• Home
  • History
  • Annotate
  • Line#
  • Navigate
  • Raw
  • Download
  • only in /netgear-WNDR4500v2-V1.0.0.60_1.0.38/ap/gpl/minidlna/flac-1.2.1/src/share/replaygain_analysis/
1/*
2 *  ReplayGainAnalysis - analyzes input samples and give the recommended dB change
3 *  Copyright (C) 2001 David Robinson and Glen Sawyer
4 *
5 *  This library is free software; you can redistribute it and/or
6 *  modify it under the terms of the GNU Lesser General Public
7 *  License as published by the Free Software Foundation; either
8 *  version 2.1 of the License, or (at your option) any later version.
9 *
10 *  This library is distributed in the hope that it will be useful,
11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 *  Lesser General Public License for more details.
14 *
15 *  You should have received a copy of the GNU Lesser General Public
16 *  License along with this library; if not, write to the Free Software
17 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 *
19 *  concept and filter values by David Robinson (David@Robinson.org)
20 *    -- blame him if you think the idea is flawed
21 *  original coding by Glen Sawyer (glensawyer@hotmail.com)
22 *    -- blame him if you think this runs too slowly, or the coding is otherwise flawed
23 *
24 *  lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ )
25 *    -- credit him for all the _good_ programming ;)
26 *
27 *  minor cosmetic tweaks to integrate with FLAC by Josh Coalson
28 *
29 *
30 *  For an explanation of the concepts and the basic algorithms involved, go to:
31 *    http://www.replaygain.org/
32 */
33
34/*
35 *  Here's the deal. Call
36 *
37 *    InitGainAnalysis ( long samplefreq );
38 *
39 *  to initialize everything. Call
40 *
41 *    AnalyzeSamples ( const Float_t*  left_samples,
42 *                     const Float_t*  right_samples,
43 *                     size_t          num_samples,
44 *                     int             num_channels );
45 *
46 *  as many times as you want, with as many or as few samples as you want.
47 *  If mono, pass the sample buffer in through left_samples, leave
48 *  right_samples NULL, and make sure num_channels = 1.
49 *
50 *    GetTitleGain()
51 *
52 *  will return the recommended dB level change for all samples analyzed
53 *  SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
54 *
55 *    GetAlbumGain()
56 *
57 *  will return the recommended dB level change for all samples analyzed
58 *  since InitGainAnalysis() was called and finalized with GetTitleGain().
59 *
60 *  Pseudo-code to process an album:
61 *
62 *    Float_t       l_samples [4096];
63 *    Float_t       r_samples [4096];
64 *    size_t        num_samples;
65 *    unsigned int  num_songs;
66 *    unsigned int  i;
67 *
68 *    InitGainAnalysis ( 44100 );
69 *    for ( i = 1; i <= num_songs; i++ ) {
70 *        while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 )
71 *            AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
72 *        fprintf ("Recommended dB change for song %2d: %+6.2f dB\n", i, GetTitleGain() );
73 *    }
74 *    fprintf ("Recommended dB change for whole album: %+6.2f dB\n", GetAlbumGain() );
75 */
76
77/*
78 *  So here's the main source of potential code confusion:
79 *
80 *  The filters applied to the incoming samples are IIR filters,
81 *  meaning they rely on up to <filter order> number of previous samples
82 *  AND up to <filter order> number of previous filtered samples.
83 *
84 *  I set up the AnalyzeSamples routine to minimize memory usage and interface
85 *  complexity. The speed isn't compromised too much (I don't think), but the
86 *  internal complexity is higher than it should be for such a relatively
87 *  simple routine.
88 *
89 *  Optimization/clarity suggestions are welcome.
90 */
91
92#if HAVE_CONFIG_H
93#  include <config.h>
94#endif
95
96#include <stdio.h>
97#include <stdlib.h>
98#include <string.h>
99#include <math.h>
100
101#include "replaygain_analysis.h"
102
103Float_t ReplayGainReferenceLoudness = 89.0; /* in dB SPL */
104
105typedef unsigned short  Uint16_t;
106typedef signed short    Int16_t;
107typedef unsigned int    Uint32_t;
108typedef signed int      Int32_t;
109
110#define YULE_ORDER         10
111#define BUTTER_ORDER        2
112#define RMS_PERCENTILE      0.95        /* percentile which is louder than the proposed level */
113#define MAX_SAMP_FREQ   48000.          /* maximum allowed sample frequency [Hz] */
114#define RMS_WINDOW_TIME     0.050       /* Time slice size [s] */
115#define STEPS_per_dB      100.          /* Table entries per dB */
116#define MAX_dB            120.          /* Table entries for 0...MAX_dB (normal max. values are 70...80 dB) */
117
118#define MAX_ORDER               (BUTTER_ORDER > YULE_ORDER ? BUTTER_ORDER : YULE_ORDER)
119/* [JEC] the following was originally #defined as:
120 *   (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME)
121 * but that seemed to fail to take into account the ceil() part of the
122 * sampleWindow calculation in ResetSampleFrequency(), and was causing
123 * buffer overflows for 48kHz analysis, hence the +1.
