1/* crypto/bn/bn_gf2m.c */
2/* ====================================================================
3 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
4 *
5 * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
6 * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
7 * to the OpenSSL project.
8 *
9 * The ECC Code is licensed pursuant to the OpenSSL open source
10 * license provided below.
11 *
12 * In addition, Sun covenants to all licensees who provide a reciprocal
13 * covenant with respect to their own patents if any, not to sue under
14 * current and future patent claims necessarily infringed by the making,
15 * using, practicing, selling, offering for sale and/or otherwise
16 * disposing of the ECC Code as delivered hereunder (or portions thereof),
17 * provided that such covenant shall not apply:
18 *  1) for code that a licensee deletes from the ECC Code;
19 *  2) separates from the ECC Code; or
20 *  3) for infringements caused by:
21 *       i) the modification of the ECC Code or
22 *      ii) the combination of the ECC Code with other software or
23 *          devices where such combination causes the infringement.
24 *
25 * The software is originally written by Sheueling Chang Shantz and
26 * Douglas Stebila of Sun Microsystems Laboratories.
27 *
28 */
29
30/* NOTE: This file is licensed pursuant to the OpenSSL license below
31 * and may be modified; but after modifications, the above covenant
32 * may no longer apply!  In such cases, the corresponding paragraph
33 * ["In addition, Sun covenants ... causes the infringement."] and
34 * this note can be edited out; but please keep the Sun copyright
35 * notice and attribution. */
36
37/* ====================================================================
38 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 *
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 *
47 * 2. Redistributions in binary form must reproduce the above copyright
48 *    notice, this list of conditions and the following disclaimer in
49 *    the documentation and/or other materials provided with the
50 *    distribution.
51 *
52 * 3. All advertising materials mentioning features or use of this
53 *    software must display the following acknowledgment:
54 *    "This product includes software developed by the OpenSSL Project
55 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
56 *
57 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
58 *    endorse or promote products derived from this software without
59 *    prior written permission. For written permission, please contact
60 *    openssl-core@openssl.org.
61 *
62 * 5. Products derived from this software may not be called "OpenSSL"
63 *    nor may "OpenSSL" appear in their names without prior written
64 *    permission of the OpenSSL Project.
65 *
66 * 6. Redistributions of any form whatsoever must retain the following
67 *    acknowledgment:
68 *    "This product includes software developed by the OpenSSL Project
69 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
70 *
71 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
72 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
73 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
74 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
75 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
76 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
77 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
78 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
79 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
80 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
81 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
82 * OF THE POSSIBILITY OF SUCH DAMAGE.
83 * ====================================================================
84 *
85 * This product includes cryptographic software written by Eric Young
86 * (eay@cryptsoft.com).  This product includes software written by Tim
87 * Hudson (tjh@cryptsoft.com).
88 *
89 */
90
91#include <assert.h>
92#include <limits.h>
93#include <stdio.h>
94#include "cryptlib.h"
95#include "bn_lcl.h"
96
97/* Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should fail. */
98#define MAX_ITERATIONS 50
99
100static const BN_ULONG SQR_tb[16] =
101  {     0,     1,     4,     5,    16,    17,    20,    21,
102       64,    65,    68,    69,    80,    81,    84,    85 };
103/* Platform-specific macros to accelerate squaring. */
104#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
105#define SQR1(w) \
106    SQR_tb[(w) >> 60 & 0xF] << 56 | SQR_tb[(w) >> 56 & 0xF] << 48 | \
107    SQR_tb[(w) >> 52 & 0xF] << 40 | SQR_tb[(w) >> 48 & 0xF] << 32 | \
108    SQR_tb[(w) >> 44 & 0xF] << 24 | SQR_tb[(w) >> 40 & 0xF] << 16 | \
109    SQR_tb[(w) >> 36 & 0xF] <<  8 | SQR_tb[(w) >> 32 & 0xF]
110#define SQR0(w) \
111    SQR_tb[(w) >> 28 & 0xF] << 56 | SQR_tb[(w) >> 24 & 0xF] << 48 | \
112    SQR_tb[(w) >> 20 & 0xF] << 40 | SQR_tb[(w) >> 16 & 0xF] << 32 | \
113    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
114    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
115#endif
116#ifdef THIRTY_TWO_BIT
117#define SQR1(w) \
118    SQR_tb[(w) >> 28 & 0xF] << 24 | SQR_tb[(w) >> 24 & 0xF] << 16 | \
119    SQR_tb[(w) >> 20 & 0xF] <<  8 | SQR_tb[(w) >> 16 & 0xF]
120#define SQR0(w) \
121    SQR_tb[(w) >> 12 & 0xF] << 24 | SQR_tb[(w) >>  8 & 0xF] << 16 | \
122    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
123#endif
124#ifdef SIXTEEN_BIT
125#define SQR1(w) \
126    SQR_tb[(w) >> 12 & 0xF] <<  8 | SQR_tb[(w) >>  8 & 0xF]
127#define SQR0(w) \
128    SQR_tb[(w) >>  4 & 0xF] <<  8 | SQR_tb[(w)       & 0xF]
129#endif
130#ifdef EIGHT_BIT
131#define SQR1(w) \
132    SQR_tb[(w) >>  4 & 0xF]
133#define SQR0(w) \
134    SQR_tb[(w)       & 15]
135#endif
136
137/* Product of two polynomials a, b each with degree < BN_BITS2 - 1,
138 * result is a polynomial r with degree < 2 * BN_BITS - 1
139 * The caller MUST ensure that the variables have the right amount
140 * of space allocated.
