1/* libFLAC - Free Lossless Audio Codec library
2 * Copyright (C) 2000,2001,2002,2003,2004,2005,2006,2007  Josh Coalson
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * - Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * - Neither the name of the Xiph.org Foundation nor the names of its
16 * contributors may be used to endorse or promote products derived from
17 * this software without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31
32#if HAVE_CONFIG_H
33#  include <config.h>
34#endif
35
36#include <math.h>
37#include "FLAC/assert.h"
38#include "FLAC/format.h"
39#include "private/bitmath.h"
40#include "private/lpc.h"
41#if defined DEBUG || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE
42#include <stdio.h>
43#endif
44
45#ifndef FLAC__INTEGER_ONLY_LIBRARY
46
47#ifndef M_LN2
48/* math.h in VC++ doesn't seem to have this (how Microsoft is that?) */
49#define M_LN2 0.69314718055994530942
50#endif
51
52/* OPT: #undef'ing this may improve the speed on some architectures */
53#define FLAC__LPC_UNROLLED_FILTER_LOOPS
54
55
56void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], unsigned data_len)
57{
58	unsigned i;
59	for(i = 0; i < data_len; i++)
60		out[i] = in[i] * window[i];
61}
62
63void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[])
64{
65	/* a readable, but slower, version */
66#if 0
67	FLAC__real d;
68	unsigned i;
69
70	FLAC__ASSERT(lag > 0);
71	FLAC__ASSERT(lag <= data_len);
72
73	/*
74	 * Technically we should subtract the mean first like so:
75	 *   for(i = 0; i < data_len; i++)
76	 *     data[i] -= mean;
77	 * but it appears not to make enough of a difference to matter, and
78	 * most signals are already closely centered around zero
79	 */
80	while(lag--) {
81		for(i = lag, d = 0.0; i < data_len; i++)
82			d += data[i] * data[i - lag];
83		autoc[lag] = d;
84	}
85#endif
86
87	/*
88	 * this version tends to run faster because of better data locality
89	 * ('data_len' is usually much larger than 'lag')
90	 */
91	FLAC__real d;
92	unsigned sample, coeff;
93	const unsigned limit = data_len - lag;
94
95	FLAC__ASSERT(lag > 0);
96	FLAC__ASSERT(lag <= data_len);
97
98	for(coeff = 0; coeff < lag; coeff++)
99		autoc[coeff] = 0.0;
100	for(sample = 0; sample <= limit; sample++) {
101		d = data[sample];
102		for(coeff = 0; coeff < lag; coeff++)
103			autoc[coeff] += d * data[sample+coeff];
104	}
105	for(; sample < data_len; sample++) {
106		d = data[sample];
107		for(coeff = 0; coeff < data_len - sample; coeff++)
108			autoc[coeff] += d * data[sample+coeff];
109	}
110}
111
112void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[])
113{
114	unsigned i, j;
115	FLAC__double r, err, ref[FLAC__MAX_LPC_ORDER], lpc[FLAC__MAX_LPC_ORDER];
116
117	FLAC__ASSERT(0 != max_order);
118	FLAC__ASSERT(0 < *max_order);
119	FLAC__ASSERT(*max_order <= FLAC__MAX_LPC_ORDER);
120	FLAC__ASSERT(autoc[0] != 0.0);
121
122	err = autoc[0];
123
124	for(i = 0; i < *max_order; i++) {
125		/* Sum up this iteration's reflection coefficient. */
126		r = -autoc[i+1];
127		for(j = 0; j < i; j++)
128			r -= lpc[j] * autoc[i-j];
129		ref[i] = (r/=err);
130
131		/* Update LPC coefficients and total error. */
132		lpc[i]=r;
133		for(j = 0; j < (i>>1); j++) {
134			FLAC__double tmp = lpc[j];
135			lpc[j] += r * lpc[i-1-j];
136			lpc[i-1-j] += r * tmp;
137		}
138		if(i & 1)
139			lpc[j] += lpc[j] * r;
140
141		err *= (1.0 - r * r);
142
143		/* save this order */
144		for(j = 0; j <= i; j++)
145			lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */
146		error[i] = err;
147
148		/* see SF bug #1601812 http://sourceforge.net/tracker/index.php?func=detail&aid=1601812&group_id=13478&atid=113478 */
149		if(err == 0.0) {
150			*max_order = i+1;
151			return;
152		}
153	}
154}
155
156int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift)
157{
158	unsigned i;
159	FLAC__double cmax;
160	FLAC__int32 qmax, qmin;
161
162	FLAC__ASSERT(precision > 0);
163	FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION);
164
165	/* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */
166	precision--;
167	qmax = 1 << precision;
168	qmin = -qmax;
169	qmax--;
170
171	/* calc cmax = max( |lp_coeff[i]| ) */
