• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-WNDR4500v2-V1.0.0.60_1.0.38/src/linux/linux-2.6/arch/i386/kernel/cpu/cpufreq/
1/*
2 *   (c) 2003-2006 Advanced Micro Devices, Inc.
3 *  Your use of this code is subject to the terms and conditions of the
4 *  GNU general public license version 2. See "COPYING" or
5 *  http://www.gnu.org/licenses/gpl.html
6 *
7 *  Support : mark.langsdorf@amd.com
8 *
9 *  Based on the powernow-k7.c module written by Dave Jones.
10 *  (C) 2003 Dave Jones <davej@codemonkey.org.uk> on behalf of SuSE Labs
11 *  (C) 2004 Dominik Brodowski <linux@brodo.de>
12 *  (C) 2004 Pavel Machek <pavel@suse.cz>
13 *  Licensed under the terms of the GNU GPL License version 2.
14 *  Based upon datasheets & sample CPUs kindly provided by AMD.
15 *
16 *  Valuable input gratefully received from Dave Jones, Pavel Machek,
17 *  Dominik Brodowski, Jacob Shin, and others.
18 *  Originally developed by Paul Devriendt.
19 *  Processor information obtained from Chapter 9 (Power and Thermal Management)
20 *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
21 *  Opteron Processors" available for download from www.amd.com
22 *
23 *  Tables for specific CPUs can be inferred from
24 *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
25 */
26
27#include <linux/kernel.h>
28#include <linux/smp.h>
29#include <linux/module.h>
30#include <linux/init.h>
31#include <linux/cpufreq.h>
32#include <linux/slab.h>
33#include <linux/string.h>
34#include <linux/cpumask.h>
35#include <linux/sched.h>	/* for current / set_cpus_allowed() */
36
37#include <asm/msr.h>
38#include <asm/io.h>
39#include <asm/delay.h>
40
41#ifdef CONFIG_X86_POWERNOW_K8_ACPI
42#include <linux/acpi.h>
43#include <linux/mutex.h>
44#include <acpi/processor.h>
45#endif
46
47#define PFX "powernow-k8: "
48#define BFX PFX "BIOS error: "
49#define VERSION "version 2.00.00"
50#include "powernow-k8.h"
51
52/* serialize freq changes  */
53static DEFINE_MUTEX(fidvid_mutex);
54
55static struct powernow_k8_data *powernow_data[NR_CPUS];
56
57static int cpu_family = CPU_OPTERON;
58
59#ifndef CONFIG_SMP
60static cpumask_t cpu_core_map[1];
61#endif
62
63/* Return a frequency in MHz, given an input fid */
64static u32 find_freq_from_fid(u32 fid)
65{
66	return 800 + (fid * 100);
67}
68
69
70/* Return a frequency in KHz, given an input fid */
71static u32 find_khz_freq_from_fid(u32 fid)
72{
73	return 1000 * find_freq_from_fid(fid);
74}
75
76/* Return a frequency in MHz, given an input fid and did */
77static u32 find_freq_from_fiddid(u32 fid, u32 did)
78{
79	return 100 * (fid + 0x10) >> did;
80}
81
82static u32 find_khz_freq_from_fiddid(u32 fid, u32 did)
83{
84	return 1000 * find_freq_from_fiddid(fid, did);
85}
86
87static u32 find_fid_from_pstate(u32 pstate)
88{
89	u32 hi, lo;
90	rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
91	return lo & HW_PSTATE_FID_MASK;
92}
93
94static u32 find_did_from_pstate(u32 pstate)
95{
96	u32 hi, lo;
97	rdmsr(MSR_PSTATE_DEF_BASE + pstate, lo, hi);
98	return (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
99}
100
101/* Return the vco fid for an input fid
102 *
103 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
104 * only from corresponding high fids. This returns "high" fid corresponding to
105 * "low" one.
106 */
107static u32 convert_fid_to_vco_fid(u32 fid)
108{
109	if (fid < HI_FID_TABLE_BOTTOM)
110		return 8 + (2 * fid);
111	else
112		return fid;
113}
114
115/*
116 * Return 1 if the pending bit is set. Unless we just instructed the processor
117 * to transition to a new state, seeing this bit set is really bad news.
118 */
119static int pending_bit_stuck(void)
120{
121	u32 lo, hi;
122
123	if (cpu_family == CPU_HW_PSTATE)
124		return 0;
125
126	rdmsr(MSR_FIDVID_STATUS, lo, hi);
127	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
128}
129
130/*
131 * Update the global current fid / vid values from the status msr.
132 * Returns 1 on error.