141 */
142#ifdef EIGHT_BIT
143static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
144	{
145	register BN_ULONG h, l, s;
146	BN_ULONG tab[4], top1b = a >> 7;
147	register BN_ULONG a1, a2;
148
149	a1 = a & (0x7F); a2 = a1 << 1;
150
151	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
152
153	s = tab[b      & 0x3]; l  = s;
154	s = tab[b >> 2 & 0x3]; l ^= s << 2; h  = s >> 6;
155	s = tab[b >> 4 & 0x3]; l ^= s << 4; h ^= s >> 4;
156	s = tab[b >> 6      ]; l ^= s << 6; h ^= s >> 2;
157
158	/* compensate for the top bit of a */
159
160	if (top1b & 01) { l ^= b << 7; h ^= b >> 1; }
161
162	*r1 = h; *r0 = l;
163	}
164#endif
165#ifdef SIXTEEN_BIT
166static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
167	{
168	register BN_ULONG h, l, s;
169	BN_ULONG tab[4], top1b = a >> 15;
170	register BN_ULONG a1, a2;
171
172	a1 = a & (0x7FFF); a2 = a1 << 1;
173
174	tab[0] = 0; tab[1] = a1; tab[2] = a2; tab[3] = a1^a2;
175
176	s = tab[b      & 0x3]; l  = s;
177	s = tab[b >> 2 & 0x3]; l ^= s <<  2; h  = s >> 14;
178	s = tab[b >> 4 & 0x3]; l ^= s <<  4; h ^= s >> 12;
179	s = tab[b >> 6 & 0x3]; l ^= s <<  6; h ^= s >> 10;
180	s = tab[b >> 8 & 0x3]; l ^= s <<  8; h ^= s >>  8;
181	s = tab[b >>10 & 0x3]; l ^= s << 10; h ^= s >>  6;
182	s = tab[b >>12 & 0x3]; l ^= s << 12; h ^= s >>  4;
183	s = tab[b >>14      ]; l ^= s << 14; h ^= s >>  2;
184
185	/* compensate for the top bit of a */
186
187	if (top1b & 01) { l ^= b << 15; h ^= b >> 1; }
188
189	*r1 = h; *r0 = l;
190	}
191#endif
192#ifdef THIRTY_TWO_BIT
193static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
194	{
195	register BN_ULONG h, l, s;
196	BN_ULONG tab[8], top2b = a >> 30;
197	register BN_ULONG a1, a2, a4;
198
199	a1 = a & (0x3FFFFFFF); a2 = a1 << 1; a4 = a2 << 1;
200
201	tab[0] =  0; tab[1] = a1;    tab[2] = a2;    tab[3] = a1^a2;
202	tab[4] = a4; tab[5] = a1^a4; tab[6] = a2^a4; tab[7] = a1^a2^a4;
203
204	s = tab[b       & 0x7]; l  = s;
205	s = tab[b >>  3 & 0x7]; l ^= s <<  3; h  = s >> 29;
206	s = tab[b >>  6 & 0x7]; l ^= s <<  6; h ^= s >> 26;
207	s = tab[b >>  9 & 0x7]; l ^= s <<  9; h ^= s >> 23;
208	s = tab[b >> 12 & 0x7]; l ^= s << 12; h ^= s >> 20;
209	s = tab[b >> 15 & 0x7]; l ^= s << 15; h ^= s >> 17;
210	s = tab[b >> 18 & 0x7]; l ^= s << 18; h ^= s >> 14;
211	s = tab[b >> 21 & 0x7]; l ^= s << 21; h ^= s >> 11;
212	s = tab[b >> 24 & 0x7]; l ^= s << 24; h ^= s >>  8;
213	s = tab[b >> 27 & 0x7]; l ^= s << 27; h ^= s >>  5;
214	s = tab[b >> 30      ]; l ^= s << 30; h ^= s >>  2;
215
216	/* compensate for the top two bits of a */
217
218	if (top2b & 01) { l ^= b << 30; h ^= b >> 2; }
219	if (top2b & 02) { l ^= b << 31; h ^= b >> 1; }
220
221	*r1 = h; *r0 = l;
222	}
223#endif
224#if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
225static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a, const BN_ULONG b)
226	{
227	register BN_ULONG h, l, s;
228	BN_ULONG tab[16], top3b = a >> 61;
229	register BN_ULONG a1, a2, a4, a8;
230
231	a1 = a & (0x1FFFFFFFFFFFFFFFULL); a2 = a1 << 1; a4 = a2 << 1; a8 = a4 << 1;
232
