1/*
2 * The simplest mpeg audio layer 2 encoder
3 * Copyright (c) 2000, 2001 Fabrice Bellard
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22/**
23 * @file libavcodec/mpegaudio.c
24 * The simplest mpeg audio layer 2 encoder.
25 */
26
27#include "avcodec.h"
28#include "bitstream.h"
29
30#undef  CONFIG_MPEGAUDIO_HP
31#define CONFIG_MPEGAUDIO_HP 0
32#include "mpegaudio.h"
33
34/* currently, cannot change these constants (need to modify
35   quantization stage) */
36#define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
37
38#define SAMPLES_BUF_SIZE 4096
39
40typedef struct MpegAudioContext {
41    PutBitContext pb;
42    int nb_channels;
43    int freq, bit_rate;
44    int lsf;           /* 1 if mpeg2 low bitrate selected */
45    int bitrate_index; /* bit rate */
46    int freq_index;
47    int frame_size; /* frame size, in bits, without padding */
48    int64_t nb_samples; /* total number of samples encoded */
49    /* padding computation */
50    int frame_frac, frame_frac_incr, do_padding;
51    short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
52    int samples_offset[MPA_MAX_CHANNELS];       /* offset in samples_buf */
53    int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
54    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
55    /* code to group 3 scale factors */
56    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
57    int sblimit; /* number of used subbands */
58    const unsigned char *alloc_table;
59} MpegAudioContext;
60
61/* define it to use floats in quantization (I don't like floats !) */
62//#define USE_FLOATS
63
64#include "mpegaudiodata.h"
65#include "mpegaudiotab.h"
66
67static av_cold int MPA_encode_init(AVCodecContext *avctx)
68{
69    MpegAudioContext *s = avctx->priv_data;
70    int freq = avctx->sample_rate;
71    int bitrate = avctx->bit_rate;
72    int channels = avctx->channels;
73    int i, v, table;
74    float a;
75
76    if (channels <= 0 || channels > 2){
77        av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
78        return -1;
79    }
80    bitrate = bitrate / 1000;
81    s->nb_channels = channels;
82    s->freq = freq;
83    s->bit_rate = bitrate * 1000;
84    avctx->frame_size = MPA_FRAME_SIZE;
85
86    /* encoding freq */
87    s->lsf = 0;
88    for(i=0;i<3;i++) {
89        if (ff_mpa_freq_tab[i] == freq)
90            break;
91        if ((ff_mpa_freq_tab[i] / 2) == freq) {
92            s->lsf = 1;
93            break;
94        }
95    }
96    if (i == 3){
97        av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
98        return -1;
99    }
100    s->freq_index = i;
101
102    /* encoding bitrate & frequency */
103    for(i=0;i<15;i++) {
104        if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
105            break;
106    }
107    if (i == 15){
108        av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
109        return -1;
110    }
111    s->bitrate_index = i;
112
113    /* compute total header size & pad bit */
114
115    a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
116    s->frame_size = ((int)a) * 8;
117
118    /* frame fractional size to compute padding */
119    s->frame_frac = 0;
120    s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
121
122    /* select the right allocation table */
123    table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
124
125    /* number of used subbands */
126    s->sblimit = ff_mpa_sblimit_table[table];
127    s->alloc_table = ff_mpa_alloc_tables[table];
128
129#ifdef DEBUG
130    av_log(avctx, AV_LOG_DEBUG, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
131           bitrate, freq, s->frame_size, table, s->frame_frac_incr);
132#endif
133
134    for(i=0;i<s->nb_channels;i++)
135        s->samples_offset[i] = 0;
136
137    for(i=0;i<257;i++) {
138        int v;
139        v = ff_mpa_enwindow[i];
140#if WFRAC_BITS != 16
141        v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
142#endif
143        filter_bank[i] = v;
144        if ((i & 63) != 0)
145            v = -v;
146        if (i != 0)
147            filter_bank[512 - i] = v;
148    }
149
150    for(i=0;i<64;i++) {