133 */
134static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
135{
136	u32 lo, hi;
137	u32 i = 0;
138
139	if (cpu_family == CPU_HW_PSTATE) {
140		rdmsr(MSR_PSTATE_STATUS, lo, hi);
141		i = lo & HW_PSTATE_MASK;
142		rdmsr(MSR_PSTATE_DEF_BASE + i, lo, hi);
143		data->currfid = lo & HW_PSTATE_FID_MASK;
144		data->currdid = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
145		return 0;
146	}
147	do {
148		if (i++ > 10000) {
149			dprintk("detected change pending stuck\n");
150			return 1;
151		}
152		rdmsr(MSR_FIDVID_STATUS, lo, hi);
153	} while (lo & MSR_S_LO_CHANGE_PENDING);
154
155	data->currvid = hi & MSR_S_HI_CURRENT_VID;
156	data->currfid = lo & MSR_S_LO_CURRENT_FID;
157
158	return 0;
159}
160
161/* the isochronous relief time */
162static void count_off_irt(struct powernow_k8_data *data)
163{
164	udelay((1 << data->irt) * 10);
165	return;
166}
167
168/* the voltage stabalization time */
169static void count_off_vst(struct powernow_k8_data *data)
170{
171	udelay(data->vstable * VST_UNITS_20US);
172	return;
173}
174
175/* need to init the control msr to a safe value (for each cpu) */
176static void fidvid_msr_init(void)
177{
178	u32 lo, hi;
179	u8 fid, vid;
180
181	rdmsr(MSR_FIDVID_STATUS, lo, hi);
182	vid = hi & MSR_S_HI_CURRENT_VID;
183	fid = lo & MSR_S_LO_CURRENT_FID;
184	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
185	hi = MSR_C_HI_STP_GNT_BENIGN;
186	dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
187	wrmsr(MSR_FIDVID_CTL, lo, hi);
188}
189
190
191/* write the new fid value along with the other control fields to the msr */
192static int write_new_fid(struct powernow_k8_data *data, u32 fid)
193{
194	u32 lo;
195	u32 savevid = data->currvid;
196	u32 i = 0;
197
198	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
199		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
200		return 1;
201	}
202
203	lo = fid | (data->currvid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
204
205	dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
206		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
207
208	do {
209		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
210		if (i++ > 100) {
211			printk(KERN_ERR PFX "Hardware error - pending bit very stuck - no further pstate changes possible\n");
212			return 1;
213		}
214	} while (query_current_values_with_pending_wait(data));
215
216	count_off_irt(data);
217
218	if (savevid != data->currvid) {
219		printk(KERN_ERR PFX "vid change on fid trans, old 0x%x, new 0x%x\n",
220		       savevid, data->currvid);
221		return 1;
222	}
223
224	if (fid != data->currfid) {
225		printk(KERN_ERR PFX "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
226		        data->currfid);
227		return 1;
228	}
229
230	return 0;
231}
232
233/* Write a new vid to the hardware */
234static int write_new_vid(struct powernow_k8_data *data, u32 vid)
235{
236	u32 lo;
237	u32 savefid = data->currfid;
238	int i = 0;
239
240	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
241		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
242		return 1;
243	}
244
245	lo = data->currfid | (vid << MSR_C_LO_VID_SHIFT) | MSR_C_LO_INIT_FID_VID;
246
247	dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
248		vid, lo, STOP_GRANT_5NS);
249
250	do {
251		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
252		if (i++ > 100) {
253			printk(KERN_ERR PFX "internal error - pending bit very stuck - no further pstate changes possible\n");
254			return 1;
255		}
256	} while (query_current_values_with_pending_wait(data));
257
258	if (savefid != data->currfid) {
259		printk(KERN_ERR PFX "fid changed on vid trans, old 0x%x new 0x%x\n",
260		       savefid, data->currfid);
261		return 1;
262	}
263
264	if (vid != data->currvid) {
265		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, curr 0x%x\n", vid,
266				data->currvid);
267		return 1;
268	}
269
270	return 0;
271}
272
273/*
274 * Reduce the vid by the max of step or reqvid.
275 * Decreasing vid codes represent increasing voltages:
276 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
277 */
278static int decrease_vid_code_by_step(struct powernow_k8_data *data, u32 reqvid, u32 step)
279{
280	if ((data->currvid - reqvid) > step)
281		reqvid = data->currvid - step;
282
283	if (write_new_vid(data, reqvid))
284		return 1;
285
286	count_off_vst(data);
287
288	return 0;
289}
290
291/* Change hardware pstate by single MSR write */
292static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
293{
294	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
295	data->currfid = find_fid_from_pstate(pstate);
296	return 0;
297}
298
299/* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
300static int transition_fid_vid(struct powernow_k8_data *data, u32 reqfid, u32 reqvid)
301{
302	if (core_voltage_pre_transition(data, reqvid))
303		return 1;
304
305	if (core_frequency_transition(data, reqfid))
306		return 1;
307
308	if (core_voltage_post_transition(data, reqvid))
309		return 1;
310
311	if (query_current_values_with_pending_wait(data))
312		return 1;
313
314	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
315		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, curr 0x%x 0x%x\n",
316				smp_processor_id(),
317				reqfid, reqvid, data->currfid, data->currvid);
318		return 1;
319	}
320
321	dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
322		smp_processor_id(), data->currfid, data->currvid);
323
324	return 0;
325}
326
327/* Phase 1 - core voltage transition ... setup voltage */
328static int core_voltage_pre_transition(struct powernow_k8_data *data, u32 reqvid)
