ia64_boot_param->efi_memdesc_size;
1225
1226	for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1227		md = p;
1228		if (efi_wb(md) && md->type == EFI_LOADER_DATA
1229		    && md->phys_addr == address) {
1230			ret = efi_md_size(md);
1231			break;
1232		}
1233	}
1234
1235	if (ret == 0)
1236		printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1237
1238	return ret;
1239}
1240#endif
1241