172	cmax = 0.0;
173	for(i = 0; i < order; i++) {
174		const FLAC__double d = fabs(lp_coeff[i]);
175		if(d > cmax)
176			cmax = d;
177	}
178
179	if(cmax <= 0.0) {
180		/* => coefficients are all 0, which means our constant-detect didn't work */
181		return 2;
182	}
183	else {
184		const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1;
185		const int min_shiftlimit = -max_shiftlimit - 1;
186		int log2cmax;
187
188		(void)frexp(cmax, &log2cmax);
189		log2cmax--;
190		*shift = (int)precision - log2cmax - 1;
191
192		if(*shift > max_shiftlimit)
193			*shift = max_shiftlimit;
194		else if(*shift < min_shiftlimit)
195			return 1;
196	}
197
198	if(*shift >= 0) {
199		FLAC__double error = 0.0;
200		FLAC__int32 q;
201		for(i = 0; i < order; i++) {
202			error += lp_coeff[i] * (1 << *shift);
203#if 1 /* unfortunately lround() is C99 */
204			if(error >= 0.0)
205				q = (FLAC__int32)(error + 0.5);
206			else
207				q = (FLAC__int32)(error - 0.5);
208#else
209			q = lround(error);
210#endif
211#ifdef FLAC__OVERFLOW_DETECT
212			if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
213				fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
214			else if(q < qmin)
215				fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
216#endif
217			if(q > qmax)
218				q = qmax;
219			else if(q < qmin)
220				q = qmin;
221			error -= q;
222			qlp_coeff[i] = q;
223		}
224	}
225	/* negative shift is very rare but due to design flaw, negative shift is
226	 * a NOP in the decoder, so it must be handled specially by scaling down
227	 * coeffs
228	 */
229	else {
230		const int nshift = -(*shift);
231		FLAC__double error = 0.0;
232		FLAC__int32 q;
233#ifdef DEBUG
234		fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift=%d order=%u cmax=%f\n", *shift, order, cmax);
235#endif
236		for(i = 0; i < order; i++) {
237			error += lp_coeff[i] / (1 << nshift);
238#if 1 /* unfortunately lround() is C99 */
239			if(error >= 0.0)
240				q = (FLAC__int32)(error + 0.5);
241			else
242				q = (FLAC__int32)(error - 0.5);
243#else
244			q = lround(error);
245#endif
246#ifdef FLAC__OVERFLOW_DETECT
247			if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
248				fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
249			else if(q < qmin)
250				fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
251#endif
252			if(q > qmax)
253				q = qmax;
254			else if(q < qmin)
255				q = qmin;
256			error -= q;
257			qlp_coeff[i] = q;
258		}
259		*shift = 0;
260	}
261
262	return 0;
263}
264
265void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[])
266#if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
267{
268	FLAC__int64 sumo;
269	unsigned i, j;
270	FLAC__int32 sum;
271	const FLAC__int32 *history;
272
273#ifdef FLAC__OVERFLOW_DETECT_VERBOSE
274	fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
275	for(i=0;i<order;i++)
276		fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
277	fprintf(stderr,"\n");
278#endif
279	FLAC__ASSERT(order > 0);
280
281	for(i = 0; i < data_len; i++) {
282		sumo = 0;
283		sum = 0;
284		history = data;
285		for(j = 0; j < order; j++) {
286			sum += qlp_coeff[j] * (*(--history));
287			sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
288#if defined _MSC_VER
289			if(sumo > 2147483647I64 || sumo < -2147483648I64)
290				fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo);
291#else
292			if(sumo > 2147483647ll || sumo < -2147483648ll)
293				fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,(long long)sumo);
294#endif
295		}
296		*(residual++) = *(data++) - (sum >> lp_quantization);
297	}
298
299	/* Here's a slower but clearer version:
300	for(i = 0; i < data_len; i++) {
301		sum = 0;
302		for(j = 0; j < order; j++)
303			sum += qlp_coeff[j] * data[i-j-1];
304		residual[i] = data[i] - (sum >> lp_quantization);
305	}
306	*/
307}
308#else /* fully unrolled version for normal use */
309{
310	int i;
311	FLAC__int32 sum;
312
313	FLAC__ASSERT(order > 0);
314	FLAC__ASSERT(order <= 32);
315
316	/*
317	 * We do unique versions up to 12th order since that's the subset limit.
318	 * Also they are roughly ordered to match frequency of occurrence to
319	 * minimize branching.