151        v = (int)(pow(2.0, (3 - i) / 3.0) * (1 << 20));
152        if (v <= 0)
153            v = 1;
154        scale_factor_table[i] = v;
155#ifdef USE_FLOATS
156        scale_factor_inv_table[i] = pow(2.0, -(3 - i) / 3.0) / (float)(1 << 20);
157#else
158#define P 15
159        scale_factor_shift[i] = 21 - P - (i / 3);
160        scale_factor_mult[i] = (1 << P) * pow(2.0, (i % 3) / 3.0);
161#endif
162    }
163    for(i=0;i<128;i++) {
164        v = i - 64;
165        if (v <= -3)
166            v = 0;
167        else if (v < 0)
168            v = 1;
169        else if (v == 0)
170            v = 2;
171        else if (v < 3)
172            v = 3;
173        else
174            v = 4;
175        scale_diff_table[i] = v;
176    }
177
178    for(i=0;i<17;i++) {
179        v = ff_mpa_quant_bits[i];
180        if (v < 0)
181            v = -v;
182        else
183            v = v * 3;
184        total_quant_bits[i] = 12 * v;
185    }
186
187    avctx->coded_frame= avcodec_alloc_frame();
188    avctx->coded_frame->key_frame= 1;
189
190    return 0;
191}
192
193/* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
194static void idct32(int *out, int *tab)
195{
196    int i, j;
197    int *t, *t1, xr;
198    const int *xp = costab32;
199
200    for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
201
202    t = tab + 30;
203    t1 = tab + 2;
204    do {
205        t[0] += t[-4];
206        t[1] += t[1 - 4];
207        t -= 4;
208    } while (t != t1);
209
210    t = tab + 28;
211    t1 = tab + 4;
212    do {
213        t[0] += t[-8];
214        t[1] += t[1-8];
215        t[2] += t[2-8];
216        t[3] += t[3-8];
217        t -= 8;
218    } while (t != t1);
219
220    t = tab;
221    t1 = tab + 32;
222    do {
223        t[ 3] = -t[ 3];
224        t[ 6] = -t[ 6];
225
226        t[11] = -t[11];
227        t[12] = -t[12];
228        t[13] = -t[13];
229        t[15] = -t[15];
230        t += 16;
231    } while (t != t1);
232
233
234    t = tab;
235    t1 = tab + 8;
236    do {
237        int x1, x2, x3, x4;
238
239        x3 = MUL(t[16], FIX(SQRT2*0.5));
240        x4 = t[0] - x3;
241        x3 = t[0] + x3;
242
243        x2 = MUL(-(t[24] + t[8]), FIX(SQRT2*0.5));
244        x1 = MUL((t[8] - x2), xp[0]);
245        x2 = MUL((t[8] + x2), xp[1]);
246
247        t[ 0] = x3 + x1;
248        t[ 8] = x4 - x2;
249        t[16] = x4 + x2;
250        t[24] = x3 - x1;
251        t++;
252    } while (t != t1);
253
254    xp += 2;
255    t = tab;
256    t1 = tab + 4;
257    do {
258        xr = MUL(t[28],xp[0]);
259        t[28] = (t[0] - xr);
260        t[0] = (t[0] + xr);
261
262        xr = MUL(t[4],xp[1]);
263        t[ 4] = (t[24] - xr);
264        t[24] = (t[24] + xr);
265
266        xr = MUL(t[20],xp[2]);
267        t[20] = (t[8] - xr);
268        t[ 8] = (t[8] + xr);
269
270        xr = MUL(t[12],xp[3]);
271        t[12] = (t[16] - xr);
272        t[16] = (t[16] + xr);
273        t++;
274    } while (t != t1);
275    xp += 4;
276
277    for (i = 0; i < 4; i++) {
278        xr = MUL(tab[30-i*4],xp[0]);
279        tab[30-i*4] = (tab[i*4] - xr);
280        tab[   i*4] = (tab[i*4] + xr);
281
282        xr = MUL(tab[ 2+i*4],xp[1]);
283        tab[ 2+i*4] = (tab[28-i*4] - xr);
284        tab[28-i*4] = (tab[28-i*4] + xr);
285
286        xr = MUL(tab[31-i*4],xp[0]);
287        tab[31-i*4] = (tab[1+i*4] - xr);
288        tab[ 1+i*4] = (tab[1+i*4] + xr);
289
290        xr = MUL(tab[ 3+i*4],xp[1]);
291        tab[ 3+i*4] = (tab[29-i*4] - xr);
292        tab[29-i*4] = (tab[29-i*4] + xr);
293
294        xp += 2;
295    }
296
297    t = tab + 30;
298    t1 = tab + 1;
299    do {
300        xr = MUL(t1[0], *xp);
301        t1[0] = (t[0] - xr);
302        t[0] = (t[0] + xr);
303        t -= 2;
304        t1 += 2;
305        xp++;
306    } while (t >= tab);
307
308    for(i=0;i<32;i++) {
309        out[i] = tab[bitinv32[i]];
310    }
311}
312
313#define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
314
315static void filter(MpegAudioContext *s, int ch, short *samples, int incr)
316{
317    short *p, *q;
318    int sum, offset, i, j;
319    int tmp[64];
320    int tmp1[32];
321    int *out;
322
323    //    print_pow1(samples, 1152);
