1/* crypto/bn/bn_gcd.c */
2/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 * All rights reserved.
4 *
5 * This package is an SSL implementation written
6 * by Eric Young (eay@cryptsoft.com).
7 * The implementation was written so as to conform with Netscapes SSL.
8 *
9 * This library is free for commercial and non-commercial use as long as
10 * the following conditions are aheared to.  The following conditions
11 * apply to all code found in this distribution, be it the RC4, RSA,
12 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13 * included with this distribution is covered by the same copyright terms
14 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15 *
16 * Copyright remains Eric Young's, and as such any Copyright notices in
17 * the code are not to be removed.
18 * If this package is used in a product, Eric Young should be given attribution
19 * as the author of the parts of the library used.
20 * This can be in the form of a textual message at program startup or
21 * in documentation (online or textual) provided with the package.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 * 1. Redistributions of source code must retain the copyright
27 *    notice, this list of conditions and the following disclaimer.
28 * 2. Redistributions in binary form must reproduce the above copyright
29 *    notice, this list of conditions and the following disclaimer in the
30 *    documentation and/or other materials provided with the distribution.
31 * 3. All advertising materials mentioning features or use of this software
32 *    must display the following acknowledgement:
33 *    "This product includes cryptographic software written by
34 *     Eric Young (eay@cryptsoft.com)"
35 *    The word 'cryptographic' can be left out if the rouines from the library
36 *    being used are not cryptographic related :-).
37 * 4. If you include any Windows specific code (or a derivative thereof) from
38 *    the apps directory (application code) you must include an acknowledgement:
39 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40 *
41 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51 * SUCH DAMAGE.
52 *
53 * The licence and distribution terms for any publically available version or
54 * derivative of this code cannot be changed.  i.e. this code cannot simply be
55 * copied and put under another distribution licence
56 * [including the GNU Public Licence.]
57 */
58/* ====================================================================
59 * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60 *
61 * Redistribution and use in source and binary forms, with or without
62 * modification, are permitted provided that the following conditions
63 * are met:
64 *
65 * 1. Redistributions of source code must retain the above copyright
66 *    notice, this list of conditions and the following disclaimer.
67 *
68 * 2. Redistributions in binary form must reproduce the above copyright
69 *    notice, this list of conditions and the following disclaimer in
70 *    the documentation and/or other materials provided with the
71 *    distribution.
72 *
73 * 3. All advertising materials mentioning features or use of this
74 *    software must display the following acknowledgment:
75 *    "This product includes software developed by the OpenSSL Project
76 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77 *
78 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79 *    endorse or promote products derived from this software without
80 *    prior written permission. For written permission, please contact
81 *    openssl-core@openssl.org.
82 *
83 * 5. Products derived from this software may not be called "OpenSSL"
84 *    nor may "OpenSSL" appear in their names without prior written
85 *    permission of the OpenSSL Project.
86 *
87 * 6. Redistributions of any form whatsoever must retain the following
88 *    acknowledgment:
89 *    "This product includes software developed by the OpenSSL Project
90 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91 *
92 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103 * OF THE POSSIBILITY OF SUCH DAMAGE.
104 * ====================================================================
105 *
106 * This product includes cryptographic software written by Eric Young
107 * (eay@cryptsoft.com).  This product includes software written by Tim
108 * Hudson (tjh@cryptsoft.com).