233	tab[ 0] = 0;     tab[ 1] = a1;       tab[ 2] = a2;       tab[ 3] = a1^a2;
234	tab[ 4] = a4;    tab[ 5] = a1^a4;    tab[ 6] = a2^a4;    tab[ 7] = a1^a2^a4;
235	tab[ 8] = a8;    tab[ 9] = a1^a8;    tab[10] = a2^a8;    tab[11] = a1^a2^a8;
236	tab[12] = a4^a8; tab[13] = a1^a4^a8; tab[14] = a2^a4^a8; tab[15] = a1^a2^a4^a8;
237
238	s = tab[b       & 0xF]; l  = s;
239	s = tab[b >>  4 & 0xF]; l ^= s <<  4; h  = s >> 60;
240	s = tab[b >>  8 & 0xF]; l ^= s <<  8; h ^= s >> 56;
241	s = tab[b >> 12 & 0xF]; l ^= s << 12; h ^= s >> 52;
242	s = tab[b >> 16 & 0xF]; l ^= s << 16; h ^= s >> 48;
243	s = tab[b >> 20 & 0xF]; l ^= s << 20; h ^= s >> 44;
244	s = tab[b >> 24 & 0xF]; l ^= s << 24; h ^= s >> 40;
245	s = tab[b >> 28 & 0xF]; l ^= s << 28; h ^= s >> 36;
246	s = tab[b >> 32 & 0xF]; l ^= s << 32; h ^= s >> 32;
247	s = tab[b >> 36 & 0xF]; l ^= s << 36; h ^= s >> 28;
248	s = tab[b >> 40 & 0xF]; l ^= s << 40; h ^= s >> 24;
249	s = tab[b >> 44 & 0xF]; l ^= s << 44; h ^= s >> 20;
250	s = tab[b >> 48 & 0xF]; l ^= s << 48; h ^= s >> 16;
251	s = tab[b >> 52 & 0xF]; l ^= s << 52; h ^= s >> 12;
252	s = tab[b >> 56 & 0xF]; l ^= s << 56; h ^= s >>  8;
253	s = tab[b >> 60      ]; l ^= s << 60; h ^= s >>  4;
254
255	/* compensate for the top three bits of a */
256
257	if (top3b & 01) { l ^= b << 61; h ^= b >> 3; }
258	if (top3b & 02) { l ^= b << 62; h ^= b >> 2; }
259	if (top3b & 04) { l ^= b << 63; h ^= b >> 1; }
260
261	*r1 = h; *r0 = l;
262	}
263#endif
264
265/* Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
266 * result is a polynomial r with degree < 4 * BN_BITS2 - 1
267 * The caller MUST ensure that the variables have the right amount
268 * of space allocated.
269 */
270static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0, const BN_ULONG b1, const BN_ULONG b0)
271	{
272	BN_ULONG m1, m0;
273	/* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
274	bn_GF2m_mul_1x1(r+3, r+2, a1, b1);
275	bn_GF2m_mul_1x1(r+1, r, a0, b0);
276	bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
277	/* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
278	r[2] ^= m1 ^ r[1] ^ r[3];  /* h0 ^= m1 ^ l1 ^ h1; */
279	r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0;  /* l1 ^= l0 ^ h0 ^ m0; */
280	}
281
282
283/* Add polynomials a and b and store result in r; r could be a or b, a and b
284 * could be equal; r is the bitwise XOR of a and b.
285 */
286int	BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
287	{
288	int i;
289	const BIGNUM *at, *bt;
290
291	bn_check_top(a);
292	bn_check_top(b);
293
294	if (a->top < b->top) { at = b; bt = a; }
295	else { at = a; bt = b; }
296
297	bn_wexpand(r, at->top);
298
299	for (i = 0; i < bt->top; i++)
300		{
301		r->d[i] = at->d[i] ^ bt->d[i];
302		}
303	for (; i < at->top; i++)
304		{
305		r->d[i] = at->d[i];
306		}
307
308	r->top = at->top;
309	bn_correct_top(r);
310
311	return 1;
312	}
313
314
315/* Some functions allow for representation of the irreducible polynomials
316 * as an int[], say p.  The irreducible f(t) is then of the form:
317 *     t^p[0] + t^p[1] + ... + t^p[k]
318 * where m = p[0] > p[1] > ... > p[k] = 0.