329{
330	u32 rvosteps = data->rvo;
331	u32 savefid = data->currfid;
332	u32 maxvid, lo;
333
334	dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, reqvid 0x%x, rvo 0x%x\n",
335		smp_processor_id(),
336		data->currfid, data->currvid, reqvid, data->rvo);
337
338	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
339	maxvid = 0x1f & (maxvid >> 16);
340	dprintk("ph1 maxvid=0x%x\n", maxvid);
341	if (reqvid < maxvid) /* lower numbers are higher voltages */
342		reqvid = maxvid;
343
344	while (data->currvid > reqvid) {
345		dprintk("ph1: curr 0x%x, req vid 0x%x\n",
346			data->currvid, reqvid);
347		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
348			return 1;
349	}
350
351	while ((rvosteps > 0) && ((data->rvo + data->currvid) > reqvid)) {
352		if (data->currvid == maxvid) {
353			rvosteps = 0;
354		} else {
355			dprintk("ph1: changing vid for rvo, req 0x%x\n",
356				data->currvid - 1);
357			if (decrease_vid_code_by_step(data, data->currvid - 1, 1))
358				return 1;
359			rvosteps--;
360		}
361	}
362
363	if (query_current_values_with_pending_wait(data))
364		return 1;
365
366	if (savefid != data->currfid) {
367		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n", data->currfid);
368		return 1;
369	}
370
371	dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
372		data->currfid, data->currvid);
373
374	return 0;
375}
376
377/* Phase 2 - core frequency transition */
378static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
379{
380	u32 vcoreqfid, vcocurrfid, vcofiddiff, fid_interval, savevid = data->currvid;
381
382	if ((reqfid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
383		printk(KERN_ERR PFX "ph2: illegal lo-lo transition 0x%x 0x%x\n",
384			reqfid, data->currfid);
385		return 1;
386	}
387
388	if (data->currfid == reqfid) {
389		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n", data->currfid);
390		return 0;
391	}
392
393	dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, reqfid 0x%x\n",
394		smp_processor_id(),
395		data->currfid, data->currvid, reqfid);
396
397	vcoreqfid = convert_fid_to_vco_fid(reqfid);
398	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
399	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
400	    : vcoreqfid - vcocurrfid;
401
402	while (vcofiddiff > 2) {
403		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
404
405		if (reqfid > data->currfid) {
406			if (data->currfid > LO_FID_TABLE_TOP) {
407				if (write_new_fid(data, data->currfid + fid_interval)) {
408					return 1;
409				}
410			} else {
411				if (write_new_fid
412				    (data, 2 + convert_fid_to_vco_fid(data->currfid))) {
413					return 1;
414				}
415			}
416		} else {
417			if (write_new_fid(data, data->currfid - fid_interval))
418				return 1;
419		}
420
421		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
422		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
423		    : vcoreqfid - vcocurrfid;
424	}
425
426	if (write_new_fid(data, reqfid))
427		return 1;
428
429	if (query_current_values_with_pending_wait(data))
430		return 1;
431
432	if (data->currfid != reqfid) {
433		printk(KERN_ERR PFX
434			"ph2: mismatch, failed fid transition, curr 0x%x, req 0x%x\n",
435			data->currfid, reqfid);
436		return 1;
437	}
438
439	if (savevid != data->currvid) {
440		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
441			savevid, data->currvid);
442		return 1;
443	}
444
445	dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
446		data->currfid, data->currvid);
447
448	return 0;
449}
450
451/* Phase 3 - core voltage transition flow ... jump to the final vid. */
452static int core_voltage_post_transition(struct powernow_k8_data *data, u32 reqvid)
453{
454	u32 savefid = data->currfid;
455	u32 savereqvid = reqvid;
456
457	dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
458		smp_processor_id(),
459		data->currfid, data->currvid);
460
461	if (reqvid != data->currvid) {
462		if (write_new_vid(data, reqvid))
463			return 1;
464
465		if (savefid != data->currfid) {
466			printk(KERN_ERR PFX
467			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
468			       savefid, data->currfid);
469			return 1;
470		}
471
472		if (data->currvid != reqvid) {
473			printk(KERN_ERR PFX
474			       "ph3: failed vid transition\n, req 0x%x, curr 0x%x",
475			       reqvid, data->currvid);
476			return 1;
477		}
478	}
479
480	if (query_current_values_with_pending_wait(data))
481		return 1;
482
483	if (savereqvid != data->currvid) {
484		dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
485		return 1;
486	}
487
488	if (savefid != data->currfid) {
489		dprintk("ph3 failed, currfid changed 0x%x\n",
490			data->currfid);
491		return 1;
492	}
493
494	dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
495		data->currfid, data->currvid);
496
497	return 0;
498}
499
500static int check_supported_cpu(unsigned int cpu)
501{
502	cpumask_t oldmask = CPU_MASK_ALL;
503	u32 eax, ebx, ecx, edx;
504	unsigned int rc = 0;
505
506	oldmask = current->cpus_allowed;
507	set_cpus_allowed(current, cpumask_of_cpu(cpu));
508
509	if (smp_processor_id() != cpu) {
510		printk(KERN_ERR PFX "limiting to cpu %u failed\n", cpu);
511		goto out;
512	}
513
514	if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
515		goto out;
516
517	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
518	if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
519	    ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
520		goto out;
521
522	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