109 *
110 */
111
112#include "cryptlib.h"
113#include "bn_lcl.h"
114
115static BIGNUM *euclid(BIGNUM *a, BIGNUM *b);
116
117int BN_gcd(BIGNUM *r, const BIGNUM *in_a, const BIGNUM *in_b, BN_CTX *ctx)
118	{
119	BIGNUM *a,*b,*t;
120	int ret=0;
121
122	bn_check_top(in_a);
123	bn_check_top(in_b);
124
125	BN_CTX_start(ctx);
126	a = BN_CTX_get(ctx);
127	b = BN_CTX_get(ctx);
128	if (a == NULL || b == NULL) goto err;
129
130	if (BN_copy(a,in_a) == NULL) goto err;
131	if (BN_copy(b,in_b) == NULL) goto err;
132	a->neg = 0;
133	b->neg = 0;
134
135	if (BN_cmp(a,b) < 0) { t=a; a=b; b=t; }
136	t=euclid(a,b);
137	if (t == NULL) goto err;
138
139	if (BN_copy(r,t) == NULL) goto err;
140	ret=1;
141err:
142	BN_CTX_end(ctx);
143	bn_check_top(r);
144	return(ret);
145	}
146
147static BIGNUM *euclid(BIGNUM *a, BIGNUM *b)
148	{
149	BIGNUM *t;
150	int shifts=0;
151
152	bn_check_top(a);
153	bn_check_top(b);
154
155	/* 0 <= b <= a */
156	while (!BN_is_zero(b))
157		{
158		/* 0 < b <= a */
159
160		if (BN_is_odd(a))
161			{
162			if (BN_is_odd(b))
163				{
164				if (!BN_sub(a,a,b)) goto err;
165				if (!BN_rshift1(a,a)) goto err;
166				if (BN_cmp(a,b) < 0)
167					{ t=a; a=b; b=t; }
168				}
169			else		/* a odd - b even */
170				{
171				if (!BN_rshift1(b,b)) goto err;
172				if (BN_cmp(a,b) < 0)
173					{ t=a; a=b; b=t; }
174				}
175			}
176		else			/* a is even */
177			{
178			if (BN_is_odd(b))
179				{
180				if (!BN_rshift1(a,a)) goto err;
181				if (BN_cmp(a,b) < 0)
182					{ t=a; a=b; b=t; }
183				}
184			else		/* a even - b even */
185				{
186				if (!BN_rshift1(a,a)) goto err;
187				if (!BN_rshift1(b,b)) goto err;
188				shifts++;
189				}
190			}
191		/* 0 <= b <= a */
192		}
193
194	if (shifts)
195		{
196		if (!BN_lshift(a,a,shifts)) goto err;
197		}
198	bn_check_top(a);
199	return(a);
200err:
201	return(NULL);
202	}
203
204
205/* solves ax == 1 (mod n) */
206BIGNUM *BN_mod_inverse(BIGNUM *in,
207	const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)
208	{
209	BIGNUM *A,*B,*X,*Y,*M,*D,*T,*R=NULL;
210	BIGNUM *ret=NULL;
211	int sign;
212
213	bn_check_top(a);
214	bn_check_top(n);
215
216	BN_CTX_start(ctx);
217	A = BN_CTX_get(ctx);
218	B = BN_CTX_get(ctx);
219	X = BN_CTX_get(ctx);
220	D = BN_CTX_get(ctx);
221	M = BN_CTX_get(ctx);
222	Y = BN_CTX_get(ctx);
223	T = BN_CTX_get(ctx);
224	if (T == NULL) goto err;
225
226	if (in == NULL)
227		R=BN_new();
228	else
229		R=in;
230	if (R == NULL) goto err;
231
232	BN_one(X);
233	BN_zero(Y);
234	if (BN_copy(B,a) == NULL) goto err;
235	if (BN_copy(A,n) == NULL) goto err;
236	A->neg = 0;
237	if (B->neg || (BN_ucmp(B, A) >= 0))
238		{
239		if (!BN_nnmod(B, B, A, ctx)) goto err;
240		}
241	sign = -1;
242	/* From  B = a mod |n|,  A = |n|  it follows that
243	 *
244	 *      0 <= B < A,
245	 *     -sign*X*a  ==  B   (mod |n|),
246	 *      sign*Y*a  ==  A   (mod |n|).
247	 */
248
249	if (BN_is_odd(n) && (BN_num_bits(n) <= (BN_BITS <= 32 ? 450 : 2048)))
250		{
251		/* Binary inversion algorithm; requires odd modulus.