319 */
320
321
322/* Performs modular reduction of a and store result in r.  r could be a. */
323int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[])
324	{
325	int j, k;
326	int n, dN, d0, d1;
327	BN_ULONG zz, *z;
328
329	bn_check_top(a);
330
331	if (!p[0])
332		{
333		/* reduction mod 1 => return 0 */
334		BN_zero(r);
335		return 1;
336		}
337
338	/* Since the algorithm does reduction in the r value, if a != r, copy
339	 * the contents of a into r so we can do reduction in r.
340	 */
341	if (a != r)
342		{
343		if (!bn_wexpand(r, a->top)) return 0;
344		for (j = 0; j < a->top; j++)
345			{
346			r->d[j] = a->d[j];
347			}
348		r->top = a->top;
349		}
350	z = r->d;
351
352	/* start reduction */
353	dN = p[0] / BN_BITS2;
354	for (j = r->top - 1; j > dN;)
355		{
356		zz = z[j];
357		if (z[j] == 0) { j--; continue; }
358		z[j] = 0;
359
360		for (k = 1; p[k] != 0; k++)
361			{
362			/* reducing component t^p[k] */
363			n = p[0] - p[k];
364			d0 = n % BN_BITS2;  d1 = BN_BITS2 - d0;
365			n /= BN_BITS2;
366			z[j-n] ^= (zz>>d0);
367			if (d0) z[j-n-1] ^= (zz<<d1);
368			}
369
370		/* reducing component t^0 */
371		n = dN;
372		d0 = p[0] % BN_BITS2;
373		d1 = BN_BITS2 - d0;
374		z[j-n] ^= (zz >> d0);
375		if (d0) z[j-n-1] ^= (zz << d1);
376		}
377
378	/* final round of reduction */
379	while (j == dN)
380		{
381
382		d0 = p[0] % BN_BITS2;
383		zz = z[dN] >> d0;
384		if (zz == 0) break;
385		d1 = BN_BITS2 - d0;
386
387		if (d0) z[dN] = (z[dN] << d1) >> d1; /* clear up the top d1 bits */
388		z[0] ^= zz; /* reduction t^0 component */
389
390		for (k = 1; p[k] != 0; k++)
391			{
392			BN_ULONG tmp_ulong;
393
394			/* reducing component t^p[k]*/
395			n = p[k] / BN_BITS2;
396			d0 = p[k] % BN_BITS2;
397			d1 = BN_BITS2 - d0;
398			z[n] ^= (zz << d0);
399			tmp_ulong = zz >> d1;
400                        if (d0 && tmp_ulong)
401                                z[n+1] ^= tmp_ulong;
402			}
403
404
405		}
406
407	bn_correct_top(r);
408	return 1;
409	}
410
411/* Performs modular reduction of a by p and store result in r.  r could be a.
412 *
413 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
414 * function is only provided for convenience; for best performance, use the
415 * BN_GF2m_mod_arr function.
416 */
417int	BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
418	{
419	int ret = 0;
420	const int max = BN_num_bits(p);
421	unsigned int *arr=NULL;
422	bn_check_top(a);
423	bn_check_top(p);
424	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
425	ret = BN_GF2m_poly2arr(p, arr, max);
426	if (!ret || ret > max)
427		{
428		BNerr(BN_F_BN_GF2M_MOD,BN_R_INVALID_LENGTH);
429		goto err;
430		}
431	ret = BN_GF2m_mod_arr(r, a, arr);
432	bn_check_top(r);
433err:
434	if (arr) OPENSSL_free(arr);
435	return ret;
436	}
437
438
439/* Compute the product of two polynomials a and b, reduce modulo p, and store
440 * the result in r.  r could be a or b; a could be b.
441 */
442int	BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
443	{
444	int zlen, i, j, k, ret = 0;
445	BIGNUM *s;
446	BN_ULONG x1, x0, y1, y0, zz[4];
447
448	bn_check_top(a);
449	bn_check_top(b);
450
451	if (a == b)
452		{
453		return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
454		}
455
456	BN_CTX_start(ctx);
457	if ((s = BN_CTX_get(ctx)) == NULL) goto err;
458
459	zlen = a->top + b->top + 4;
460	if (!bn_wexpand(s, zlen)) goto err;
461	s->top = zlen;
462
463	for (i = 0; i < zlen; i++) s->d[i] = 0;
464
465	for (j = 0; j < b->top; j += 2)
466		{
467		y0 = b->d[j];
468		y1 = ((j+1) == b->top) ? 0 : b->d[j+1];
469		for (i = 0; i < a->top; i += 2)
470			{
471			x0 = a->d[i];
472			x1 = ((i+1) == a->top) ? 0 : a->d[i+1];
473			bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
474			for (k = 0; k < 4; k++) s->d[i+j+k] ^= zz[k];
475			}
476		}
477
478	bn_correct_top(s);
479	if (BN_GF2m_mod_arr(r, s, p))
480		ret = 1;
481	bn_check_top(r);
482
483err:
484	BN_CTX_end(ctx);
485	return ret;
486	}
487
488/* Compute the product of two polynomials a and b, reduce modulo p, and store
489 * the result in r.  r could be a or b; a could equal b.