324
325    offset = s->samples_offset[ch];
326    out = &s->sb_samples[ch][0][0][0];
327    for(j=0;j<36;j++) {
328        /* 32 samples at once */
329        for(i=0;i<32;i++) {
330            s->samples_buf[ch][offset + (31 - i)] = samples[0];
331            samples += incr;
332        }
333
334        /* filter */
335        p = s->samples_buf[ch] + offset;
336        q = filter_bank;
337        /* maxsum = 23169 */
338        for(i=0;i<64;i++) {
339            sum = p[0*64] * q[0*64];
340            sum += p[1*64] * q[1*64];
341            sum += p[2*64] * q[2*64];
342            sum += p[3*64] * q[3*64];
343            sum += p[4*64] * q[4*64];
344            sum += p[5*64] * q[5*64];
345            sum += p[6*64] * q[6*64];
346            sum += p[7*64] * q[7*64];
347            tmp[i] = sum;
348            p++;
349            q++;
350        }
351        tmp1[0] = tmp[16] >> WSHIFT;
352        for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
353        for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
354
355        idct32(out, tmp1);
356
357        /* advance of 32 samples */
358        offset -= 32;
359        out += 32;
360        /* handle the wrap around */
361        if (offset < 0) {
362            memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
363                    s->samples_buf[ch], (512 - 32) * 2);
364            offset = SAMPLES_BUF_SIZE - 512;
365        }
366    }
367    s->samples_offset[ch] = offset;
368
369    //    print_pow(s->sb_samples, 1152);
370}
371
372static void compute_scale_factors(unsigned char scale_code[SBLIMIT],
373                                  unsigned char scale_factors[SBLIMIT][3],
374                                  int sb_samples[3][12][SBLIMIT],
375                                  int sblimit)
376{
377    int *p, vmax, v, n, i, j, k, code;
378    int index, d1, d2;
379    unsigned char *sf = &scale_factors[0][0];
380
381    for(j=0;j<sblimit;j++) {
382        for(i=0;i<3;i++) {
383            /* find the max absolute value */
384            p = &sb_samples[i][0][j];
385            vmax = abs(*p);
386            for(k=1;k<12;k++) {
387                p += SBLIMIT;
388                v = abs(*p);
389                if (v > vmax)
390                    vmax = v;
391            }
392            /* compute the scale factor index using log 2 computations */
393            if (vmax > 1) {
394                n = av_log2(vmax);
395                /* n is the position of the MSB of vmax. now
396                   use at most 2 compares to find the index */
397                index = (21 - n) * 3 - 3;
398                if (index >= 0) {
399                    while (vmax <= scale_factor_table[index+1])
400                        index++;
401                } else {
402                    index = 0; /* very unlikely case of overflow */
403                }
404            } else {
405                index = 62; /* value 63 is not allowed */
406            }
407
408#if 0
409            printf("%2d:%d in=%x %x %d\n",
410                   j, i, vmax, scale_factor_table[index], index);
411#endif
412            /* store the scale factor */
413            assert(index >=0 && index <= 63);
414            sf[i] = index;
415        }
416
417        /* compute the transmission factor : look if the scale factors
418           are close enough to each other */
419        d1 = scale_diff_table[sf[0] - sf[1] + 64];
420        d2 = scale_diff_table[sf[1] - sf[2] + 64];
421
422        /* handle the 25 cases */
423        switch(d1 * 5 + d2) {
424        case 0*5+0:
425        case 0*5+4:
426        case 3*5+4:
427        case 4*5+0:
428        case 4*5+4:
429            code = 0;
430            break;
431        case 0*5+1:
432        case 0*5+2:
433        case 4*5+1:
434        case 4*5+2:
435            code = 3;
436            sf[2] = sf[1];
437            break;
438        case 0*5+3:
439        case 4*5+3:
440            code = 3;
441            sf[1] = sf[2];
442            break;
443        case 1*5+0:
444        case 1*5+4:
445        case 2*5+4:
446            code = 1;
447            sf[1] = sf[0];
448            break;