124 */
125#ifndef __sun
126 #define MAX_SAMPLES_PER_WINDOW  (size_t) (MAX_SAMP_FREQ * RMS_WINDOW_TIME + 1.)   /* max. Samples per Time slice */
127#else
128 /* [JEC] Solaris Forte compiler doesn't like float calc in array indices */
129 #define MAX_SAMPLES_PER_WINDOW  (size_t) (2401)
130#endif
131#define PINK_REF                64.82 /* 298640883795 */                          /* calibration value */
132
133static Float_t          linprebuf [MAX_ORDER * 2];
134static Float_t*         linpre;                                          /* left input samples, with pre-buffer */
135static Float_t          lstepbuf  [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
136static Float_t*         lstep;                                           /* left "first step" (i.e. post first filter) samples */
137static Float_t          loutbuf   [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
138static Float_t*         lout;                                            /* left "out" (i.e. post second filter) samples */
139static Float_t          rinprebuf [MAX_ORDER * 2];
140static Float_t*         rinpre;                                          /* right input samples ... */
141static Float_t          rstepbuf  [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
142static Float_t*         rstep;
143static Float_t          routbuf   [MAX_SAMPLES_PER_WINDOW + MAX_ORDER];
144static Float_t*         rout;
145static unsigned int              sampleWindow;                           /* number of samples required to reach number of milliseconds required for RMS window */
146static unsigned long    totsamp;
147static double           lsum;
148static double           rsum;
149static int              freqindex;
150#ifndef __sun
151static Uint32_t  A [(size_t)(STEPS_per_dB * MAX_dB)];
152static Uint32_t  B [(size_t)(STEPS_per_dB * MAX_dB)];
153#else
154/* [JEC] Solaris Forte compiler doesn't like float calc in array indices */
155static Uint32_t  A [12000];
156static Uint32_t  B [12000];
157#endif
158
159/* for each filter:
160   [0] 48 kHz, [1] 44.1 kHz, [2] 32 kHz, [3] 24 kHz, [4] 22050 Hz, [5] 16 kHz, [6] 12 kHz, [7] is 11025 Hz, [8] 8 kHz */
161
162#ifdef WIN32
163#pragma warning ( disable : 4305 )
164#endif
165
166static const Float_t  AYule [9] [11] = {
167    { 1., -3.84664617118067,  7.81501653005538,-11.34170355132042, 13.05504219327545,-12.28759895145294,  9.48293806319790, -5.87257861775999,  2.75465861874613, -0.86984376593551, 0.13919314567432 },
168    { 1., -3.47845948550071,  6.36317777566148, -8.54751527471874,  9.47693607801280, -8.81498681370155,  6.85401540936998, -4.39470996079559,  2.19611684890774, -0.75104302451432, 0.13149317958808 },
169    { 1., -2.37898834973084,  2.84868151156327, -2.64577170229825,  2.23697657451713, -1.67148153367602,  1.00595954808547, -0.45953458054983,  0.16378164858596, -0.05032077717131, 0.02347897407020 },
170    { 1., -1.61273165137247,  1.07977492259970, -0.25656257754070, -0.16276719120440, -0.22638893773906,  0.39120800788284, -0.22138138954925,  0.04500235387352,  0.02005851806501, 0.00302439095741 },
171    { 1., -1.49858979367799,  0.87350271418188,  0.12205022308084, -0.80774944671438,  0.47854794562326, -0.12453458140019, -0.04067510197014,  0.08333755284107, -0.04237348025746, 0.02977207319925 },
172    { 1., -0.62820619233671,  0.29661783706366, -0.37256372942400,  0.00213767857124, -0.42029820170918,  0.22199650564824,  0.00613424350682,  0.06747620744683,  0.05784820375801, 0.03222754072173 },
173    { 1., -1.04800335126349,  0.29156311971249, -0.26806001042947,  0.00819999645858,  0.45054734505008, -0.33032403314006,  0.06739368333110, -0.04784254229033,  0.01639907836189, 0.01807364323573 },