490 *
491 * This function calls down to the BN_GF2m_mod_mul_arr implementation; this wrapper
492 * function is only provided for convenience; for best performance, use the
493 * BN_GF2m_mod_mul_arr function.
494 */
495int	BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
496	{
497	int ret = 0;
498	const int max = BN_num_bits(p);
499	unsigned int *arr=NULL;
500	bn_check_top(a);
501	bn_check_top(b);
502	bn_check_top(p);
503	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
504	ret = BN_GF2m_poly2arr(p, arr, max);
505	if (!ret || ret > max)
506		{
507		BNerr(BN_F_BN_GF2M_MOD_MUL,BN_R_INVALID_LENGTH);
508		goto err;
509		}
510	ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
511	bn_check_top(r);
512err:
513	if (arr) OPENSSL_free(arr);
514	return ret;
515	}
516
517
518/* Square a, reduce the result mod p, and store it in a.  r could be a. */
519int	BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
520	{
521	int i, ret = 0;
522	BIGNUM *s;
523
524	bn_check_top(a);
525	BN_CTX_start(ctx);
526	if ((s = BN_CTX_get(ctx)) == NULL) return 0;
527	if (!bn_wexpand(s, 2 * a->top)) goto err;
528
529	for (i = a->top - 1; i >= 0; i--)
530		{
531		s->d[2*i+1] = SQR1(a->d[i]);
532		s->d[2*i  ] = SQR0(a->d[i]);
533		}
534
535	s->top = 2 * a->top;
536	bn_correct_top(s);
537	if (!BN_GF2m_mod_arr(r, s, p)) goto err;
538	bn_check_top(r);
539	ret = 1;
540err:
541	BN_CTX_end(ctx);
542	return ret;
543	}
544
545/* Square a, reduce the result mod p, and store it in a.  r could be a.
546 *
547 * This function calls down to the BN_GF2m_mod_sqr_arr implementation; this wrapper
548 * function is only provided for convenience; for best performance, use the
549 * BN_GF2m_mod_sqr_arr function.
550 */
551int	BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
552	{
553	int ret = 0;
554	const int max = BN_num_bits(p);
555	unsigned int *arr=NULL;
556
557	bn_check_top(a);
558	bn_check_top(p);
559	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
560	ret = BN_GF2m_poly2arr(p, arr, max);
561	if (!ret || ret > max)
562		{
563		BNerr(BN_F_BN_GF2M_MOD_SQR,BN_R_INVALID_LENGTH);
564		goto err;
565		}
566	ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
567	bn_check_top(r);
568err:
569	if (arr) OPENSSL_free(arr);
570	return ret;
571	}
572
573
574/* Invert a, reduce modulo p, and store the result in r. r could be a.
575 * Uses Modified Almost Inverse Algorithm (Algorithm 10) from
576 *     Hankerson, D., Hernandez, J.L., and Menezes, A.  "Software Implementation
577 *     of Elliptic Curve Cryptography Over Binary Fields".
578 */
579int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
580	{
581	BIGNUM *b, *c, *u, *v, *tmp;
582	int ret = 0;
583
584	bn_check_top(a);
585	bn_check_top(p);
586
587	BN_CTX_start(ctx);
588
589	b = BN_CTX_get(ctx);
590	c = BN_CTX_get(ctx);
591	u = BN_CTX_get(ctx);
592	v = BN_CTX_get(ctx);
593	if (v == NULL) goto err;
594
595	if (!BN_one(b)) goto err;
596	if (!BN_GF2m_mod(u, a, p)) goto err;
597	if (!BN_copy(v, p)) goto err;
598
599	if (BN_is_zero(u)) goto err;
600
601	while (1)
602		{
603		while (!BN_is_odd(u))
604			{
605			if (!BN_rshift1(u, u)) goto err;
606			if (BN_is_odd(b))
607				{
608				if (!BN_GF2m_add(b, b, p)) goto err;
609				}
610			if (!BN_rshift1(b, b)) goto err;
611			}
612
613		if (BN_abs_is_word(u, 1)) break;
614
615		if (BN_num_bits(u) < BN_num_bits(v))
616			{
617			tmp = u; u = v; v = tmp;
618			tmp = b; b = c; c = tmp;
619			}
620
621		if (!BN_GF2m_add(u, u, v)) goto err;
622		if (!BN_GF2m_add(b, b, c)) goto err;
623		}
624
625
626	if (!BN_copy(r, b)) goto err;
627	bn_check_top(r);
628	ret = 1;
629
630err:
631  	BN_CTX_end(ctx);
632	return ret;
633	}
634
635/* Invert xx, reduce modulo p, and store the result in r. r could be xx.