320	 */
321	if(order <= 12) {
322		if(order > 8) {
323			if(order > 10) {
324				if(order == 12) {
325					for(i = 0; i < (int)data_len; i++) {
326						sum = 0;
327						sum += qlp_coeff[11] * data[i-12];
328						sum += qlp_coeff[10] * data[i-11];
329						sum += qlp_coeff[9] * data[i-10];
330						sum += qlp_coeff[8] * data[i-9];
331						sum += qlp_coeff[7] * data[i-8];
332						sum += qlp_coeff[6] * data[i-7];
333						sum += qlp_coeff[5] * data[i-6];
334						sum += qlp_coeff[4] * data[i-5];
335						sum += qlp_coeff[3] * data[i-4];
336						sum += qlp_coeff[2] * data[i-3];
337						sum += qlp_coeff[1] * data[i-2];
338						sum += qlp_coeff[0] * data[i-1];
339						residual[i] = data[i] - (sum >> lp_quantization);
340					}
341				}
342				else { /* order == 11 */
343					for(i = 0; i < (int)data_len; i++) {
344						sum = 0;
345						sum += qlp_coeff[10] * data[i-11];
346						sum += qlp_coeff[9] * data[i-10];
347						sum += qlp_coeff[8] * data[i-9];
348						sum += qlp_coeff[7] * data[i-8];
349						sum += qlp_coeff[6] * data[i-7];
350						sum += qlp_coeff[5] * data[i-6];
351						sum += qlp_coeff[4] * data[i-5];
352						sum += qlp_coeff[3] * data[i-4];
353						sum += qlp_coeff[2] * data[i-3];
354						sum += qlp_coeff[1] * data[i-2];
355						sum += qlp_coeff[0] * data[i-1];
356						residual[i] = data[i] - (sum >> lp_quantization);
357					}
358				}
359			}
360			else {
361				if(order == 10) {
362					for(i = 0; i < (int)data_len; i++) {
363						sum = 0;
364						sum += qlp_coeff[9] * data[i-10];
365						sum += qlp_coeff[8] * data[i-9];
366						sum += qlp_coeff[7] * data[i-8];
367						sum += qlp_coeff[6] * data[i-7];
368						sum += qlp_coeff[5] * data[i-6];
369						sum += qlp_coeff[4] * data[i-5];
370						sum += qlp_coeff[3] * data[i-4];
371						sum += qlp_coeff[2] * data[i-3];
372						sum += qlp_coeff[1] * data[i-2];
373						sum += qlp_coeff[0] * data[i-1];
374						residual[i] = data[i] - (sum >> lp_quantization);
375					}
376				}
377				else { /* order == 9 */
378					for(i = 0; i < (int)data_len; i++) {
379						sum = 0;
380						sum += qlp_coeff[8] * data[i-9];
381						sum += qlp_coeff[7] * data[i-8];
382						sum += qlp_coeff[6] * data[i-7];
383						sum += qlp_coeff[5] * data[i-6];
384						sum += qlp_coeff[4] * data[i-5];
385						sum += qlp_coeff[3] * data[i-4];
386						sum += qlp_coeff[2] * data[i-3];
387						sum += qlp_coeff[1] * data[i-2];
388						sum += qlp_coeff[0] * data[i-1];
389						residual[i] = data[i] - (sum >> lp_quantization);
390					}
391				}
392			}
393		}
394		else if(order > 4) {
395			if(order > 6) {
396				if(order == 8) {
397					for(i = 0; i < (int)data_len; i++) {
398						sum = 0;
399						sum += qlp_coeff[7] * data[i-8];
400						sum += qlp_coeff[6] * data[i-7];
401						sum += qlp_coeff[5] * data[i-6];
402						sum += qlp_coeff[4] * data[i-5];
403						sum += qlp_coeff[3] * data[i-4];
404						sum += qlp_coeff[2] * data[i-3];
405						sum += qlp_coeff[1] * data[i-2];
406						sum += qlp_coeff[0] * data[i-1];
407						residual[i] = data[i] - (sum >> lp_quantization);
408					}
409				}
410				else { /* order == 7 */
411					for(i = 0; i < (int)data_len; i++) {
412						sum = 0;
413						sum += qlp_coeff[6] * data[i-7];
414						sum += qlp_coeff[5] * data[i-6];
415						sum += qlp_coeff[4] * data[i-5];
416						sum += qlp_coeff[3] * data[i-4];
417						sum += qlp_coeff[2] * data[i-3];
418						sum += qlp_coeff[1] * data[i-2];
419						sum += qlp_coeff[0] * data[i-1];
420						residual[i] = data[i] - (sum >> lp_quantization);
421					}
422				}
423			}
424			else {
425				if(order == 6) {
426					for(i = 0; i < (int)data_len; i++) {
427						sum = 0;
428						sum += qlp_coeff[5] * data[i-6];
429						sum += qlp_coeff[4] * data[i-5];
430						sum += qlp_coeff[3] * data[i-4];
431						sum += qlp_coeff[2] * data[i-3];
432						sum += qlp_coeff[1] * data[i-2];
433						sum += qlp_coeff[0] * data[i-1];
434						residual[i] = data[i] - (sum >> lp_quantization);
435					}
436				}
437				else { /* order == 5 */
438					for(i = 0; i < (int)data_len; i++) {
439						sum = 0;
440						sum += qlp_coeff[4] * data[i-5];
441						sum += qlp_coeff[3] * data[i-4];
442						sum += qlp_coeff[2] * data[i-3];
443						sum += qlp_coeff[1] * data[i-2];
444						sum += qlp_coeff[0] * data[i-1];
445						residual[i] = data[i] - (sum >> lp_quantization);
446					}
447				}
448			}
449		}
450		else {
451			if(order > 2) {
452				if(order == 4) {
453					for(i = 0; i < (int)data_len; i++) {
454						sum = 0;
455						sum += qlp_coeff[3] * data[i-4];
456						sum += qlp_coeff[2] * data[i-3];
457						sum += qlp_coeff[1] * data[i-2];