174    { 1., -0.51035327095184, -0.31863563325245, -0.20256413484477,  0.14728154134330,  0.38952639978999, -0.23313271880868, -0.05246019024463, -0.02505961724053,  0.02442357316099, 0.01818801111503 },
175    { 1., -0.25049871956020, -0.43193942311114, -0.03424681017675, -0.04678328784242,  0.26408300200955,  0.15113130533216, -0.17556493366449, -0.18823009262115,  0.05477720428674, 0.04704409688120 }
176};
177
178static const Float_t  BYule [9] [11] = {
179    { 0.03857599435200, -0.02160367184185, -0.00123395316851, -0.00009291677959, -0.01655260341619,  0.02161526843274, -0.02074045215285,  0.00594298065125,  0.00306428023191,  0.00012025322027,  0.00288463683916 },
180    { 0.05418656406430, -0.02911007808948, -0.00848709379851, -0.00851165645469, -0.00834990904936,  0.02245293253339, -0.02596338512915,  0.01624864962975, -0.00240879051584,  0.00674613682247, -0.00187763777362 },
181    { 0.15457299681924, -0.09331049056315, -0.06247880153653,  0.02163541888798, -0.05588393329856,  0.04781476674921,  0.00222312597743,  0.03174092540049, -0.01390589421898,  0.00651420667831, -0.00881362733839 },
182    { 0.30296907319327, -0.22613988682123, -0.08587323730772,  0.03282930172664, -0.00915702933434, -0.02364141202522, -0.00584456039913,  0.06276101321749, -0.00000828086748,  0.00205861885564, -0.02950134983287 },
183    { 0.33642304856132, -0.25572241425570, -0.11828570177555,  0.11921148675203, -0.07834489609479, -0.00469977914380, -0.00589500224440,  0.05724228140351,  0.00832043980773, -0.01635381384540, -0.01760176568150 },
184    { 0.44915256608450, -0.14351757464547, -0.22784394429749, -0.01419140100551,  0.04078262797139, -0.12398163381748,  0.04097565135648,  0.10478503600251, -0.01863887810927, -0.03193428438915,  0.00541907748707 },
185    { 0.56619470757641, -0.75464456939302,  0.16242137742230,  0.16744243493672, -0.18901604199609,  0.30931782841830, -0.27562961986224,  0.00647310677246,  0.08647503780351, -0.03788984554840, -0.00588215443421 },
186    { 0.58100494960553, -0.53174909058578, -0.14289799034253,  0.17520704835522,  0.02377945217615,  0.15558449135573, -0.25344790059353,  0.01628462406333,  0.06920467763959, -0.03721611395801, -0.00749618797172 },
187    { 0.53648789255105, -0.42163034350696, -0.00275953611929,  0.04267842219415, -0.10214864179676,  0.14590772289388, -0.02459864859345, -0.11202315195388, -0.04060034127000,  0.04788665548180, -0.02217936801134 }
188};
189
190static const Float_t  AButter [9] [3] = {
191    { 1., -1.97223372919527, 0.97261396931306 },
192    { 1., -1.96977855582618, 0.97022847566350 },
193    { 1., -1.95835380975398, 0.95920349965459 },
194    { 1., -1.95002759149878, 0.95124613669835 },
195    { 1., -1.94561023566527, 0.94705070426118 },
196    { 1., -1.92783286977036, 0.93034775234268 },
197    { 1., -1.91858953033784, 0.92177618768381 },
198    { 1., -1.91542108074780, 0.91885558323625 },
199    { 1., -1.88903307939452, 0.89487434461664 }
200};
201
202static const Float_t  BButter [9] [3] = {
203    { 0.98621192462708, -1.97242384925416, 0.98621192462708 },
204    { 0.98500175787242, -1.97000351574484, 0.98500175787242 },
205    { 0.97938932735214, -1.95877865470428, 0.97938932735214 },
206    { 0.97531843204928, -1.95063686409857, 0.97531843204928 },
207    { 0.97316523498161, -1.94633046996323, 0.97316523498161 },
208    { 0.96454515552826, -1.92909031105652, 0.96454515552826 },
209    { 0.96009142950541, -1.92018285901082, 0.96009142950541 },
210    { 0.95856916599601, -1.91713833199203, 0.95856916599601 },
211    { 0.94597685600279, -1.89195371200558, 0.94597685600279 }
212};
213
214#ifdef WIN32
215#pragma warning ( default : 4305 )
216#endif
217
218/* When calling this procedure, make sure that ip[-order] and op[-order] point to real data! */
219
220static void
221filter ( const Float_t* input, Float_t* output, size_t nSamples, const Float_t* a, const Float_t* b, size_t order )