252		 * This is faster than the general algorithm if the modulus
253		 * is sufficiently small (about 400 .. 500 bits on 32-bit
254		 * sytems, but much more on 64-bit systems) */
255		int shift;
256
257		while (!BN_is_zero(B))
258			{
259			/*
260			 *      0 < B < |n|,
261			 *      0 < A <= |n|,
262			 * (1) -sign*X*a  ==  B   (mod |n|),
263			 * (2)  sign*Y*a  ==  A   (mod |n|)
264			 */
265
266			/* Now divide  B  by the maximum possible power of two in the integers,
267			 * and divide  X  by the same value mod |n|.
268			 * When we're done, (1) still holds. */
269			shift = 0;
270			while (!BN_is_bit_set(B, shift)) /* note that 0 < B */
271				{
272				shift++;
273
274				if (BN_is_odd(X))
275					{
276					if (!BN_uadd(X, X, n)) goto err;
277					}
278				/* now X is even, so we can easily divide it by two */
279				if (!BN_rshift1(X, X)) goto err;
280				}
281			if (shift > 0)
282				{
283				if (!BN_rshift(B, B, shift)) goto err;
284				}
285
286
287			/* Same for  A  and  Y.  Afterwards, (2) still holds. */
288			shift = 0;
289			while (!BN_is_bit_set(A, shift)) /* note that 0 < A */
290				{
291				shift++;
292
293				if (BN_is_odd(Y))
294					{
295					if (!BN_uadd(Y, Y, n)) goto err;
296					}
297				/* now Y is even */
298				if (!BN_rshift1(Y, Y)) goto err;
299				}
300			if (shift > 0)
301				{
302				if (!BN_rshift(A, A, shift)) goto err;
303				}
304
305
306			/* We still have (1) and (2).
307			 * Both  A  and  B  are odd.
308			 * The following computations ensure that
309			 *
310			 *     0 <= B < |n|,
311			 *      0 < A < |n|,
312			 * (1) -sign*X*a  ==  B   (mod |n|),
313			 * (2)  sign*Y*a  ==  A   (mod |n|),
314			 *
315			 * and that either  A  or  B  is even in the next iteration.
316			 */
317			if (BN_ucmp(B, A) >= 0)
318				{
319				/* -sign*(X + Y)*a == B - A  (mod |n|) */
320				if (!BN_uadd(X, X, Y)) goto err;
321				/* NB: we could use BN_mod_add_quick(X, X, Y, n), but that
322				 * actually makes the algorithm slower */
323				if (!BN_usub(B, B, A)) goto err;
324				}
325			else
326				{
327				/*  sign*(X + Y)*a == A - B  (mod |n|) */
328				if (!BN_uadd(Y, Y, X)) goto err;
329				/* as above, BN_mod_add_quick(Y, Y, X, n) would slow things down */
330				if (!BN_usub(A, A, B)) goto err;
331				}
332			}
333		}
334	else
335		{
336		/* general inversion algorithm */
337
338		while (!BN_is_zero(B))
339			{
340			BIGNUM *tmp;
341
342			/*
343			 *      0 < B < A,
344			 * (*) -sign*X*a  ==  B   (mod |n|),
345			 *      sign*Y*a  ==  A   (mod |n|)
346			 */
347
348			/* (D, M) := (A/B, A%B) ... */
349			if (BN_num_bits(A) == BN_num_bits(B))
350				{
351				if (!BN_one(D)) goto err;
352				if (!BN_sub(M,A,B)) goto err;
353				}
354			else if (BN_num_bits(A) == BN_num_bits(B) + 1)
355				{
356				/* A/B is 1, 2, or 3 */
357				if (!BN_lshift1(T,B)) goto err;
358				if (BN_ucmp(A,T) < 0)
359					{
360					/* A < 2*B, so D=1 */
361					if (!BN_one(D)) goto err;
362					if (!BN_sub(M,A,B)) goto err;
363					}
364				else
365					{
366					/* A >= 2*B, so D=2 or D=3 */
367					if (!BN_sub(M,A,T)) goto err;
368					if (!BN_add(D,T,B)) goto err; /* use D (:= 3*B) as temp */
369					if (BN_ucmp(A,D) < 0)
370						{
371						/* A < 3*B, so D=2 */
372						if (!BN_set_word(D,2)) goto err;
373						/* M (= A - 2*B) already has the correct value */
374						}
375					else
376						{
377						/* only D=3 remains */
378						if (!BN_set_word(D,3)) goto err;
379						/* currently  M = A - 2*B,  but we need  M = A - 3*B */
380						if (!BN_sub(M,M,B)) goto err;
381						}
382					}
383				}
384			else
385				{
386				if (!BN_div(D,M,A,B,ctx)) goto err;
387				}
388
389			/* Now
390			 *      A = D*B + M;
391			 * thus we have
392			 * (**)  sign*Y*a  ==  D*B + M   (mod |n|).