458						sum += qlp_coeff[0] * data[i-1];
459						residual[i] = data[i] - (sum >> lp_quantization);
460					}
461				}
462				else { /* order == 3 */
463					for(i = 0; i < (int)data_len; i++) {
464						sum = 0;
465						sum += qlp_coeff[2] * data[i-3];
466						sum += qlp_coeff[1] * data[i-2];
467						sum += qlp_coeff[0] * data[i-1];
468						residual[i] = data[i] - (sum >> lp_quantization);
469					}
470				}
471			}
472			else {
473				if(order == 2) {
474					for(i = 0; i < (int)data_len; i++) {
475						sum = 0;
476						sum += qlp_coeff[1] * data[i-2];
477						sum += qlp_coeff[0] * data[i-1];
478						residual[i] = data[i] - (sum >> lp_quantization);
479					}
480				}
481				else { /* order == 1 */
482					for(i = 0; i < (int)data_len; i++)
483						residual[i] = data[i] - ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
484				}
485			}
486		}
487	}
488	else { /* order > 12 */
489		for(i = 0; i < (int)data_len; i++) {
490			sum = 0;
491			switch(order) {
492				case 32: sum += qlp_coeff[31] * data[i-32];
493				case 31: sum += qlp_coeff[30] * data[i-31];
494				case 30: sum += qlp_coeff[29] * data[i-30];
495				case 29: sum += qlp_coeff[28] * data[i-29];
496				case 28: sum += qlp_coeff[27] * data[i-28];
497				case 27: sum += qlp_coeff[26] * data[i-27];
498				case 26: sum += qlp_coeff[25] * data[i-26];
499				case 25: sum += qlp_coeff[24] * data[i-25];
500				case 24: sum += qlp_coeff[23] * data[i-24];
501				case 23: sum += qlp_coeff[22] * data[i-23];
502				case 22: sum += qlp_coeff[21] * data[i-22];
503				case 21: sum += qlp_coeff[20] * data[i-21];
504				case 20: sum += qlp_coeff[19] * data[i-20];
505				case 19: sum += qlp_coeff[18] * data[i-19];
506				case 18: sum += qlp_coeff[17] * data[i-18];
507				case 17: sum += qlp_coeff[16] * data[i-17];
508				case 16: sum += qlp_coeff[15] * data[i-16];
509				case 15: sum += qlp_coeff[14] * data[i-15];
510				case 14: sum += qlp_coeff[13] * data[i-14];
511				case 13: sum += qlp_coeff[12] * data[i-13];
512				         sum += qlp_coeff[11] * data[i-12];
513				         sum += qlp_coeff[10] * data[i-11];
514				         sum += qlp_coeff[ 9] * data[i-10];
515				         sum += qlp_coeff[ 8] * data[i- 9];
516				         sum += qlp_coeff[ 7] * data[i- 8];
517				         sum += qlp_coeff[ 6] * data[i- 7];
518				         sum += qlp_coeff[ 5] * data[i- 6];
519				         sum += qlp_coeff[ 4] * data[i- 5];
520				         sum += qlp_coeff[ 3] * data[i- 4];
521				         sum += qlp_coeff[ 2] * data[i- 3];
522				         sum += qlp_coeff[ 1] * data[i- 2];
523				         sum += qlp_coeff[ 0] * data[i- 1];
524			}
525			residual[i] = data[i] - (sum >> lp_quantization);
526		}
527	}
528}
529#endif
530
531void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[])
532#if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
533{
534	unsigned i, j;
535	FLAC__int64 sum;
536	const FLAC__int32 *history;
537
538#ifdef FLAC__OVERFLOW_DETECT_VERBOSE
539	fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
540	for(i=0;i<order;i++)
541		fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
542	fprintf(stderr,"\n");
543#endif
544	FLAC__ASSERT(order > 0);
545
546	for(i = 0; i < data_len; i++) {
547		sum = 0;
548		history = data;
549		for(j = 0; j < order; j++)
550			sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
551		if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
552#if defined _MSC_VER
553			fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%I64d\n", i, sum >> lp_quantization);
554#else
555			fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, sum=%lld\n", i, (long long)(sum >> lp_quantization));
556#endif
557			break;
558		}
559		if(FLAC__bitmath_silog2_wide((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) {
560#if defined _MSC_VER
561			fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%I64d, residual=%I64d\n", i, *data, sum >> lp_quantization, (FLAC__int64)(*data) - (sum >> lp_quantization));
562#else
563			fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%lld, residual=%lld\n", i, *data, (long long)(sum >> lp_quantization), (long long)((FLAC__int64)(*data) - (sum >> lp_quantization)));
564#endif
565			break;
566		}
567		*(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization);
568	}
569}
570#else /* fully unrolled version for normal use */
571{
572	int i;
573	FLAC__int64 sum;
574
575	FLAC__ASSERT(order > 0);
576	FLAC__ASSERT(order <= 32);
577
578	/*
579	 * We do unique versions up to 12th order since that's the subset limit.
580	 * Also they are roughly ordered to match frequency of occurrence to
581	 * minimize branching.
