1/*
2 * Some of the code in this file has been gleaned from the 64 bit
3 * discontigmem support code base.
4 *
5 * Copyright (C) 2002, IBM Corp.
6 *
7 * All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
17 * NON INFRINGEMENT.  See the GNU General Public License for more
18 * details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Send feedback to Pat Gaughen <gone@us.ibm.com>
25 */
26#include <linux/mm.h>
27#include <linux/bootmem.h>
28#include <linux/mmzone.h>
29#include <linux/acpi.h>
30#include <linux/nodemask.h>
31#include <asm/srat.h>
32#include <asm/topology.h>
33#include <asm/smp.h>
34
35/*
36 * proximity macros and definitions
37 */
38#define NODE_ARRAY_INDEX(x)	((x) / 8)	/* 8 bits/char */
39#define NODE_ARRAY_OFFSET(x)	((x) % 8)	/* 8 bits/char */
40#define BMAP_SET(bmap, bit)	((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
41#define BMAP_TEST(bmap, bit)	((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
42/* bitmap length; _PXM is at most 255 */
43#define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
44static u8 pxm_bitmap[PXM_BITMAP_LEN];	/* bitmap of proximity domains */
45
46#define MAX_CHUNKS_PER_NODE	3
47#define MAXCHUNKS		(MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
48struct node_memory_chunk_s {
49	unsigned long	start_pfn;
50	unsigned long	end_pfn;
51	u8	pxm;		// proximity domain of node
52	u8	nid;		// which cnode contains this chunk?
53	u8	bank;		// which mem bank on this node
54};
55static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
56
57static int num_memory_chunks;		/* total number of memory chunks */
58static u8 __initdata apicid_to_pxm[MAX_APICID];
59
60extern void * boot_ioremap(unsigned long, unsigned long);
61
62/* Identify CPU proximity domains */
63static void __init parse_cpu_affinity_structure(char *p)
64{
65	struct acpi_srat_cpu_affinity *cpu_affinity =
66				(struct acpi_srat_cpu_affinity *) p;
67
68	if ((cpu_affinity->flags & ACPI_SRAT_CPU_ENABLED) == 0)
69		return;		/* empty entry */
70
71	/* mark this node as "seen" in node bitmap */
72	BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain_lo);
73
74	apicid_to_pxm[cpu_affinity->apic_id] = cpu_affinity->proximity_domain_lo;
75
76	printk("CPU 0x%02X in proximity domain 0x%02X\n",
77		cpu_affinity->apic_id, cpu_affinity->proximity_domain_lo);
78}
79
80/*
81 * Identify memory proximity domains and hot-remove capabilities.
82 * Fill node memory chunk list structure.
83 */
84static void __init parse_memory_affinity_structure (char *sratp)
85{
86	unsigned long long paddr, size;
87	unsigned long start_pfn, end_pfn;
88	u8 pxm;
89	struct node_memory_chunk_s *p, *q, *pend;
90	struct acpi_srat_mem_affinity *memory_affinity =
91			(struct acpi_srat_mem_affinity *) sratp;
92
93	if ((memory_affinity->flags & ACPI_SRAT_MEM_ENABLED) == 0)
94		return;		/* empty entry */
95
96	pxm = memory_affinity->proximity_domain & 0xff;
97
98	/* mark this node as "seen" in node bitmap */
99	BMAP_SET(pxm_bitmap, pxm);
100
101	/* calculate info for memory chunk structure */
102	paddr = memory_affinity->base_address;
103	size = memory_affinity->length;
104
105	start_pfn = paddr >> PAGE_SHIFT;
106	end_pfn = (paddr + size) >> PAGE_SHIFT;
107
108
109	if (num_memory_chunks >= MAXCHUNKS) {
110		printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
111			size/(1024*1024), paddr);
112		return;
113	}
114
115	/* Insertion sort based on base address */
116	pend = &node_memory_chunk[num_memory_chunks];
117	for (p = &node_memory_chunk[0]; p < pend; p++) {
118		if (start_pfn < p->start_pfn)
119			break;
120	}
121	if (p < pend) {
122		for (q = pend; q >= p; q--)
123			*(q + 1) = *q;
124	}
125	p->start_pfn = start_pfn;
126	p->end_pfn = end_pfn;
127	p->pxm = pxm;
128
129	num_memory_chunks++;
130
131	printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
132		start_pfn, end_pfn,
133		memory_affinity->memory_type,
134		pxm,
135		((memory_affinity->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) ?