222{
223    double  y;
224    size_t  i;
225    size_t  k;
226
227    for ( i = 0; i < nSamples; i++ ) {
228        y = input[i] * b[0];
229        for ( k = 1; k <= order; k++ )
230            y += input[i-k] * b[k] - output[i-k] * a[k];
231        output[i] = (Float_t)y;
232    }
233}
234
235/* returns a INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if not */
236
237int
238ResetSampleFrequency ( long samplefreq ) {
239    int  i;
240
241    /* zero out initial values */
242    for ( i = 0; i < MAX_ORDER; i++ )
243        linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.;
244
245    switch ( (int)(samplefreq) ) {
246        case 48000: freqindex = 0; break;
247        case 44100: freqindex = 1; break;
248        case 32000: freqindex = 2; break;
249        case 24000: freqindex = 3; break;
250        case 22050: freqindex = 4; break;
251        case 16000: freqindex = 5; break;
252        case 12000: freqindex = 6; break;
253        case 11025: freqindex = 7; break;
254        case  8000: freqindex = 8; break;
255        default:    return INIT_GAIN_ANALYSIS_ERROR;
256    }
257
258    sampleWindow = (int) ceil (samplefreq * RMS_WINDOW_TIME);
259
260    lsum         = 0.;
261    rsum         = 0.;
262    totsamp      = 0;
263
264    memset ( A, 0, sizeof(A) );
265
266	return INIT_GAIN_ANALYSIS_OK;
267}
268
269int
270InitGainAnalysis ( long samplefreq )
271{
272	if (ResetSampleFrequency(samplefreq) != INIT_GAIN_ANALYSIS_OK) {
273		return INIT_GAIN_ANALYSIS_ERROR;
274	}
275
276    linpre       = linprebuf + MAX_ORDER;
277    rinpre       = rinprebuf + MAX_ORDER;
278    lstep        = lstepbuf  + MAX_ORDER;
279    rstep        = rstepbuf  + MAX_ORDER;
280    lout         = loutbuf   + MAX_ORDER;
281    rout         = routbuf   + MAX_ORDER;
282
283    memset ( B, 0, sizeof(B) );
284
285    return INIT_GAIN_ANALYSIS_OK;
286}
287
288/* returns GAIN_ANALYSIS_OK if successful, GAIN_ANALYSIS_ERROR if not */
289
290int
291AnalyzeSamples ( const Float_t* left_samples, const Float_t* right_samples, size_t num_samples, int num_channels )
292{
293    const Float_t*  curleft;
294    const Float_t*  curright;
295    long            batchsamples;
296    long            cursamples;
297    long            cursamplepos;
298    int             i;
299
300    if ( num_samples == 0 )
301        return GAIN_ANALYSIS_OK;
302
303    cursamplepos = 0;
304    batchsamples = num_samples;
305
306    switch ( num_channels) {
307    case  1: right_samples = left_samples;
308    case  2: break;
309    default: return GAIN_ANALYSIS_ERROR;
310    }
311
312    if ( num_samples < MAX_ORDER ) {
313        memcpy ( linprebuf + MAX_ORDER, left_samples , num_samples * sizeof(Float_t) );
314        memcpy ( rinprebuf + MAX_ORDER, right_samples, num_samples * sizeof(Float_t) );
315    }
316    else {
317        memcpy ( linprebuf + MAX_ORDER, left_samples,  MAX_ORDER   * sizeof(Float_t) );
318        memcpy ( rinprebuf + MAX_ORDER, right_samples, MAX_ORDER   * sizeof(Float_t) );
319    }
320
321    while ( batchsamples > 0 ) {
322        cursamples = batchsamples > (long)(sampleWindow-totsamp)  ?  (long)(sampleWindow - totsamp)  :  batchsamples;
323        if ( cursamplepos < MAX_ORDER ) {
324            curleft  = linpre+cursamplepos;
325            curright = rinpre+cursamplepos;
326            if (cursamples > MAX_ORDER - cursamplepos )
327                cursamples = MAX_ORDER - cursamplepos;
328        }
329        else {
330            curleft  = left_samples  + cursamplepos;
331            curright = right_samples + cursamplepos;
332        }
333
334        filter ( curleft , lstep + totsamp, cursamples, AYule[freqindex], BYule[freqindex], YULE_ORDER );