582	 */
583	if(order <= 12) {
584		if(order > 8) {
585			if(order > 10) {
586				if(order == 12) {
587					for(i = 0; i < (int)data_len; i++) {
588						sum = 0;
589						sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
590						sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
591						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
592						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
593						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
594						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
595						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
596						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
597						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
598						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
599						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
600						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
601						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
602					}
603				}
604				else { /* order == 11 */
605					for(i = 0; i < (int)data_len; i++) {
606						sum = 0;
607						sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
608						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
609						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
610						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
611						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
612						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
613						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
614						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
615						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
616						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
617						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
618						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
619					}
620				}
621			}
622			else {
623				if(order == 10) {
624					for(i = 0; i < (int)data_len; i++) {
625						sum = 0;
626						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
627						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
628						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
629						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
630						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
631						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
632						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
633						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
634						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
635						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
636						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
637					}
638				}
639				else { /* order == 9 */
640					for(i = 0; i < (int)data_len; i++) {
641						sum = 0;
642						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
643						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
644						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
645						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
646						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
647						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
648						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
649						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
650						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
651						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
652					}
653				}
654			}
655		}
656		else if(order > 4) {
657			if(order > 6) {
658				if(order == 8) {
659					for(i = 0; i < (int)data_len; i++) {
660						sum = 0;
661						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
662						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
663						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
664						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
665						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
666						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
667						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
668						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
669						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
670					}
671				}
672				else { /* order == 7 */
673					for(i = 0; i < (int)data_len; i++) {
674						sum = 0;
675						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
676						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
677						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
678						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
679						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
680						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
681						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
682						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
683					}
684				}
685			}
686			else {
687				if(order == 6) {
688					for(i = 0; i < (int)data_len; i++) {
689						sum = 0;
690						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
691						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
692						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
693						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
694						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
695						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
696						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
697					}
698				}
699				else { /* order == 5 */
700					for(i = 0; i < (int)data_len; i++) {
701						sum = 0;
702						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
703						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
704						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
705						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
706						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
707						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
708					}
709				}
710			}
711		}
712		else {
713			if(order > 2) {
714				if(order == 4) {
715					for(i = 0; i < (int)data_len; i++) {
716						sum = 0;
717						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
718						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
719						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
720						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
721						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
722					}
723				}
724				else { /* order == 3 */
725					for(i = 0; i < (int)data_len; i++) {
726						sum = 0;
727						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
728						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
729						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
730						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
731					}
732				}
733			}
734			else {
735				if(order == 2) {
736					for(i = 0; i < (int)data_len; i++) {
737						sum = 0;
738						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
739						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
740						residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
741					}
742				}
743				else { /* order == 1 */
744					for(i = 0; i < (int)data_len; i++)
745						residual[i] = data[i] - (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
746				}
747			}
748		}
749	}
750	else { /* order > 12 */
751		for(i = 0; i < (int)data_len; i++) {
752			sum = 0;
753			switch(order) {
754				case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
755				case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
756				case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
757				case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
758				case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
759				case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
760				case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
761				case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
762				case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
763				case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
764				case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
765				case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
766				case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
767				case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
768				case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
769				case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
770				case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
771				case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
772				case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
773				case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
774				         sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
775				         sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
776				         sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
777				         sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
778				         sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
779				         sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
780				         sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
781				         sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
782				         sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
783				         sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
784				         sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
785				         sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
786			}
787			residual[i] = data[i] - (FLAC__int32)(sum >> lp_quantization);
788		}
789	}
790}
791#endif
792
793#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
794
795void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[])
796#if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
797{
798	FLAC__int64 sumo;
799	unsigned i, j;
800	FLAC__int32 sum;
801	const FLAC__int32 *r = residual, *history;
802
803#ifdef FLAC__OVERFLOW_DETECT_VERBOSE
804	fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
805	for(i=0;i<order;i++)
806		fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
807	fprintf(stderr,"\n");
808#endif
809	FLAC__ASSERT(order > 0);
810
811	for(i = 0; i < data_len; i++) {
812		sumo = 0;
813		sum = 0;
814		history = data;
815		for(j = 0; j < order; j++) {
816			sum += qlp_coeff[j] * (*(--history));
817			sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
818#if defined _MSC_VER
819			if(sumo > 2147483647I64 || sumo < -2147483648I64)
820				fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%I64d\n",i,j,qlp_coeff[j],*history,sumo);
821#else
822			if(sumo > 2147483647ll || sumo < -2147483648ll)
823				fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%lld\n",i,j,qlp_coeff[j],*history,(long long)sumo);
824#endif
825		}
826		*(data++) = *(r++) + (sum >> lp_quantization);
827	}
828
829	/* Here's a slower but clearer version:
830	for(i = 0; i < data_len; i++) {
831		sum = 0;
832		for(j = 0; j < order; j++)
833			sum += qlp_coeff[j] * data[i-j-1];
834		data[i] = residual[i] + (sum >> lp_quantization);
835	}
836	*/
837}
838#else /* fully unrolled version for normal use */
839{
840	int i;
841	FLAC__int32 sum;
842
843	FLAC__ASSERT(order > 0);
844	FLAC__ASSERT(order <= 32);
845
846	/*
847	 * We do unique versions up to 12th order since that's the subset limit.
848	 * Also they are roughly ordered to match frequency of occurrence to
849	 * minimize branching.