449        case 1*5+1:
450        case 1*5+2:
451        case 2*5+0:
452        case 2*5+1:
453        case 2*5+2:
454            code = 2;
455            sf[1] = sf[2] = sf[0];
456            break;
457        case 2*5+3:
458        case 3*5+3:
459            code = 2;
460            sf[0] = sf[1] = sf[2];
461            break;
462        case 3*5+0:
463        case 3*5+1:
464        case 3*5+2:
465            code = 2;
466            sf[0] = sf[2] = sf[1];
467            break;
468        case 1*5+3:
469            code = 2;
470            if (sf[0] > sf[2])
471              sf[0] = sf[2];
472            sf[1] = sf[2] = sf[0];
473            break;
474        default:
475            assert(0); //cannot happen
476            code = 0;           /* kill warning */
477        }
478
479#if 0
480        printf("%d: %2d %2d %2d %d %d -> %d\n", j,
481               sf[0], sf[1], sf[2], d1, d2, code);
482#endif
483        scale_code[j] = code;
484        sf += 3;
485    }
486}
487
488/* The most important function : psycho acoustic module. In this
489   encoder there is basically none, so this is the worst you can do,
490   but also this is the simpler. */
491static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
492{
493    int i;
494
495    for(i=0;i<s->sblimit;i++) {
496        smr[i] = (int)(fixed_smr[i] * 10);
497    }
498}
499
500
501#define SB_NOTALLOCATED  0
502#define SB_ALLOCATED     1
503#define SB_NOMORE        2
504
505/* Try to maximize the smr while using a number of bits inferior to
506   the frame size. I tried to make the code simpler, faster and
507   smaller than other encoders :-) */
508static void compute_bit_allocation(MpegAudioContext *s,
509                                   short smr1[MPA_MAX_CHANNELS][SBLIMIT],
510                                   unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
511                                   int *padding)
512{
513    int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
514    int incr;
515    short smr[MPA_MAX_CHANNELS][SBLIMIT];
516    unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
517    const unsigned char *alloc;
518
519    memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
520    memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
521    memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
522
523    /* compute frame size and padding */
524    max_frame_size = s->frame_size;
525    s->frame_frac += s->frame_frac_incr;
526    if (s->frame_frac >= 65536) {
527        s->frame_frac -= 65536;
528        s->do_padding = 1;
529        max_frame_size += 8;
530    } else {
531        s->do_padding = 0;
532    }
533
534    /* compute the header + bit alloc size */
535    current_frame_size = 32;
536    alloc = s->alloc_table;
537    for(i=0;i<s->sblimit;i++) {
538        incr = alloc[0];
539        current_frame_size += incr * s->nb_channels;
540        alloc += 1 << incr;
541    }
542    for(;;) {
543        /* look for the subband with the largest signal to mask ratio */
544        max_sb = -1;
545        max_ch = -1;
546        max_smr = INT_MIN;
547        for(ch=0;ch<s->nb_channels;ch++) {
548            for(i=0;i<s->sblimit;i++) {
549                if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
550                    max_smr = smr[ch][i];
551                    max_sb = i;
552                    max_ch = ch;
553                }
554            }
555        }
556#if 0
557        printf("current=%d max=%d max_sb=%d alloc=%d\n",
558               current_frame_size, max_frame_size, max_sb,
559               bit_alloc[max_sb]);
560#endif
561        if (max_sb < 0)
562            break;
563
564        /* find alloc table entry (XXX: not optimal, should use
565           pointer table) */
566        alloc = s->alloc_table;
567        for(i=0;i<max_sb;i++) {
568            alloc += 1 << alloc[0];
569        }
570
571        if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
572            /* nothing was coded for this band: add the necessary bits */
573            incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
574            incr += total_quant_bits[alloc[1]];