523		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
524		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
525			printk(KERN_INFO PFX "Processor cpuid %x not supported\n", eax);
526			goto out;
527		}
528
529		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
530		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
531			printk(KERN_INFO PFX
532			       "No frequency change capabilities detected\n");
533			goto out;
534		}
535
536		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
537		if ((edx & P_STATE_TRANSITION_CAPABLE) != P_STATE_TRANSITION_CAPABLE) {
538			printk(KERN_INFO PFX "Power state transitions not supported\n");
539			goto out;
540		}
541	} else { /* must be a HW Pstate capable processor */
542		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
543		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
544			cpu_family = CPU_HW_PSTATE;
545		else
546			goto out;
547	}
548
549	rc = 1;
550
551out:
552	set_cpus_allowed(current, oldmask);
553	return rc;
554}
555
556static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
557{
558	unsigned int j;
559	u8 lastfid = 0xff;
560
561	for (j = 0; j < data->numps; j++) {
562		if (pst[j].vid > LEAST_VID) {
563			printk(KERN_ERR PFX "vid %d invalid : 0x%x\n", j, pst[j].vid);
564			return -EINVAL;
565		}
566		if (pst[j].vid < data->rvo) {	/* vid + rvo >= 0 */
567			printk(KERN_ERR BFX "0 vid exceeded with pstate %d\n", j);
568			return -ENODEV;
569		}
570		if (pst[j].vid < maxvid + data->rvo) {	/* vid + rvo >= maxvid */
571			printk(KERN_ERR BFX "maxvid exceeded with pstate %d\n", j);
572			return -ENODEV;
573		}
574		if (pst[j].fid > MAX_FID) {
575			printk(KERN_ERR BFX "maxfid exceeded with pstate %d\n", j);
576			return -ENODEV;
577		}
578		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
579			/* Only first fid is allowed to be in "low" range */
580			printk(KERN_ERR BFX "two low fids - %d : 0x%x\n", j, pst[j].fid);
581			return -EINVAL;
582		}
583		if (pst[j].fid < lastfid)
584			lastfid = pst[j].fid;
585	}
586	if (lastfid & 1) {
587		printk(KERN_ERR BFX "lastfid invalid\n");
588		return -EINVAL;
589	}
590	if (lastfid > LO_FID_TABLE_TOP)
591		printk(KERN_INFO BFX  "first fid not from lo freq table\n");
592
593	return 0;
594}
595
596static void print_basics(struct powernow_k8_data *data)
597{
598	int j;
599	for (j = 0; j < data->numps; j++) {
600		if (data->powernow_table[j].frequency != CPUFREQ_ENTRY_INVALID) {
601			if (cpu_family == CPU_HW_PSTATE) {
602			printk(KERN_INFO PFX "   %d : fid 0x%x gid 0x%x (%d MHz)\n", j, (data->powernow_table[j].index & 0xff00) >> 8,
603				(data->powernow_table[j].index & 0xff0000) >> 16,
604				data->powernow_table[j].frequency/1000);
605			} else {
606			printk(KERN_INFO PFX "   %d : fid 0x%x (%d MHz), vid 0x%x\n", j,
607				data->powernow_table[j].index & 0xff,
608				data->powernow_table[j].frequency/1000,
609				data->powernow_table[j].index >> 8);
610			}
611		}
612	}
613	if (data->batps)
614		printk(KERN_INFO PFX "Only %d pstates on battery\n", data->batps);
615}
616
617static int fill_powernow_table(struct powernow_k8_data *data, struct pst_s *pst, u8 maxvid)
618{
619	struct cpufreq_frequency_table *powernow_table;
620	unsigned int j;
621
622	if (data->batps) {    /* use ACPI support to get full speed on mains power */
623		printk(KERN_WARNING PFX "Only %d pstates usable (use ACPI driver for full range\n", data->batps);
624		data->numps = data->batps;
625	}
626
627	for ( j=1; j<data->numps; j++ ) {
628		if (pst[j-1].fid >= pst[j].fid) {
629			printk(KERN_ERR PFX "PST out of sequence\n");
630			return -EINVAL;
631		}
632	}
633
634	if (data->numps < 2) {
635		printk(KERN_ERR PFX "no p states to transition\n");
636		return -ENODEV;
637	}
638
639	if (check_pst_table(data, pst, maxvid))
640		return -EINVAL;
641
642	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
643		* (data->numps + 1)), GFP_KERNEL);
644	if (!powernow_table) {
645		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
646		return -ENOMEM;
647	}
648
649	for (j = 0; j < data->numps; j++) {
650		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
651		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
652		powernow_table[j].frequency = find_khz_freq_from_fid(pst[j].fid);
653	}
654	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
655	powernow_table[data->numps].index = 0;
656
657	if (query_current_values_with_pending_wait(data)) {
658		kfree(powernow_table);
659		return -EIO;
660	}
661
662	dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
663	data->powernow_table = powernow_table;
664	if (first_cpu(cpu_core_map[data->cpu]) == data->cpu)
665		print_basics(data);
666
667	for (j = 0; j < data->numps; j++)
668		if ((pst[j].fid==data->currfid) && (pst[j].vid==data->currvid))
669			return 0;
670
671	dprintk("currfid/vid do not match PST, ignoring\n");
672	return 0;
673}
674
675/* Find and validate the PSB/PST table in BIOS. */
676static int find_psb_table(struct powernow_k8_data *data)
677{
678	struct psb_s *psb;
679	unsigned int i;
680	u32 mvs;
681	u8 maxvid;
682	u32 cpst = 0;
683	u32 thiscpuid;
684
685	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
686		/* Scan BIOS looking for the signature. */
687		/* It can not be at ffff0 - it is too big. */
688
689		psb = phys_to_virt(i);
690		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
691			continue;
692
693		dprintk("found PSB header at 0x%p\n", psb);
694
695		dprintk("table vers: 0x%x\n", psb->tableversion);
696		if (psb->tableversion != PSB_VERSION_1_4) {