636 *
637 * This function calls down to the BN_GF2m_mod_inv implementation; this wrapper
638 * function is only provided for convenience; for best performance, use the
639 * BN_GF2m_mod_inv function.
640 */
641int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
642	{
643	BIGNUM *field;
644	int ret = 0;
645
646	bn_check_top(xx);
647	BN_CTX_start(ctx);
648	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
649	if (!BN_GF2m_arr2poly(p, field)) goto err;
650
651	ret = BN_GF2m_mod_inv(r, xx, field, ctx);
652	bn_check_top(r);
653
654err:
655	BN_CTX_end(ctx);
656	return ret;
657	}
658
659
660#ifndef OPENSSL_SUN_GF2M_DIV
661/* Divide y by x, reduce modulo p, and store the result in r. r could be x
662 * or y, x could equal y.
663 */
664int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
665	{
666	BIGNUM *xinv = NULL;
667	int ret = 0;
668
669	bn_check_top(y);
670	bn_check_top(x);
671	bn_check_top(p);
672
673	BN_CTX_start(ctx);
674	xinv = BN_CTX_get(ctx);
675	if (xinv == NULL) goto err;
676
677	if (!BN_GF2m_mod_inv(xinv, x, p, ctx)) goto err;
678	if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx)) goto err;
679	bn_check_top(r);
680	ret = 1;
681
682err:
683	BN_CTX_end(ctx);
684	return ret;
685	}
686#else
687/* Divide y by x, reduce modulo p, and store the result in r. r could be x
688 * or y, x could equal y.
689 * Uses algorithm Modular_Division_GF(2^m) from
690 *     Chang-Shantz, S.  "From Euclid's GCD to Montgomery Multiplication to
691 *     the Great Divide".
692 */
693int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x, const BIGNUM *p, BN_CTX *ctx)
694	{
695	BIGNUM *a, *b, *u, *v;
696	int ret = 0;
697
698	bn_check_top(y);
699	bn_check_top(x);
700	bn_check_top(p);
701
702	BN_CTX_start(ctx);
703
704	a = BN_CTX_get(ctx);
705	b = BN_CTX_get(ctx);
706	u = BN_CTX_get(ctx);
707	v = BN_CTX_get(ctx);
708	if (v == NULL) goto err;
709
710	/* reduce x and y mod p */
711	if (!BN_GF2m_mod(u, y, p)) goto err;
712	if (!BN_GF2m_mod(a, x, p)) goto err;
713	if (!BN_copy(b, p)) goto err;
714
715	while (!BN_is_odd(a))
716		{
717		if (!BN_rshift1(a, a)) goto err;
718		if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
719		if (!BN_rshift1(u, u)) goto err;
720		}
721
722	do
723		{
724		if (BN_GF2m_cmp(b, a) > 0)
725			{
726			if (!BN_GF2m_add(b, b, a)) goto err;
727			if (!BN_GF2m_add(v, v, u)) goto err;
728			do
729				{
730				if (!BN_rshift1(b, b)) goto err;
731				if (BN_is_odd(v)) if (!BN_GF2m_add(v, v, p)) goto err;
732				if (!BN_rshift1(v, v)) goto err;
733				} while (!BN_is_odd(b));
734			}
735		else if (BN_abs_is_word(a, 1))
736			break;
737		else
738			{
739			if (!BN_GF2m_add(a, a, b)) goto err;
740			if (!BN_GF2m_add(u, u, v)) goto err;
741			do
742				{
743				if (!BN_rshift1(a, a)) goto err;
744				if (BN_is_odd(u)) if (!BN_GF2m_add(u, u, p)) goto err;
745				if (!BN_rshift1(u, u)) goto err;
746				} while (!BN_is_odd(a));
747			}
748		} while (1);
749
750	if (!BN_copy(r, u)) goto err;
751	bn_check_top(r);
752	ret = 1;
753
754err:
755  	BN_CTX_end(ctx);
756	return ret;
757	}
758#endif
759
760/* Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
761 * or yy, xx could equal yy.
762 *
763 * This function calls down to the BN_GF2m_mod_div implementation; this wrapper
764 * function is only provided for convenience; for best performance, use the
765 * BN_GF2m_mod_div function.
766 */
767int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx, const unsigned int p[], BN_CTX *ctx)
768	{
769	BIGNUM *field;
770	int ret = 0;
771
772	bn_check_top(yy);
773	bn_check_top(xx);
774
775	BN_CTX_start(ctx);
776	if ((field = BN_CTX_get(ctx)) == NULL) goto err;
777	if (!BN_GF2m_arr2poly(p, field)) goto err;
778
779	ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
780	bn_check_top(r);
781
782err:
783	BN_CTX_end(ctx);
784	return ret;
785	}
786
787
788/* Compute the bth power of a, reduce modulo p, and store
789 * the result in r.  r could be a.
