1/*
2 * IMC compatible decoder
3 * Copyright (c) 2002-2004 Maxim Poliakovski
4 * Copyright (c) 2006 Benjamin Larsson
5 * Copyright (c) 2006 Konstantin Shishkov
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24/**
25 *  @file libavcodec/imc.c IMC - Intel Music Coder
26 *  A mdct based codec using a 256 points large transform
27 *  divied into 32 bands with some mix of scale factors.
28 *  Only mono is supported.
29 *
30 */
31
32
33#include <math.h>
34#include <stddef.h>
35#include <stdio.h>
36
37#define ALT_BITSTREAM_READER
38#include "avcodec.h"
39#include "bitstream.h"
40#include "dsputil.h"
41
42#include "imcdata.h"
43
44#define IMC_BLOCK_SIZE 64
45#define IMC_FRAME_ID 0x21
46#define BANDS 32
47#define COEFFS 256
48
49typedef struct {
50    float old_floor[BANDS];
51    float flcoeffs1[BANDS];
52    float flcoeffs2[BANDS];
53    float flcoeffs3[BANDS];
54    float flcoeffs4[BANDS];
55    float flcoeffs5[BANDS];
56    float flcoeffs6[BANDS];
57    float CWdecoded[COEFFS];
58
59    /** MDCT tables */
60    //@{
61    float mdct_sine_window[COEFFS];
62    float post_cos[COEFFS];
63    float post_sin[COEFFS];
64    float pre_coef1[COEFFS];
65    float pre_coef2[COEFFS];
66    float last_fft_im[COEFFS];
67    //@}
68
69    int bandWidthT[BANDS];     ///< codewords per band
70    int bitsBandT[BANDS];      ///< how many bits per codeword in band
71    int CWlengthT[COEFFS];     ///< how many bits in each codeword
72    int levlCoeffBuf[BANDS];
73    int bandFlagsBuf[BANDS];   ///< flags for each band
74    int sumLenArr[BANDS];      ///< bits for all coeffs in band
75    int skipFlagRaw[BANDS];    ///< skip flags are stored in raw form or not
76    int skipFlagBits[BANDS];   ///< bits used to code skip flags
77    int skipFlagCount[BANDS];  ///< skipped coeffients per band
78    int skipFlags[COEFFS];     ///< skip coefficient decoding or not
79    int codewords[COEFFS];     ///< raw codewords read from bitstream
80    float sqrt_tab[30];
81    GetBitContext gb;
82    int decoder_reset;
83    float one_div_log2;
84
85    DSPContext dsp;
86    FFTContext fft;
87    DECLARE_ALIGNED_16(FFTComplex, samples[COEFFS/2]);
88    DECLARE_ALIGNED_16(float, out_samples[COEFFS]);
89} IMCContext;
90
91static VLC huffman_vlc[4][4];
92
93#define VLC_TABLES_SIZE 9512
94
95static const int vlc_offsets[17] = {
96    0,     640, 1156, 1732, 2308, 2852, 3396, 3924,
97    4452, 5220, 5860, 6628, 7268, 7908, 8424, 8936, VLC_TABLES_SIZE};
98
99static VLC_TYPE vlc_tables[VLC_TABLES_SIZE][2];
100
101static av_cold int imc_decode_init(AVCodecContext * avctx)
102{
103    int i, j;
104    IMCContext *q = avctx->priv_data;
105    double r1, r2;
106
107    q->decoder_reset = 1;
108
109    for(i = 0; i < BANDS; i++)
110        q->old_floor[i] = 1.0;
111
112    /* Build mdct window, a simple sine window normalized with sqrt(2) */
113    ff_sine_window_init(q->mdct_sine_window, COEFFS);
114    for(i = 0; i < COEFFS; i++)
115        q->mdct_sine_window[i] *= sqrt(2.0);
116    for(i = 0; i < COEFFS/2; i++){
117        q->post_cos[i] = cos(i / 256.0 * M_PI);
118        q->post_sin[i] = sin(i / 256.0 * M_PI);
119
120        r1 = sin((i * 4.0 + 1.0) / 1024.0 * M_PI);
121        r2 = cos((i * 4.0 + 1.0) / 1024.0 * M_PI);
122
123        if (i & 0x1)
124        {
125            q->pre_coef1[i] =  (r1 + r2) * sqrt(2.0);
126            q->pre_coef2[i] = -(r1 - r2) * sqrt(2.0);
127        }