697			printk(KERN_ERR BFX "PSB table is not v1.4\n");
698			return -ENODEV;
699		}
700
701		dprintk("flags: 0x%x\n", psb->flags1);
702		if (psb->flags1) {
703			printk(KERN_ERR BFX "unknown flags\n");
704			return -ENODEV;
705		}
706
707		data->vstable = psb->vstable;
708		dprintk("voltage stabilization time: %d(*20us)\n", data->vstable);
709
710		dprintk("flags2: 0x%x\n", psb->flags2);
711		data->rvo = psb->flags2 & 3;
712		data->irt = ((psb->flags2) >> 2) & 3;
713		mvs = ((psb->flags2) >> 4) & 3;
714		data->vidmvs = 1 << mvs;
715		data->batps = ((psb->flags2) >> 6) & 3;
716
717		dprintk("ramp voltage offset: %d\n", data->rvo);
718		dprintk("isochronous relief time: %d\n", data->irt);
719		dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
720
721		dprintk("numpst: 0x%x\n", psb->num_tables);
722		cpst = psb->num_tables;
723		if ((psb->cpuid == 0x00000fc0) || (psb->cpuid == 0x00000fe0) ){
724			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
725			if ((thiscpuid == 0x00000fc0) || (thiscpuid == 0x00000fe0) ) {
726				cpst = 1;
727			}
728		}
729		if (cpst != 1) {
730			printk(KERN_ERR BFX "numpst must be 1\n");
731			return -ENODEV;
732		}
733
734		data->plllock = psb->plllocktime;
735		dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
736		dprintk("maxfid: 0x%x\n", psb->maxfid);
737		dprintk("maxvid: 0x%x\n", psb->maxvid);
738		maxvid = psb->maxvid;
739
740		data->numps = psb->numps;
741		dprintk("numpstates: 0x%x\n", data->numps);
742		return fill_powernow_table(data, (struct pst_s *)(psb+1), maxvid);
743	}
744	/*
745	 * If you see this message, complain to BIOS manufacturer. If
746	 * he tells you "we do not support Linux" or some similar
747	 * nonsense, remember that Windows 2000 uses the same legacy
748	 * mechanism that the old Linux PSB driver uses. Tell them it
749	 * is broken with Windows 2000.
750	 *
751	 * The reference to the AMD documentation is chapter 9 in the
752	 * BIOS and Kernel Developer's Guide, which is available on
753	 * www.amd.com
754	 */
755	printk(KERN_ERR PFX "BIOS error - no PSB or ACPI _PSS objects\n");
756	return -ENODEV;
757}
758
759#ifdef CONFIG_X86_POWERNOW_K8_ACPI
760static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
761{
762	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
763		return;
764
765	data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
766	data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
767	data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
768	data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
769	data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
770	data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
771}
772
773static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
774{
775	struct cpufreq_frequency_table *powernow_table;
776	int ret_val;
777
778	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
779		dprintk("register performance failed: bad ACPI data\n");
780		return -EIO;
781	}
782
783	/* verify the data contained in the ACPI structures */
784	if (data->acpi_data.state_count <= 1) {
785		dprintk("No ACPI P-States\n");
786		goto err_out;
787	}
788
789	if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
790		(data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
791		dprintk("Invalid control/status registers (%x - %x)\n",
792			data->acpi_data.control_register.space_id,
793			data->acpi_data.status_register.space_id);
794		goto err_out;
795	}
796
797	/* fill in data->powernow_table */
798	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
799		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
800	if (!powernow_table) {
801		dprintk("powernow_table memory alloc failure\n");
802		goto err_out;
803	}
804
805	if (cpu_family == CPU_HW_PSTATE)
806		ret_val = fill_powernow_table_pstate(data, powernow_table);
807	else
808		ret_val = fill_powernow_table_fidvid(data, powernow_table);
809	if (ret_val)
810		goto err_out_mem;
811
812	powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
813	powernow_table[data->acpi_data.state_count].index = 0;
814	data->powernow_table = powernow_table;
815
816	/* fill in data */
817	data->numps = data->acpi_data.state_count;
818	if (first_cpu(cpu_core_map[data->cpu]) == data->cpu)
819		print_basics(data);
820	powernow_k8_acpi_pst_values(data, 0);
821
822	/* notify BIOS that we exist */
823	acpi_processor_notify_smm(THIS_MODULE);
824
825	return 0;
826
827err_out_mem:
828	kfree(powernow_table);
829
830err_out:
831	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
832
833	/* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
834	data->acpi_data.state_count = 0;
835
836	return -ENODEV;
837}
838
839static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
840{
841	int i;
842
843	for (i = 0; i < data->acpi_data.state_count; i++) {
844		u32 index;
845		u32 hi = 0, lo = 0;
846		u32 fid;
847		u32 did;
848
849		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
850		if (index > MAX_HW_PSTATE) {
851			printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
852			printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
853		}
854		rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
855		if (!(hi & HW_PSTATE_VALID_MASK)) {
856			dprintk("invalid pstate %d, ignoring\n", index);
857			powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
858			continue;
859		}
860
861		fid = lo & HW_PSTATE_FID_MASK;
862		did = (lo & HW_PSTATE_DID_MASK) >> HW_PSTATE_DID_SHIFT;
863
864		dprintk("   %d : fid 0x%x, did 0x%x\n", index, fid, did);
865