575        } else {
576            /* increments bit allocation */
577            b = bit_alloc[max_ch][max_sb];
578            incr = total_quant_bits[alloc[b + 1]] -
579                total_quant_bits[alloc[b]];
580        }
581
582        if (current_frame_size + incr <= max_frame_size) {
583            /* can increase size */
584            b = ++bit_alloc[max_ch][max_sb];
585            current_frame_size += incr;
586            /* decrease smr by the resolution we added */
587            smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
588            /* max allocation size reached ? */
589            if (b == ((1 << alloc[0]) - 1))
590                subband_status[max_ch][max_sb] = SB_NOMORE;
591            else
592                subband_status[max_ch][max_sb] = SB_ALLOCATED;
593        } else {
594            /* cannot increase the size of this subband */
595            subband_status[max_ch][max_sb] = SB_NOMORE;
596        }
597    }
598    *padding = max_frame_size - current_frame_size;
599    assert(*padding >= 0);
600
601#if 0
602    for(i=0;i<s->sblimit;i++) {
603        printf("%d ", bit_alloc[i]);
604    }
605    printf("\n");
606#endif
607}
608
609/*
610 * Output the mpeg audio layer 2 frame. Note how the code is small
611 * compared to other encoders :-)
612 */
613static void encode_frame(MpegAudioContext *s,
614                         unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
615                         int padding)
616{
617    int i, j, k, l, bit_alloc_bits, b, ch;
618    unsigned char *sf;
619    int q[3];
620    PutBitContext *p = &s->pb;
621
622    /* header */
623
624    put_bits(p, 12, 0xfff);
625    put_bits(p, 1, 1 - s->lsf); /* 1 = mpeg1 ID, 0 = mpeg2 lsf ID */
626    put_bits(p, 2, 4-2);  /* layer 2 */
627    put_bits(p, 1, 1); /* no error protection */
628    put_bits(p, 4, s->bitrate_index);
629    put_bits(p, 2, s->freq_index);
630    put_bits(p, 1, s->do_padding); /* use padding */
631    put_bits(p, 1, 0);             /* private_bit */
632    put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
633    put_bits(p, 2, 0); /* mode_ext */
634    put_bits(p, 1, 0); /* no copyright */
635    put_bits(p, 1, 1); /* original */
636    put_bits(p, 2, 0); /* no emphasis */
637
638    /* bit allocation */
639    j = 0;
640    for(i=0;i<s->sblimit;i++) {
641        bit_alloc_bits = s->alloc_table[j];
642        for(ch=0;ch<s->nb_channels;ch++) {
643            put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
644        }
645        j += 1 << bit_alloc_bits;
646    }
647
648    /* scale codes */
649    for(i=0;i<s->sblimit;i++) {
650        for(ch=0;ch<s->nb_channels;ch++) {
651            if (bit_alloc[ch][i])
652                put_bits(p, 2, s->scale_code[ch][i]);
653        }
654    }
655
656    /* scale factors */
657    for(i=0;i<s->sblimit;i++) {
658        for(ch=0;ch<s->nb_channels;ch++) {
659            if (bit_alloc[ch][i]) {
660                sf = &s->scale_factors[ch][i][0];
661                switch(s->scale_code[ch][i]) {
662                case 0:
663                    put_bits(p, 6, sf[0]);
664                    put_bits(p, 6, sf[1]);
665                    put_bits(p, 6, sf[2]);
666                    break;
667                case 3:
668                case 1:
669                    put_bits(p, 6, sf[0]);
670                    put_bits(p, 6, sf[2]);
671                    break;
672                case 2:
673                    put_bits(p, 6, sf[0]);
674                    break;
675                }
676            }
677        }
678    }
679
680    /* quantization & write sub band samples */
681
682    for(k=0;k<3;k++) {
683        for(l=0;l<12;l+=3) {
684            j = 0;
685            for(i=0;i<s->sblimit;i++) {
686                bit_alloc_bits = s->alloc_table[j];
687                for(ch=0;ch<s->nb_channels;ch++) {
688                    b = bit_alloc[ch][i];
689                    if (b) {
690                        int qindex, steps, m, sample, bits;
691                        /* we encode 3 sub band samples of the same sub band at a time */
692                        qindex = s->alloc_table[j+b];