128        else
129        {
130            q->pre_coef1[i] = -(r1 + r2) * sqrt(2.0);
131            q->pre_coef2[i] =  (r1 - r2) * sqrt(2.0);
132        }
133
134        q->last_fft_im[i] = 0;
135    }
136
137    /* Generate a square root table */
138
139    for(i = 0; i < 30; i++) {
140        q->sqrt_tab[i] = sqrt(i);
141    }
142
143    /* initialize the VLC tables */
144    for(i = 0; i < 4 ; i++) {
145        for(j = 0; j < 4; j++) {
146            huffman_vlc[i][j].table = &vlc_tables[vlc_offsets[i * 4 + j]];
147            huffman_vlc[i][j].table_allocated = vlc_offsets[i * 4 + j + 1] - vlc_offsets[i * 4 + j];
148            init_vlc(&huffman_vlc[i][j], 9, imc_huffman_sizes[i],
149                     imc_huffman_lens[i][j], 1, 1,
150                     imc_huffman_bits[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
151        }
152    }
153    q->one_div_log2 = 1/log(2);
154
155    ff_fft_init(&q->fft, 7, 1);
156    dsputil_init(&q->dsp, avctx);
157    avctx->sample_fmt = SAMPLE_FMT_S16;
158    avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
159    return 0;
160}
161
162static void imc_calculate_coeffs(IMCContext* q, float* flcoeffs1, float* flcoeffs2, int* bandWidthT,
163                                float* flcoeffs3, float* flcoeffs5)
164{
165    float   workT1[BANDS];
166    float   workT2[BANDS];
167    float   workT3[BANDS];
168    float   snr_limit = 1.e-30;
169    float   accum = 0.0;
170    int i, cnt2;
171
172    for(i = 0; i < BANDS; i++) {
173        flcoeffs5[i] = workT2[i] = 0.0;
174        if (bandWidthT[i]){
175            workT1[i] = flcoeffs1[i] * flcoeffs1[i];
176            flcoeffs3[i] = 2.0 * flcoeffs2[i];
177        } else {
178            workT1[i] = 0.0;
179            flcoeffs3[i] = -30000.0;
180        }
181        workT3[i] = bandWidthT[i] * workT1[i] * 0.01;
182        if (workT3[i] <= snr_limit)
183            workT3[i] = 0.0;
184    }
185
186    for(i = 0; i < BANDS; i++) {
187        for(cnt2 = i; cnt2 < cyclTab[i]; cnt2++)
188            flcoeffs5[cnt2] = flcoeffs5[cnt2] + workT3[i];
189        workT2[cnt2-1] = workT2[cnt2-1] + workT3[i];
190    }
191
192    for(i = 1; i < BANDS; i++) {
193        accum = (workT2[i-1] + accum) * imc_weights1[i-1];
194        flcoeffs5[i] += accum;
195    }
196
197    for(i = 0; i < BANDS; i++)
198        workT2[i] = 0.0;
199
200    for(i = 0; i < BANDS; i++) {
201        for(cnt2 = i-1; cnt2 > cyclTab2[i]; cnt2--)
202            flcoeffs5[cnt2] += workT3[i];
203        workT2[cnt2+1] += workT3[i];
204    }
205
206    accum = 0.0;
207
208    for(i = BANDS-2; i >= 0; i--) {
209        accum = (workT2[i+1] + accum) * imc_weights2[i];
210        flcoeffs5[i] += accum;
211        //there is missing code here, but it seems to never be triggered
212    }
213}
214
215
216static void imc_read_level_coeffs(IMCContext* q, int stream_format_code, int* levlCoeffs)
217{
218    int i;
219    VLC *hufftab[4];
220    int start = 0;
221    const uint8_t *cb_sel;
222    int s;
223
224    s = stream_format_code >> 1;
225    hufftab[0] = &huffman_vlc[s][0];
226    hufftab[1] = &huffman_vlc[s][1];
227    hufftab[2] = &huffman_vlc[s][2];
228    hufftab[3] = &huffman_vlc[s][3];
229    cb_sel = imc_cb_select[s];
230
231    if(stream_format_code & 4)
232        start = 1;
233    if(start)
234        levlCoeffs[0] = get_bits(&q->gb, 7);
235    for(i = start; i < BANDS; i++){