866		powernow_table[i].index = index | (fid << HW_FID_INDEX_SHIFT) | (did << HW_DID_INDEX_SHIFT);
867
868		powernow_table[i].frequency = find_khz_freq_from_fiddid(fid, did);
869
870		if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
871			printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
872				powernow_table[i].frequency,
873				(unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
874			powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
875			continue;
876		}
877	}
878	return 0;
879}
880
881static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpufreq_frequency_table *powernow_table)
882{
883	int i;
884	int cntlofreq = 0;
885	for (i = 0; i < data->acpi_data.state_count; i++) {
886		u32 fid;
887		u32 vid;
888
889		if (data->exttype) {
890			fid = data->acpi_data.states[i].status & EXT_FID_MASK;
891			vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK;
892		} else {
893			fid = data->acpi_data.states[i].control & FID_MASK;
894			vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
895		}
896
897		dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
898
899		powernow_table[i].index = fid; /* lower 8 bits */
900		powernow_table[i].index |= (vid << 8); /* upper 8 bits */
901		powernow_table[i].frequency = find_khz_freq_from_fid(fid);
902
903		/* verify frequency is OK */
904		if ((powernow_table[i].frequency > (MAX_FREQ * 1000)) ||
905			(powernow_table[i].frequency < (MIN_FREQ * 1000))) {
906			dprintk("invalid freq %u kHz, ignoring\n", powernow_table[i].frequency);
907			powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
908			continue;
909		}
910
911		/* verify voltage is OK - BIOSs are using "off" to indicate invalid */
912		if (vid == VID_OFF) {
913			dprintk("invalid vid %u, ignoring\n", vid);
914			powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
915			continue;
916		}
917
918		/* verify only 1 entry from the lo frequency table */
919		if (fid < HI_FID_TABLE_BOTTOM) {
920			if (cntlofreq) {
921				/* if both entries are the same, ignore this one ... */
922				if ((powernow_table[i].frequency != powernow_table[cntlofreq].frequency) ||
923				    (powernow_table[i].index != powernow_table[cntlofreq].index)) {
924					printk(KERN_ERR PFX "Too many lo freq table entries\n");
925					return 1;
926				}
927
928				dprintk("double low frequency table entry, ignoring it.\n");
929				powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
930				continue;
931			} else
932				cntlofreq = i;
933		}
934
935		if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
936			printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
937				powernow_table[i].frequency,
938				(unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
939			powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
940			continue;
941		}
942	}
943	return 0;
944}
945
946static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
947{
948	if (data->acpi_data.state_count)
949		acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
950}
951
952#else
953static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
954static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
955static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
956#endif /* CONFIG_X86_POWERNOW_K8_ACPI */
957
958/* Take a frequency, and issue the fid/vid transition command */
959static int transition_frequency_fidvid(struct powernow_k8_data *data, unsigned int index)
960{
961	u32 fid = 0;
962	u32 vid = 0;
963	int res, i;
964	struct cpufreq_freqs freqs;
965
966	dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
967
968	/* fid/vid correctness check for k8 */
969	/* fid are the lower 8 bits of the index we stored into
970	 * the cpufreq frequency table in find_psb_table, vid
971	 * are the upper 8 bits.
972	 */
973	fid = data->powernow_table[index].index & 0xFF;
974	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
975
976	dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
977
978	if (query_current_values_with_pending_wait(data))
979		return 1;
980
981	if ((data->currvid == vid) && (data->currfid == fid)) {
982		dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
983			fid, vid);
984		return 0;
985	}
986
987	if ((fid < HI_FID_TABLE_BOTTOM) && (data->currfid < HI_FID_TABLE_BOTTOM)) {
988		printk(KERN_ERR PFX
989		       "ignoring illegal change in lo freq table-%x to 0x%x\n",
990		       data->currfid, fid);
991		return 1;
992	}
993
994	dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
995		smp_processor_id(), fid, vid);
996	freqs.old = find_khz_freq_from_fid(data->currfid);
997	freqs.new = find_khz_freq_from_fid(fid);
998
999	for_each_cpu_mask(i, *(data->available_cores)) {
1000		freqs.cpu = i;
1001		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1002	}
1003
1004	res = transition_fid_vid(data, fid, vid);
1005	freqs.new = find_khz_freq_from_fid(data->currfid);
1006
1007	for_each_cpu_mask(i, *(data->available_cores)) {
1008		freqs.cpu = i;
1009		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1010	}
1011	return res;
1012}
1013
1014/* Take a frequency, and issue the hardware pstate transition command */
1015static int transition_frequency_pstate(struct powernow_k8_data *data, unsigned int index)
1016{
1017	u32 fid = 0;
1018	u32 did = 0;
1019	u32 pstate = 0;
1020	int res, i;
1021	struct cpufreq_freqs freqs;
1022
1023	dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
1024
1025	/* get fid did for hardware pstate transition */
1026	pstate = index & HW_PSTATE_MASK;
1027	if (pstate > MAX_HW_PSTATE)
1028		return 0;