850	 */
851	if(order <= 12) {
852		if(order > 8) {
853			if(order > 10) {
854				if(order == 12) {
855					for(i = 0; i < (int)data_len; i++) {
856						sum = 0;
857						sum += qlp_coeff[11] * data[i-12];
858						sum += qlp_coeff[10] * data[i-11];
859						sum += qlp_coeff[9] * data[i-10];
860						sum += qlp_coeff[8] * data[i-9];
861						sum += qlp_coeff[7] * data[i-8];
862						sum += qlp_coeff[6] * data[i-7];
863						sum += qlp_coeff[5] * data[i-6];
864						sum += qlp_coeff[4] * data[i-5];
865						sum += qlp_coeff[3] * data[i-4];
866						sum += qlp_coeff[2] * data[i-3];
867						sum += qlp_coeff[1] * data[i-2];
868						sum += qlp_coeff[0] * data[i-1];
869						data[i] = residual[i] + (sum >> lp_quantization);
870					}
871				}
872				else { /* order == 11 */
873					for(i = 0; i < (int)data_len; i++) {
874						sum = 0;
875						sum += qlp_coeff[10] * data[i-11];
876						sum += qlp_coeff[9] * data[i-10];
877						sum += qlp_coeff[8] * data[i-9];
878						sum += qlp_coeff[7] * data[i-8];
879						sum += qlp_coeff[6] * data[i-7];
880						sum += qlp_coeff[5] * data[i-6];
881						sum += qlp_coeff[4] * data[i-5];
882						sum += qlp_coeff[3] * data[i-4];
883						sum += qlp_coeff[2] * data[i-3];
884						sum += qlp_coeff[1] * data[i-2];
885						sum += qlp_coeff[0] * data[i-1];
886						data[i] = residual[i] + (sum >> lp_quantization);
887					}
888				}
889			}
890			else {
891				if(order == 10) {
892					for(i = 0; i < (int)data_len; i++) {
893						sum = 0;
894						sum += qlp_coeff[9] * data[i-10];
895						sum += qlp_coeff[8] * data[i-9];
896						sum += qlp_coeff[7] * data[i-8];
897						sum += qlp_coeff[6] * data[i-7];
898						sum += qlp_coeff[5] * data[i-6];
899						sum += qlp_coeff[4] * data[i-5];
900						sum += qlp_coeff[3] * data[i-4];
901						sum += qlp_coeff[2] * data[i-3];
902						sum += qlp_coeff[1] * data[i-2];
903						sum += qlp_coeff[0] * data[i-1];
904						data[i] = residual[i] + (sum >> lp_quantization);
905					}
906				}
907				else { /* order == 9 */
908					for(i = 0; i < (int)data_len; i++) {
909						sum = 0;
910						sum += qlp_coeff[8] * data[i-9];
911						sum += qlp_coeff[7] * data[i-8];
912						sum += qlp_coeff[6] * data[i-7];
913						sum += qlp_coeff[5] * data[i-6];
914						sum += qlp_coeff[4] * data[i-5];
915						sum += qlp_coeff[3] * data[i-4];
916						sum += qlp_coeff[2] * data[i-3];
917						sum += qlp_coeff[1] * data[i-2];
918						sum += qlp_coeff[0] * data[i-1];
919						data[i] = residual[i] + (sum >> lp_quantization);
920					}
921				}
922			}
923		}
924		else if(order > 4) {
925			if(order > 6) {
926				if(order == 8) {
927					for(i = 0; i < (int)data_len; i++) {
928						sum = 0;
929						sum += qlp_coeff[7] * data[i-8];
930						sum += qlp_coeff[6] * data[i-7];
931						sum += qlp_coeff[5] * data[i-6];
932						sum += qlp_coeff[4] * data[i-5];
933						sum += qlp_coeff[3] * data[i-4];
934						sum += qlp_coeff[2] * data[i-3];
935						sum += qlp_coeff[1] * data[i-2];
936						sum += qlp_coeff[0] * data[i-1];
937						data[i] = residual[i] + (sum >> lp_quantization);
938					}
939				}
940				else { /* order == 7 */
941					for(i = 0; i < (int)data_len; i++) {
942						sum = 0;
943						sum += qlp_coeff[6] * data[i-7];
944						sum += qlp_coeff[5] * data[i-6];
945						sum += qlp_coeff[4] * data[i-5];
946						sum += qlp_coeff[3] * data[i-4];
947						sum += qlp_coeff[2] * data[i-3];
948						sum += qlp_coeff[1] * data[i-2];
949						sum += qlp_coeff[0] * data[i-1];
950						data[i] = residual[i] + (sum >> lp_quantization);
951					}
952				}
953			}
954			else {
955				if(order == 6) {
956					for(i = 0; i < (int)data_len; i++) {
957						sum = 0;
958						sum += qlp_coeff[5] * data[i-6];
959						sum += qlp_coeff[4] * data[i-5];
960						sum += qlp_coeff[3] * data[i-4];
961						sum += qlp_coeff[2] * data[i-3];
962						sum += qlp_coeff[1] * data[i-2];
963						sum += qlp_coeff[0] * data[i-1];
964						data[i] = residual[i] + (sum >> lp_quantization);
965					}
966				}
967				else { /* order == 5 */
968					for(i = 0; i < (int)data_len; i++) {
969						sum = 0;
970						sum += qlp_coeff[4] * data[i-5];
971						sum += qlp_coeff[3] * data[i-4];
972						sum += qlp_coeff[2] * data[i-3];
973						sum += qlp_coeff[1] * data[i-2];
974						sum += qlp_coeff[0] * data[i-1];
975						data[i] = residual[i] + (sum >> lp_quantization);
976					}
977				}
978			}
979		}
980		else {
981			if(order > 2) {
982				if(order == 4) {
983					for(i = 0; i < (int)data_len; i++) {
984						sum = 0;
985						sum += qlp_coeff[3] * data[i-4];
986						sum += qlp_coeff[2] * data[i-3];
987						sum += qlp_coeff[1] * data[i-2];
988						sum += qlp_coeff[0] * data[i-1];