790 * Uses simple square-and-multiply algorithm A.5.1 from IEEE P1363.
791 */
792int	BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const unsigned int p[], BN_CTX *ctx)
793	{
794	int ret = 0, i, n;
795	BIGNUM *u;
796
797	bn_check_top(a);
798	bn_check_top(b);
799
800	if (BN_is_zero(b))
801		return(BN_one(r));
802
803	if (BN_abs_is_word(b, 1))
804		return (BN_copy(r, a) != NULL);
805
806	BN_CTX_start(ctx);
807	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
808
809	if (!BN_GF2m_mod_arr(u, a, p)) goto err;
810
811	n = BN_num_bits(b) - 1;
812	for (i = n - 1; i >= 0; i--)
813		{
814		if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx)) goto err;
815		if (BN_is_bit_set(b, i))
816			{
817			if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx)) goto err;
818			}
819		}
820	if (!BN_copy(r, u)) goto err;
821	bn_check_top(r);
822	ret = 1;
823err:
824	BN_CTX_end(ctx);
825	return ret;
826	}
827
828/* Compute the bth power of a, reduce modulo p, and store
829 * the result in r.  r could be a.
830 *
831 * This function calls down to the BN_GF2m_mod_exp_arr implementation; this wrapper
832 * function is only provided for convenience; for best performance, use the
833 * BN_GF2m_mod_exp_arr function.
834 */
835int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *p, BN_CTX *ctx)
836	{
837	int ret = 0;
838	const int max = BN_num_bits(p);
839	unsigned int *arr=NULL;
840	bn_check_top(a);
841	bn_check_top(b);
842	bn_check_top(p);
843	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
844	ret = BN_GF2m_poly2arr(p, arr, max);
845	if (!ret || ret > max)
846		{
847		BNerr(BN_F_BN_GF2M_MOD_EXP,BN_R_INVALID_LENGTH);
848		goto err;
849		}
850	ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
851	bn_check_top(r);
852err:
853	if (arr) OPENSSL_free(arr);
854	return ret;
855	}
856
857/* Compute the square root of a, reduce modulo p, and store
858 * the result in r.  r could be a.
859 * Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
860 */
861int	BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const unsigned int p[], BN_CTX *ctx)
862	{
863	int ret = 0;
864	BIGNUM *u;
865
866	bn_check_top(a);
867
868	if (!p[0])
869		{
870		/* reduction mod 1 => return 0 */
871		BN_zero(r);
872		return 1;
873		}
874
875	BN_CTX_start(ctx);
876	if ((u = BN_CTX_get(ctx)) == NULL) goto err;
877
878	if (!BN_set_bit(u, p[0] - 1)) goto err;
879	ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
880	bn_check_top(r);
881
882err:
883	BN_CTX_end(ctx);
884	return ret;
885	}
886
887/* Compute the square root of a, reduce modulo p, and store
888 * the result in r.  r could be a.
889 *
890 * This function calls down to the BN_GF2m_mod_sqrt_arr implementation; this wrapper
891 * function is only provided for convenience; for best performance, use the
892 * BN_GF2m_mod_sqrt_arr function.
893 */
894int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
895	{
896	int ret = 0;
897	const int max = BN_num_bits(p);
898	unsigned int *arr=NULL;
899	bn_check_top(a);
900	bn_check_top(p);
901	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) * max)) == NULL) goto err;
902	ret = BN_GF2m_poly2arr(p, arr, max);
903	if (!ret || ret > max)
904		{
905		BNerr(BN_F_BN_GF2M_MOD_SQRT,BN_R_INVALID_LENGTH);
906		goto err;
907		}
908	ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
909	bn_check_top(r);
910err:
911	if (arr) OPENSSL_free(arr);
912	return ret;
913	}
914
915/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
916 * Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
917 */
918int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const unsigned int p[], BN_CTX *ctx)
919	{
920	int ret = 0, count = 0;
921	unsigned int j;
922	BIGNUM *a, *z, *rho, *w, *w2, *tmp;
923
924	bn_check_top(a_);
925
926	if (!p[0])
927		{
928		/* reduction mod 1 => return 0 */
929		BN_zero(r);
930		return 1;
931		}
932
933	BN_CTX_start(ctx);
934	a = BN_CTX_get(ctx);
935	z = BN_CTX_get(ctx);
936	w = BN_CTX_get(ctx);
937	if (w == NULL) goto err;
938
939	if (!BN_GF2m_mod_arr(a, a_, p)) goto err;
940
941	if (BN_is_zero(a))
942		{
943		BN_zero(r);
944		ret = 1;
945		goto err;