1029	fid = (index & HW_FID_INDEX_MASK) >> HW_FID_INDEX_SHIFT;
1030	did = (index & HW_DID_INDEX_MASK) >> HW_DID_INDEX_SHIFT;
1031	freqs.old = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1032	freqs.new = find_khz_freq_from_fiddid(fid, did);
1033
1034	for_each_cpu_mask(i, *(data->available_cores)) {
1035		freqs.cpu = i;
1036		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1037	}
1038
1039	res = transition_pstate(data, pstate);
1040	data->currfid = find_fid_from_pstate(pstate);
1041	data->currdid = find_did_from_pstate(pstate);
1042	freqs.new = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1043
1044	for_each_cpu_mask(i, *(data->available_cores)) {
1045		freqs.cpu = i;
1046		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1047	}
1048	return res;
1049}
1050
1051/* Driver entry point to switch to the target frequency */
1052static int powernowk8_target(struct cpufreq_policy *pol, unsigned targfreq, unsigned relation)
1053{
1054	cpumask_t oldmask = CPU_MASK_ALL;
1055	struct powernow_k8_data *data = powernow_data[pol->cpu];
1056	u32 checkfid;
1057	u32 checkvid;
1058	unsigned int newstate;
1059	int ret = -EIO;
1060
1061	if (!data)
1062		return -EINVAL;
1063
1064	checkfid = data->currfid;
1065	checkvid = data->currvid;
1066
1067	/* only run on specific CPU from here on */
1068	oldmask = current->cpus_allowed;
1069	set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1070
1071	if (smp_processor_id() != pol->cpu) {
1072		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1073		goto err_out;
1074	}
1075
1076	if (pending_bit_stuck()) {
1077		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1078		goto err_out;
1079	}
1080
1081	dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1082		pol->cpu, targfreq, pol->min, pol->max, relation);
1083
1084	if (query_current_values_with_pending_wait(data))
1085		goto err_out;
1086
1087	if (cpu_family == CPU_HW_PSTATE)
1088		dprintk("targ: curr fid 0x%x, did 0x%x\n",
1089			data->currfid, data->currvid);
1090	else {
1091		dprintk("targ: curr fid 0x%x, vid 0x%x\n",
1092		data->currfid, data->currvid);
1093
1094		if ((checkvid != data->currvid) || (checkfid != data->currfid)) {
1095			printk(KERN_INFO PFX
1096				"error - out of sync, fix 0x%x 0x%x, vid 0x%x 0x%x\n",
1097				checkfid, data->currfid, checkvid, data->currvid);
1098		}
1099	}
1100
1101	if (cpufreq_frequency_table_target(pol, data->powernow_table, targfreq, relation, &newstate))
1102		goto err_out;
1103
1104	mutex_lock(&fidvid_mutex);
1105
1106	powernow_k8_acpi_pst_values(data, newstate);
1107
1108	if (cpu_family == CPU_HW_PSTATE)
1109		ret = transition_frequency_pstate(data, newstate);
1110	else
1111		ret = transition_frequency_fidvid(data, newstate);
1112	if (ret) {
1113		printk(KERN_ERR PFX "transition frequency failed\n");
1114		ret = 1;
1115		mutex_unlock(&fidvid_mutex);
1116		goto err_out;
1117	}
1118	mutex_unlock(&fidvid_mutex);
1119
1120	if (cpu_family == CPU_HW_PSTATE)
1121		pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1122	else
1123		pol->cur = find_khz_freq_from_fid(data->currfid);
1124	ret = 0;
1125
1126err_out:
1127	set_cpus_allowed(current, oldmask);
1128	return ret;
1129}
1130
1131/* Driver entry point to verify the policy and range of frequencies */
1132static int powernowk8_verify(struct cpufreq_policy *pol)
1133{
1134	struct powernow_k8_data *data = powernow_data[pol->cpu];
1135
1136	if (!data)
1137		return -EINVAL;
1138
1139	return cpufreq_frequency_table_verify(pol, data->powernow_table);
1140}
1141
1142/* per CPU init entry point to the driver */
1143static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1144{
1145	struct powernow_k8_data *data;
1146	cpumask_t oldmask = CPU_MASK_ALL;
1147	int rc;
1148
1149	if (!cpu_online(pol->cpu))
1150		return -ENODEV;
1151
1152	if (!check_supported_cpu(pol->cpu))
1153		return -ENODEV;
1154
1155	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1156	if (!data) {
1157		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1158		return -ENOMEM;
1159	}
1160
1161	data->cpu = pol->cpu;
1162
1163	if (powernow_k8_cpu_init_acpi(data)) {
1164		/*
1165		 * Use the PSB BIOS structure. This is only availabe on
1166		 * an UP version, and is deprecated by AMD.
1167		 */
1168		if (num_online_cpus() != 1) {
1169			printk(KERN_ERR PFX "MP systems not supported by PSB BIOS structure\n");
1170			kfree(data);
1171			return -ENODEV;
1172		}
1173		if (pol->cpu != 0) {
1174			printk(KERN_ERR PFX "No _PSS objects for CPU other than CPU0\n");
1175			kfree(data);
1176			return -ENODEV;
1177		}
1178		rc = find_psb_table(data);
1179		if (rc) {
1180			kfree(data);
1181			return -ENODEV;
1182		}
1183	}
1184
1185	/* only run on specific CPU from here on */
1186	oldmask = current->cpus_allowed;
1187	set_cpus_allowed(current, cpumask_of_cpu(pol->cpu));
1188
1189	if (smp_processor_id() != pol->cpu) {
1190		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1191		goto err_out;
1192	}
1193
1194	if (pending_bit_stuck()) {
1195		printk(KERN_ERR PFX "failing init, change pending bit set\n");
1196		goto err_out;
1197	}
1198
1199	if (query_current_values_with_pending_wait(data))
1200		goto err_out;
1201
1202	if (cpu_family == CPU_OPTERON)
1203		fidvid_msr_init();
1204
1205	/* run on any CPU again */
1206	set_cpus_allowed(current, oldmask);
1207
1208	pol->governor = CPUFREQ_DEFAULT_GOVERNOR;
1209	if (cpu_family == CPU_HW_PSTATE)
1210		pol->cpus = cpumask_of_cpu(pol->cpu);
1211	else
1212		pol->cpus = cpu_core_map[pol->cpu];
1213	data->available_cores = &(pol->cpus);
1214
1215	/* Take a crude guess here.