989						data[i] = residual[i] + (sum >> lp_quantization);
990					}
991				}
992				else { /* order == 3 */
993					for(i = 0; i < (int)data_len; i++) {
994						sum = 0;
995						sum += qlp_coeff[2] * data[i-3];
996						sum += qlp_coeff[1] * data[i-2];
997						sum += qlp_coeff[0] * data[i-1];
998						data[i] = residual[i] + (sum >> lp_quantization);
999					}
1000				}
1001			}
1002			else {
1003				if(order == 2) {
1004					for(i = 0; i < (int)data_len; i++) {
1005						sum = 0;
1006						sum += qlp_coeff[1] * data[i-2];
1007						sum += qlp_coeff[0] * data[i-1];
1008						data[i] = residual[i] + (sum >> lp_quantization);
1009					}
1010				}
1011				else { /* order == 1 */
1012					for(i = 0; i < (int)data_len; i++)
1013						data[i] = residual[i] + ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
1014				}
1015			}
1016		}
1017	}
1018	else { /* order > 12 */
1019		for(i = 0; i < (int)data_len; i++) {
1020			sum = 0;
1021			switch(order) {
1022				case 32: sum += qlp_coeff[31] * data[i-32];
1023				case 31: sum += qlp_coeff[30] * data[i-31];
1024				case 30: sum += qlp_coeff[29] * data[i-30];
1025				case 29: sum += qlp_coeff[28] * data[i-29];
1026				case 28: sum += qlp_coeff[27] * data[i-28];
1027				case 27: sum += qlp_coeff[26] * data[i-27];
1028				case 26: sum += qlp_coeff[25] * data[i-26];
1029				case 25: sum += qlp_coeff[24] * data[i-25];
1030				case 24: sum += qlp_coeff[23] * data[i-24];
1031				case 23: sum += qlp_coeff[22] * data[i-23];
1032				case 22: sum += qlp_coeff[21] * data[i-22];
1033				case 21: sum += qlp_coeff[20] * data[i-21];
1034				case 20: sum += qlp_coeff[19] * data[i-20];
1035				case 19: sum += qlp_coeff[18] * data[i-19];
1036				case 18: sum += qlp_coeff[17] * data[i-18];
1037				case 17: sum += qlp_coeff[16] * data[i-17];
1038				case 16: sum += qlp_coeff[15] * data[i-16];
1039				case 15: sum += qlp_coeff[14] * data[i-15];
1040				case 14: sum += qlp_coeff[13] * data[i-14];
1041				case 13: sum += qlp_coeff[12] * data[i-13];
1042				         sum += qlp_coeff[11] * data[i-12];
1043				         sum += qlp_coeff[10] * data[i-11];
1044				         sum += qlp_coeff[ 9] * data[i-10];
1045				         sum += qlp_coeff[ 8] * data[i- 9];
1046				         sum += qlp_coeff[ 7] * data[i- 8];
1047				         sum += qlp_coeff[ 6] * data[i- 7];
1048				         sum += qlp_coeff[ 5] * data[i- 6];
1049				         sum += qlp_coeff[ 4] * data[i- 5];
1050				         sum += qlp_coeff[ 3] * data[i- 4];
1051				         sum += qlp_coeff[ 2] * data[i- 3];
1052				         sum += qlp_coeff[ 1] * data[i- 2];
1053				         sum += qlp_coeff[ 0] * data[i- 1];
1054			}
1055			data[i] = residual[i] + (sum >> lp_quantization);
1056		}
1057	}
1058}
1059#endif
1060
1061void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[])
1062#if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
1063{
1064	unsigned i, j;
1065	FLAC__int64 sum;
1066	const FLAC__int32 *r = residual, *history;
1067
1068#ifdef FLAC__OVERFLOW_DETECT_VERBOSE
1069	fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
1070	for(i=0;i<order;i++)
1071		fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
1072	fprintf(stderr,"\n");
1073#endif
1074	FLAC__ASSERT(order > 0);
1075
1076	for(i = 0; i < data_len; i++) {
1077		sum = 0;
1078		history = data;
1079		for(j = 0; j < order; j++)
1080			sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
1081		if(FLAC__bitmath_silog2_wide(sum >> lp_quantization) > 32) {
1082#ifdef _MSC_VER
1083			fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%I64d\n", i, sum >> lp_quantization);
1084#else
1085			fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, sum=%lld\n", i, (long long)(sum >> lp_quantization));
1086#endif
1087			break;
1088		}
1089		if(FLAC__bitmath_silog2_wide((FLAC__int64)(*r) + (sum >> lp_quantization)) > 32) {
1090#ifdef _MSC_VER
1091			fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%I64d, data=%I64d\n", i, *r, sum >> lp_quantization, (FLAC__int64)(*r) + (sum >> lp_quantization));
1092#else
1093			fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%lld, data=%lld\n", i, *r, (long long)(sum >> lp_quantization), (long long)((FLAC__int64)(*r) + (sum >> lp_quantization)));
1094#endif
1095			break;
1096		}
1097		*(data++) = *(r++) + (FLAC__int32)(sum >> lp_quantization);
1098	}
1099}
1100#else /* fully unrolled version for normal use */
1101{
1102	int i;
1103	FLAC__int64 sum;
1104
1105	FLAC__ASSERT(order > 0);
1106	FLAC__ASSERT(order <= 32);
1107
1108	/*
1109	 * We do unique versions up to 12th order since that's the subset limit.
1110	 * Also they are roughly ordered to match frequency of occurrence to
1111	 * minimize branching.