693                        steps = ff_mpa_quant_steps[qindex];
694                        for(m=0;m<3;m++) {
695                            sample = s->sb_samples[ch][k][l + m][i];
696                            /* divide by scale factor */
697#ifdef USE_FLOATS
698                            {
699                                float a;
700                                a = (float)sample * scale_factor_inv_table[s->scale_factors[ch][i][k]];
701                                q[m] = (int)((a + 1.0) * steps * 0.5);
702                            }
703#else
704                            {
705                                int q1, e, shift, mult;
706                                e = s->scale_factors[ch][i][k];
707                                shift = scale_factor_shift[e];
708                                mult = scale_factor_mult[e];
709
710                                /* normalize to P bits */
711                                if (shift < 0)
712                                    q1 = sample << (-shift);
713                                else
714                                    q1 = sample >> shift;
715                                q1 = (q1 * mult) >> P;
716                                q[m] = ((q1 + (1 << P)) * steps) >> (P + 1);
717                            }
718#endif
719                            if (q[m] >= steps)
720                                q[m] = steps - 1;
721                            assert(q[m] >= 0 && q[m] < steps);
722                        }
723                        bits = ff_mpa_quant_bits[qindex];
724                        if (bits < 0) {
725                            /* group the 3 values to save bits */
726                            put_bits(p, -bits,
727                                     q[0] + steps * (q[1] + steps * q[2]));
728#if 0
729                            printf("%d: gr1 %d\n",
730                                   i, q[0] + steps * (q[1] + steps * q[2]));
731#endif
732                        } else {
733#if 0
734                            printf("%d: gr3 %d %d %d\n",
735                                   i, q[0], q[1], q[2]);
736#endif
737                            put_bits(p, bits, q[0]);
738                            put_bits(p, bits, q[1]);
739                            put_bits(p, bits, q[2]);
740                        }
741                    }
742                }
743                /* next subband in alloc table */
744                j += 1 << bit_alloc_bits;
745            }
746        }
747    }
748
749    /* padding */
750    for(i=0;i<padding;i++)
751        put_bits(p, 1, 0);
752
753    /* flush */
754    flush_put_bits(p);
755}
756
757static int MPA_encode_frame(AVCodecContext *avctx,
758                            unsigned char *frame, int buf_size, void *data)
759{
760    MpegAudioContext *s = avctx->priv_data;
761    short *samples = data;
762    short smr[MPA_MAX_CHANNELS][SBLIMIT];
763    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
764    int padding, i;
765
766    for(i=0;i<s->nb_channels;i++) {
767        filter(s, i, samples + i, s->nb_channels);
768    }
769
770    for(i=0;i<s->nb_channels;i++) {
771        compute_scale_factors(s->scale_code[i], s->scale_factors[i],
772                              s->sb_samples[i], s->sblimit);
773    }
774    for(i=0;i<s->nb_channels;i++) {
775        psycho_acoustic_model(s, smr[i]);
776    }
777    compute_bit_allocation(s, smr, bit_alloc, &padding);
778
779    init_put_bits(&s->pb, frame, MPA_MAX_CODED_FRAME_SIZE);
780
781    encode_frame(s, bit_alloc, padding);
782
783    s->nb_samples += MPA_FRAME_SIZE;
784    return pbBufPtr(&s->pb) - s->pb.buf;
785}
786
787static av_cold int MPA_encode_close(AVCodecContext *avctx)
788{
789    av_freep(&avctx->coded_frame);
790    return 0;
791}
792
793AVCodec mp2_encoder = {
794    "mp2",
795    CODEC_TYPE_AUDIO,
796    CODEC_ID_MP2,
797    sizeof(MpegAudioContext),
798    MPA_encode_init,
799    MPA_encode_frame,
800    MPA_encode_close,
801    NULL,
802    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
803    .long_name = NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
804};
805
806#undef FIX
807