1216	 * That guess was in microseconds, so multiply with 1000 */
1217	pol->cpuinfo.transition_latency = (((data->rvo + 8) * data->vstable * VST_UNITS_20US)
1218	    + (3 * (1 << data->irt) * 10)) * 1000;
1219
1220	if (cpu_family == CPU_HW_PSTATE)
1221		pol->cur = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1222	else
1223		pol->cur = find_khz_freq_from_fid(data->currfid);
1224	dprintk("policy current frequency %d kHz\n", pol->cur);
1225
1226	/* min/max the cpu is capable of */
1227	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1228		printk(KERN_ERR PFX "invalid powernow_table\n");
1229		powernow_k8_cpu_exit_acpi(data);
1230		kfree(data->powernow_table);
1231		kfree(data);
1232		return -EINVAL;
1233	}
1234
1235	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1236
1237	if (cpu_family == CPU_HW_PSTATE)
1238		dprintk("cpu_init done, current fid 0x%x, did 0x%x\n",
1239			data->currfid, data->currdid);
1240	else
1241		dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
1242			data->currfid, data->currvid);
1243
1244	powernow_data[pol->cpu] = data;
1245
1246	return 0;
1247
1248err_out:
1249	set_cpus_allowed(current, oldmask);
1250	powernow_k8_cpu_exit_acpi(data);
1251
1252	kfree(data);
1253	return -ENODEV;
1254}
1255
1256static int __devexit powernowk8_cpu_exit (struct cpufreq_policy *pol)
1257{
1258	struct powernow_k8_data *data = powernow_data[pol->cpu];
1259
1260	if (!data)
1261		return -EINVAL;
1262
1263	powernow_k8_cpu_exit_acpi(data);
1264
1265	cpufreq_frequency_table_put_attr(pol->cpu);
1266
1267	kfree(data->powernow_table);
1268	kfree(data);
1269
1270	return 0;
1271}
1272
1273static unsigned int powernowk8_get (unsigned int cpu)
1274{
1275	struct powernow_k8_data *data;
1276	cpumask_t oldmask = current->cpus_allowed;
1277	unsigned int khz = 0;
1278
1279	data = powernow_data[first_cpu(cpu_core_map[cpu])];
1280
1281	if (!data)
1282		return -EINVAL;
1283
1284	set_cpus_allowed(current, cpumask_of_cpu(cpu));
1285	if (smp_processor_id() != cpu) {
1286		printk(KERN_ERR PFX "limiting to CPU %d failed in powernowk8_get\n", cpu);
1287		set_cpus_allowed(current, oldmask);
1288		return 0;
1289	}
1290
1291	if (query_current_values_with_pending_wait(data))
1292		goto out;
1293
1294	if (cpu_family == CPU_HW_PSTATE)
1295		khz = find_khz_freq_from_fiddid(data->currfid, data->currdid);
1296	else
1297		khz = find_khz_freq_from_fid(data->currfid);
1298
1299
1300out:
1301	set_cpus_allowed(current, oldmask);
1302	return khz;
1303}
1304
1305static struct freq_attr* powernow_k8_attr[] = {
1306	&cpufreq_freq_attr_scaling_available_freqs,
1307	NULL,
1308};
1309
1310static struct cpufreq_driver cpufreq_amd64_driver = {
1311	.verify = powernowk8_verify,
1312	.target = powernowk8_target,
1313	.init = powernowk8_cpu_init,
1314	.exit = __devexit_p(powernowk8_cpu_exit),
1315	.get = powernowk8_get,
1316	.name = "powernow-k8",
1317	.owner = THIS_MODULE,
1318	.attr = powernow_k8_attr,
1319};
1320
1321/* driver entry point for init */
1322static int __cpuinit powernowk8_init(void)
1323{
1324	unsigned int i, supported_cpus = 0;
1325
1326	for_each_online_cpu(i) {
1327		if (check_supported_cpu(i))
1328			supported_cpus++;
1329	}
1330
1331	if (supported_cpus == num_online_cpus()) {
1332		printk(KERN_INFO PFX "Found %d %s "
1333			"processors (" VERSION ")\n", supported_cpus,
1334			boot_cpu_data.x86_model_id);
1335		return cpufreq_register_driver(&cpufreq_amd64_driver);
1336	}
1337
1338	return -ENODEV;
1339}
1340
1341/* driver entry point for term */
1342static void __exit powernowk8_exit(void)
1343{
1344	dprintk("exit\n");
1345
1346	cpufreq_unregister_driver(&cpufreq_amd64_driver);
1347}
1348
1349MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
1350MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1351MODULE_LICENSE("GPL");
1352
1353late_initcall(powernowk8_init);
1354module_exit(powernowk8_exit);
1355