1112	 */
1113	if(order <= 12) {
1114		if(order > 8) {
1115			if(order > 10) {
1116				if(order == 12) {
1117					for(i = 0; i < (int)data_len; i++) {
1118						sum = 0;
1119						sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
1120						sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1121						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1122						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1123						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1124						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1125						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1126						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1127						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1128						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1129						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1130						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1131						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1132					}
1133				}
1134				else { /* order == 11 */
1135					for(i = 0; i < (int)data_len; i++) {
1136						sum = 0;
1137						sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1138						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1139						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1140						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1141						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1142						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1143						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1144						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1145						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1146						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1147						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1148						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1149					}
1150				}
1151			}
1152			else {
1153				if(order == 10) {
1154					for(i = 0; i < (int)data_len; i++) {
1155						sum = 0;
1156						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
1157						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1158						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1159						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1160						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1161						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1162						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1163						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1164						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1165						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1166						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1167					}
1168				}
1169				else { /* order == 9 */
1170					for(i = 0; i < (int)data_len; i++) {
1171						sum = 0;
1172						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
1173						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1174						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1175						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1176						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1177						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1178						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1179						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1180						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1181						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1182					}
1183				}
1184			}
1185		}
1186		else if(order > 4) {
1187			if(order > 6) {
1188				if(order == 8) {
1189					for(i = 0; i < (int)data_len; i++) {
1190						sum = 0;
1191						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
1192						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1193						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1194						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1195						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1196						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1197						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1198						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1199						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1200					}
1201				}
1202				else { /* order == 7 */
1203					for(i = 0; i < (int)data_len; i++) {
1204						sum = 0;
1205						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
1206						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1207						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1208						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1209						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1210						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1211						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1212						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1213					}
1214				}
1215			}
1216			else {
1217				if(order == 6) {
1218					for(i = 0; i < (int)data_len; i++) {
1219						sum = 0;
1220						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
1221						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1222						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1223						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1224						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1225						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1226						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1227					}
1228				}
1229				else { /* order == 5 */
1230					for(i = 0; i < (int)data_len; i++) {
1231						sum = 0;
1232						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
1233						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1234						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1235						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1236						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1237						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1238					}
1239				}
1240			}
1241		}
1242		else {
1243			if(order > 2) {
1244				if(order == 4) {
1245					for(i = 0; i < (int)data_len; i++) {
1246						sum = 0;
1247						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
1248						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1249						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1250						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1251						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1252					}
1253				}
1254				else { /* order == 3 */
1255					for(i = 0; i < (int)data_len; i++) {
1256						sum = 0;
1257						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
1258						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1259						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1260						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1261					}
1262				}
1263			}
1264			else {
1265				if(order == 2) {
1266					for(i = 0; i < (int)data_len; i++) {
1267						sum = 0;
1268						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
1269						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
1270						data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1271					}
1272				}
1273				else { /* order == 1 */
1274					for(i = 0; i < (int)data_len; i++)
1275						data[i] = residual[i] + (FLAC__int32)((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
1276				}
1277			}
1278		}
1279	}
1280	else { /* order > 12 */
1281		for(i = 0; i < (int)data_len; i++) {
1282			sum = 0;
1283			switch(order) {
1284				case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32];
1285				case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31];
1286				case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30];
1287				case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29];
1288				case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28];
1289				case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27];
1290				case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26];
1291				case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25];
1292				case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24];
1293				case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23];
1294				case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22];
1295				case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21];
1296				case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20];
1297				case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19];
1298				case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18];
1299				case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17];
1300				case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16];
1301				case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15];
1302				case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14];
1303				case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
1304				         sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
1305				         sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
1306				         sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
1307				         sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
1308				         sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
1309				         sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
1310				         sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
1311				         sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
1312				         sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
1313				         sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
1314				         sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
1315				         sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
1316			}
1317			data[i] = residual[i] + (FLAC__int32)(sum >> lp_quantization);
1318		}
1319	}
1320}
1321#endif
1322
1323#ifndef FLAC__INTEGER_ONLY_LIBRARY
1324
1325FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples)
1326{
1327	FLAC__double error_scale;
1328
1329	FLAC__ASSERT(total_samples > 0);
1330
1331	error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;
1332
1333	return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale);
1334}
1335
1336FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale)
1337{
1338	if(lpc_error > 0.0) {
1339		FLAC__double bps = (FLAC__double)0.5 * log(error_scale * lpc_error) / M_LN2;
1340		if(bps >= 0.0)
1341			return bps;
1342		else
1343			return 0.0;
1344	}
1345	else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */
1346		return 1e32;
1347	}
1348	else {
1349		return 0.0;
1350	}
1351}
1352
1353unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned overhead_bits_per_order)
1354{
1355	unsigned order, index, best_index; /* 'index' the index into lpc_error; index==order-1 since lpc_error[0] is for order==1, lpc_error[1] is for order==2, etc */
1356	FLAC__double bits, best_bits, error_scale;
1357
1358	FLAC__ASSERT(max_order > 0);
1359	FLAC__ASSERT(total_samples > 0);
1360
1361	error_scale = 0.5 * M_LN2 * M_LN2 / (FLAC__double)total_samples;
1362
1363	best_index = 0;
1364	best_bits = (unsigned)(-1);
1365
1366	for(index = 0, order = 1; index < max_order; index++, order++) {
1367		bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[index], error_scale) * (FLAC__double)(total_samples - order) + (FLAC__double)(order * overhead_bits_per_order);
1368		if(bits < best_bits) {
1369			best_index = index;
1370			best_bits = bits;
1371		}
1372	}
1373
1374	return best_index+1; /* +1 since index of lpc_error[] is order-1 */
1375}
1376
1377#endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
1378