136		 "enabled and removable" : "enabled" ) );
137}
138
139/*
140 * The SRAT table always lists ascending addresses, so can always
141 * assume that the first "start" address that you see is the real
142 * start of the node, and that the current "end" address is after
143 * the previous one.
144 */
145static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
146{
147	/*
148	 * Only add present memory as told by the e820.
149	 * There is no guarantee from the SRAT that the memory it
150	 * enumerates is present at boot time because it represents
151	 * *possible* memory hotplug areas the same as normal RAM.
152	 */
153	if (memory_chunk->start_pfn >= max_pfn) {
154		printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
155			memory_chunk->start_pfn, memory_chunk->end_pfn);
156		return;
157	}
158	if (memory_chunk->nid != nid)
159		return;
160
161	if (!node_has_online_mem(nid))
162		node_start_pfn[nid] = memory_chunk->start_pfn;
163
164	if (node_start_pfn[nid] > memory_chunk->start_pfn)
165		node_start_pfn[nid] = memory_chunk->start_pfn;
166
167	if (node_end_pfn[nid] < memory_chunk->end_pfn)
168		node_end_pfn[nid] = memory_chunk->end_pfn;
169}
170
171/* Parse the ACPI Static Resource Affinity Table */
172static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
173{
174	u8 *start, *end, *p;
175	int i, j, nid;
176
177	start = (u8 *)(&(sratp->reserved) + 1);	/* skip header */
178	p = start;
179	end = (u8 *)sratp + sratp->header.length;
180
181	memset(pxm_bitmap, 0, sizeof(pxm_bitmap));	/* init proximity domain bitmap */
182	memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
183
184	num_memory_chunks = 0;
185	while (p < end) {
186		switch (*p) {
187		case ACPI_SRAT_TYPE_CPU_AFFINITY:
188			parse_cpu_affinity_structure(p);
189			break;
190		case ACPI_SRAT_TYPE_MEMORY_AFFINITY:
191			parse_memory_affinity_structure(p);
192			break;
193		default:
194			printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
195			break;
196		}
197		p += p[1];
198		if (p[1] == 0) {
199			printk("acpi20_parse_srat: Entry length value is zero;"
200				" can't parse any further!\n");
201			break;
202		}
203	}
204
205	if (num_memory_chunks == 0) {
206		printk("could not finy any ACPI SRAT memory areas.\n");
207		goto out_fail;
208	}
209
210	/* Calculate total number of nodes in system from PXM bitmap and create
211	 * a set of sequential node IDs starting at zero.  (ACPI doesn't seem
212	 * to specify the range of _PXM values.)
213	 */
214	/*
215	 * MCD - we no longer HAVE to number nodes sequentially.  PXM domain
216	 * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
217	 * 32, so we will continue numbering them in this manner until MAX_NUMNODES
218	 * approaches MAX_PXM_DOMAINS for i386.