335        filter ( curright, rstep + totsamp, cursamples, AYule[freqindex], BYule[freqindex], YULE_ORDER );
336
337        filter ( lstep + totsamp, lout + totsamp, cursamples, AButter[freqindex], BButter[freqindex], BUTTER_ORDER );
338        filter ( rstep + totsamp, rout + totsamp, cursamples, AButter[freqindex], BButter[freqindex], BUTTER_ORDER );
339
340        for ( i = 0; i < cursamples; i++ ) {             /* Get the squared values */
341            lsum += lout [totsamp+i] * lout [totsamp+i];
342            rsum += rout [totsamp+i] * rout [totsamp+i];
343        }
344
345        batchsamples -= cursamples;
346        cursamplepos += cursamples;
347        totsamp      += cursamples;
348        if ( totsamp == sampleWindow ) {  /* Get the Root Mean Square (RMS) for this set of samples */
349            double  val  = STEPS_per_dB * 10. * log10 ( (lsum+rsum) / totsamp * 0.5 + 1.e-37 );
350            int     ival = (int) val;
351            if ( ival <                     0 ) ival = 0;
352            if ( ival >= (int)(sizeof(A)/sizeof(*A)) ) ival = (int)(sizeof(A)/sizeof(*A)) - 1;
353            A [ival]++;
354            lsum = rsum = 0.;
355            memmove ( loutbuf , loutbuf  + totsamp, MAX_ORDER * sizeof(Float_t) );
356            memmove ( routbuf , routbuf  + totsamp, MAX_ORDER * sizeof(Float_t) );
357            memmove ( lstepbuf, lstepbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
358            memmove ( rstepbuf, rstepbuf + totsamp, MAX_ORDER * sizeof(Float_t) );
359            totsamp = 0;
360        }
361        if ( totsamp > sampleWindow )   /* somehow I really screwed up: Error in programming! Contact author about totsamp > sampleWindow */
362            return GAIN_ANALYSIS_ERROR;
363    }
364    if ( num_samples < MAX_ORDER ) {
365        memmove ( linprebuf,                           linprebuf + num_samples, (MAX_ORDER-num_samples) * sizeof(Float_t) );
366        memmove ( rinprebuf,                           rinprebuf + num_samples, (MAX_ORDER-num_samples) * sizeof(Float_t) );
367        memcpy  ( linprebuf + MAX_ORDER - num_samples, left_samples,          num_samples             * sizeof(Float_t) );
368        memcpy  ( rinprebuf + MAX_ORDER - num_samples, right_samples,         num_samples             * sizeof(Float_t) );
369    }
370    else {
371        memcpy  ( linprebuf, left_samples  + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t) );
372        memcpy  ( rinprebuf, right_samples + num_samples - MAX_ORDER, MAX_ORDER * sizeof(Float_t) );
373    }
374
375    return GAIN_ANALYSIS_OK;
376}
377
378
379static Float_t
380analyzeResult ( Uint32_t* Array, size_t len )
381{
382    Uint32_t  elems;
383    Int32_t   upper;
384    size_t    i;
385
386    elems = 0;
387    for ( i = 0; i < len; i++ )
388        elems += Array[i];
389    if ( elems == 0 )
390        return GAIN_NOT_ENOUGH_SAMPLES;
391
392    upper = (Int32_t) ceil (elems * (1. - RMS_PERCENTILE));
393    for ( i = len; i-- > 0; ) {
394        if ( (upper -= Array[i]) <= 0 )
395            break;
396    }
397
398    return (Float_t) ((Float_t)PINK_REF - (Float_t)i / (Float_t)STEPS_per_dB);
399}
400
401
402Float_t
403GetTitleGain ( void )
404{
405    Float_t  retval;
406    unsigned int    i;
407
408    retval = analyzeResult ( A, sizeof(A)/sizeof(*A) );
409
410    for ( i = 0; i < sizeof(A)/sizeof(*A); i++ ) {
411        B[i] += A[i];
412        A[i]  = 0;
413    }
414
415    for ( i = 0; i < MAX_ORDER; i++ )
416        linprebuf[i] = lstepbuf[i] = loutbuf[i] = rinprebuf[i] = rstepbuf[i] = routbuf[i] = 0.f;
417
418    totsamp = 0;
419    lsum    = rsum = 0.;
420    return retval;
421}
422
423
424Float_t
425GetAlbumGain ( void )
426{
427    return analyzeResult ( B, sizeof(B)/sizeof(*B) );
428}
429
430/* end of replaygain_analysis.c */
431