946		}
947
948	if (p[0] & 0x1) /* m is odd */
949		{
950		/* compute half-trace of a */
951		if (!BN_copy(z, a)) goto err;
952		for (j = 1; j <= (p[0] - 1) / 2; j++)
953			{
954			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
955			if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
956			if (!BN_GF2m_add(z, z, a)) goto err;
957			}
958
959		}
960	else /* m is even */
961		{
962		rho = BN_CTX_get(ctx);
963		w2 = BN_CTX_get(ctx);
964		tmp = BN_CTX_get(ctx);
965		if (tmp == NULL) goto err;
966		do
967			{
968			if (!BN_rand(rho, p[0], 0, 0)) goto err;
969			if (!BN_GF2m_mod_arr(rho, rho, p)) goto err;
970			BN_zero(z);
971			if (!BN_copy(w, rho)) goto err;
972			for (j = 1; j <= p[0] - 1; j++)
973				{
974				if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx)) goto err;
975				if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx)) goto err;
976				if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx)) goto err;
977				if (!BN_GF2m_add(z, z, tmp)) goto err;
978				if (!BN_GF2m_add(w, w2, rho)) goto err;
979				}
980			count++;
981			} while (BN_is_zero(w) && (count < MAX_ITERATIONS));
982		if (BN_is_zero(w))
983			{
984			BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR,BN_R_TOO_MANY_ITERATIONS);
985			goto err;
986			}
987		}
988
989	if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx)) goto err;
990	if (!BN_GF2m_add(w, z, w)) goto err;
991	if (BN_GF2m_cmp(w, a))
992		{
993		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD_ARR, BN_R_NO_SOLUTION);
994		goto err;
995		}
996
997	if (!BN_copy(r, z)) goto err;
998	bn_check_top(r);
999
1000	ret = 1;
1001
1002err:
1003	BN_CTX_end(ctx);
1004	return ret;
1005	}
1006
1007/* Find r such that r^2 + r = a mod p.  r could be a. If no r exists returns 0.
1008 *
1009 * This function calls down to the BN_GF2m_mod_solve_quad_arr implementation; this wrapper
1010 * function is only provided for convenience; for best performance, use the
1011 * BN_GF2m_mod_solve_quad_arr function.
1012 */
1013int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
1014	{
1015	int ret = 0;
1016	const int max = BN_num_bits(p);
1017	unsigned int *arr=NULL;
1018	bn_check_top(a);
1019	bn_check_top(p);
1020	if ((arr = (unsigned int *)OPENSSL_malloc(sizeof(unsigned int) *
1021						max)) == NULL) goto err;
1022	ret = BN_GF2m_poly2arr(p, arr, max);
1023	if (!ret || ret > max)
1024		{
1025		BNerr(BN_F_BN_GF2M_MOD_SOLVE_QUAD,BN_R_INVALID_LENGTH);
1026		goto err;
1027		}
1028	ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1029	bn_check_top(r);
1030err:
1031	if (arr) OPENSSL_free(arr);
1032	return ret;
1033	}
1034
1035/* Convert the bit-string representation of a polynomial
1036 * ( \sum_{i=0}^n a_i * x^i , where a_0 is *not* zero) into an array
1037 * of integers corresponding to the bits with non-zero coefficient.
1038 * Up to max elements of the array will be filled.  Return value is total
1039 * number of coefficients that would be extracted if array was large enough.
1040 */
1041int BN_GF2m_poly2arr(const BIGNUM *a, unsigned int p[], int max)
1042	{
1043	int i, j, k = 0;
1044	BN_ULONG mask;
1045
1046	if (BN_is_zero(a) || !BN_is_bit_set(a, 0))
1047		/* a_0 == 0 => return error (the unsigned int array
1048		 * must be terminated by 0)
1049		 */
1050		return 0;
1051
1052	for (i = a->top - 1; i >= 0; i--)
1053		{
1054		if (!a->d[i])
1055			/* skip word if a->d[i] == 0 */
1056			continue;
1057		mask = BN_TBIT;
1058		for (j = BN_BITS2 - 1; j >= 0; j--)
1059			{
1060			if (a->d[i] & mask)
1061				{
1062				if (k < max) p[k] = BN_BITS2 * i + j;
1063				k++;
1064				}
1065			mask >>= 1;
1066			}
1067		}
1068
1069	return k;
1070	}
1071
1072/* Convert the coefficient array representation of a polynomial to a
1073 * bit-string.  The array must be terminated by 0.
1074 */
1075int BN_GF2m_arr2poly(const unsigned int p[], BIGNUM *a)
1076	{
1077	int i;
1078
1079	bn_check_top(a);
1080	BN_zero(a);
1081	for (i = 0; p[i] != 0; i++)
1082		{
1083		if (BN_set_bit(a, p[i]) == 0)
1084			return 0;
1085		}
1086	BN_set_bit(a, 0);
1087	bn_check_top(a);
1088
1089	return 1;
1090	}
1091
1092