393			 */
394
395			tmp=A; /* keep the BIGNUM object, the value does not matter */
396
397			/* (A, B) := (B, A mod B) ... */
398			A=B;
399			B=M;
400			/* ... so we have  0 <= B < A  again */
401
402			/* Since the former  M  is now  B  and the former  B  is now  A,
403			 * (**) translates into
404			 *       sign*Y*a  ==  D*A + B    (mod |n|),
405			 * i.e.
406			 *       sign*Y*a - D*A  ==  B    (mod |n|).
407			 * Similarly, (*) translates into
408			 *      -sign*X*a  ==  A          (mod |n|).
409			 *
410			 * Thus,
411			 *   sign*Y*a + D*sign*X*a  ==  B  (mod |n|),
412			 * i.e.
413			 *        sign*(Y + D*X)*a  ==  B  (mod |n|).
414			 *
415			 * So if we set  (X, Y, sign) := (Y + D*X, X, -sign),  we arrive back at
416			 *      -sign*X*a  ==  B   (mod |n|),
417			 *       sign*Y*a  ==  A   (mod |n|).
418			 * Note that  X  and  Y  stay non-negative all the time.
419			 */
420
421			/* most of the time D is very small, so we can optimize tmp := D*X+Y */
422			if (BN_is_one(D))
423				{
424				if (!BN_add(tmp,X,Y)) goto err;
425				}
426			else
427				{
428				if (BN_is_word(D,2))
429					{
430					if (!BN_lshift1(tmp,X)) goto err;
431					}
432				else if (BN_is_word(D,4))
433					{
434					if (!BN_lshift(tmp,X,2)) goto err;
435					}
436				else if (D->top == 1)
437					{
438					if (!BN_copy(tmp,X)) goto err;
439					if (!BN_mul_word(tmp,D->d[0])) goto err;
440					}
441				else
442					{
443					if (!BN_mul(tmp,D,X,ctx)) goto err;
444					}
445				if (!BN_add(tmp,tmp,Y)) goto err;
446				}
447
448			M=Y; /* keep the BIGNUM object, the value does not matter */
449			Y=X;
450			X=tmp;
451			sign = -sign;
452			}
453		}
454
455	/*
456	 * The while loop (Euclid's algorithm) ends when
457	 *      A == gcd(a,n);
458	 * we have
459	 *       sign*Y*a  ==  A  (mod |n|),
460	 * where  Y  is non-negative.
461	 */
462
463	if (sign < 0)
464		{
465		if (!BN_sub(Y,n,Y)) goto err;
466		}
467	/* Now  Y*a  ==  A  (mod |n|).  */
468
469
470	if (BN_is_one(A))
471		{
472		/* Y*a == 1  (mod |n|) */
473		if (!Y->neg && BN_ucmp(Y,n) < 0)
474			{
475			if (!BN_copy(R,Y)) goto err;
476			}
477		else
478			{
479			if (!BN_nnmod(R,Y,n,ctx)) goto err;
480			}
481		}
482	else
483		{
484		BNerr(BN_F_BN_MOD_INVERSE,BN_R_NO_INVERSE);
485		goto err;
486		}
487	ret=R;
488err:
489	if ((ret == NULL) && (in == NULL)) BN_free(R);
490	BN_CTX_end(ctx);
491	bn_check_top(ret);
492	return(ret);
493	}
494