219	 */
220	nodes_clear(node_online_map);
221	for (i = 0; i < MAX_PXM_DOMAINS; i++) {
222		if (BMAP_TEST(pxm_bitmap, i)) {
223			int nid = acpi_map_pxm_to_node(i);
224			node_set_online(nid);
225		}
226	}
227	BUG_ON(num_online_nodes() == 0);
228
229	/* set cnode id in memory chunk structure */
230	for (i = 0; i < num_memory_chunks; i++)
231		node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
232
233	printk("pxm bitmap: ");
234	for (i = 0; i < sizeof(pxm_bitmap); i++) {
235		printk("%02X ", pxm_bitmap[i]);
236	}
237	printk("\n");
238	printk("Number of logical nodes in system = %d\n", num_online_nodes());
239	printk("Number of memory chunks in system = %d\n", num_memory_chunks);
240
241	for (i = 0; i < MAX_APICID; i++)
242		apicid_2_node[i] = pxm_to_node(apicid_to_pxm[i]);
243
244	for (j = 0; j < num_memory_chunks; j++){
245		struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
246		printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
247		       j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
248		node_read_chunk(chunk->nid, chunk);
249		add_active_range(chunk->nid, chunk->start_pfn, chunk->end_pfn);
250	}
251
252	for_each_online_node(nid) {
253		unsigned long start = node_start_pfn[nid];
254		unsigned long end = node_end_pfn[nid];
255
256		memory_present(nid, start, end);
257		node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
258	}
259	return 1;
260out_fail:
261	return 0;
262}
263
264struct acpi_static_rsdt {
265	struct acpi_table_rsdt table;
266	u32 padding[7]; /* Allow for 7 more table entries */
267};
268
269int __init get_memcfg_from_srat(void)
270{
271	struct acpi_table_header *header = NULL;
272	struct acpi_table_rsdp *rsdp = NULL;
273	struct acpi_table_rsdt *rsdt = NULL;
274	acpi_native_uint rsdp_address = 0;
275	struct acpi_static_rsdt saved_rsdt;
276	int tables = 0;
277	int i = 0;
278
279	rsdp_address = acpi_find_rsdp();
280	if (!rsdp_address) {
281		printk("%s: System description tables not found\n",
282		       __FUNCTION__);
283		goto out_err;
284	}
285
286	printk("%s: assigning address to rsdp\n", __FUNCTION__);
287	rsdp = (struct acpi_table_rsdp *)(u32)rsdp_address;
288	if (!rsdp) {
289		printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
290		goto out_err;
291	}
292
293	printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
294		rsdp->oem_id);
295
296	if (strncmp(rsdp->signature, ACPI_SIG_RSDP,strlen(ACPI_SIG_RSDP))) {
297		printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
298		goto out_err;
299	}
300
301	rsdt = (struct acpi_table_rsdt *)
302	    boot_ioremap(rsdp->rsdt_physical_address, sizeof(struct acpi_table_rsdt));
303
304	if (!rsdt) {
305		printk(KERN_WARNING
306		       "%s: ACPI: Invalid root system description tables (RSDT)\n",
307		       __FUNCTION__);
308		goto out_err;
309	}
310
311	header = &rsdt->header;
312
313	if (strncmp(header->signature, ACPI_SIG_RSDT, strlen(ACPI_SIG_RSDT))) {
314		printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
315		goto out_err;
316	}
317
318	/*
319	 * The number of tables is computed by taking the
320	 * size of all entries (header size minus total
321	 * size of RSDT) divided by the size of each entry
322	 * (4-byte table pointers).
323	 */
324	tables = (header->length - sizeof(struct acpi_table_header)) / 4;
325
326	if (!tables)
327		goto out_err;
328
329	memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
330
331	if (saved_rsdt.table.header.length > sizeof(saved_rsdt)) {
332		printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
333		       saved_rsdt.table.header.length);
334		goto out_err;
335	}
336
337	printk("Begin SRAT table scan....\n");
338
339	for (i = 0; i < tables; i++) {
340		/* Map in header, then map in full table length. */
341		header = (struct acpi_table_header *)
342			boot_ioremap(saved_rsdt.table.table_offset_entry[i], sizeof(struct acpi_table_header));
343		if (!header)
344			break;
345		header = (struct acpi_table_header *)
346			boot_ioremap(saved_rsdt.table.table_offset_entry[i], header->length);
347		if (!header)
348			break;
349
350		if (strncmp((char *) &header->signature, ACPI_SIG_SRAT, 4))
351			continue;
352
353		/* we've found the srat table. don't need to look at any more tables */
354		return acpi20_parse_srat((struct acpi_table_srat *)header);
355	}
356out_err:
357	remove_all_active_ranges();
358	printk("failed to get NUMA memory information from SRAT table\n");
359	return 0;
360}
361