236        levlCoeffs[i] = get_vlc2(&q->gb, hufftab[cb_sel[i]]->table, hufftab[cb_sel[i]]->bits, 2);
237        if(levlCoeffs[i] == 17)
238            levlCoeffs[i] += get_bits(&q->gb, 4);
239    }
240}
241
242static void imc_decode_level_coefficients(IMCContext* q, int* levlCoeffBuf, float* flcoeffs1,
243                                         float* flcoeffs2)
244{
245    int i, level;
246    float tmp, tmp2;
247    //maybe some frequency division thingy
248
249    flcoeffs1[0] = 20000.0 / pow (2, levlCoeffBuf[0] * 0.18945); // 0.18945 = log2(10) * 0.05703125
250    flcoeffs2[0] = log(flcoeffs1[0])/log(2);
251    tmp = flcoeffs1[0];
252    tmp2 = flcoeffs2[0];
253
254    for(i = 1; i < BANDS; i++) {
255        level = levlCoeffBuf[i];
256        if (level == 16) {
257            flcoeffs1[i] = 1.0;
258            flcoeffs2[i] = 0.0;
259        } else {
260            if (level < 17)
261                level -=7;
262            else if (level <= 24)
263                level -=32;
264            else
265                level -=16;
266
267            tmp  *= imc_exp_tab[15 + level];
268            tmp2 += 0.83048 * level;  // 0.83048 = log2(10) * 0.25
269            flcoeffs1[i] = tmp;
270            flcoeffs2[i] = tmp2;
271        }
272    }
273}
274
275
276static void imc_decode_level_coefficients2(IMCContext* q, int* levlCoeffBuf, float* old_floor, float* flcoeffs1,
277                                          float* flcoeffs2) {
278    int i;
279        //FIXME maybe flag_buf = noise coding and flcoeffs1 = new scale factors
280        //      and flcoeffs2 old scale factors
281        //      might be incomplete due to a missing table that is in the binary code
282    for(i = 0; i < BANDS; i++) {
283        flcoeffs1[i] = 0;
284        if(levlCoeffBuf[i] < 16) {
285            flcoeffs1[i] = imc_exp_tab2[levlCoeffBuf[i]] * old_floor[i];
286            flcoeffs2[i] = (levlCoeffBuf[i]-7) * 0.83048 + flcoeffs2[i]; // 0.83048 = log2(10) * 0.25
287        } else {
288            flcoeffs1[i] = old_floor[i];
289        }
290    }
291}
292
293/**
294 * Perform bit allocation depending on bits available
295 */
296static int bit_allocation (IMCContext* q, int stream_format_code, int freebits, int flag) {
297    int i, j;
298    const float limit = -1.e20;
299    float highest = 0.0;
300    int indx;
301    int t1 = 0;
302    int t2 = 1;
303    float summa = 0.0;
304    int iacc = 0;
305    int summer = 0;
306    int rres, cwlen;
307    float lowest = 1.e10;
308    int low_indx = 0;
309    float workT[32];
310    int flg;
311    int found_indx = 0;
312
313    for(i = 0; i < BANDS; i++)
314        highest = FFMAX(highest, q->flcoeffs1[i]);
315
316    for(i = 0; i < BANDS-1; i++) {
317        q->flcoeffs4[i] = q->flcoeffs3[i] - log(q->flcoeffs5[i])/log(2);
318    }
319    q->flcoeffs4[BANDS - 1] = limit;
320
321    highest = highest * 0.25;
322
323    for(i = 0; i < BANDS; i++) {
324        indx = -1;
325        if ((band_tab[i+1] - band_tab[i]) == q->bandWidthT[i])
326            indx = 0;
327
328        if ((band_tab[i+1] - band_tab[i]) > q->bandWidthT[i])
329            indx = 1;
330
331        if (((band_tab[i+1] - band_tab[i])/2) >= q->bandWidthT[i])
332            indx = 2;
333
334        if (indx == -1)
335            return -1;
336
337        q->flcoeffs4[i] = q->flcoeffs4[i] + xTab[(indx*2 + (q->flcoeffs1[i] < highest)) * 2 + flag];
338    }
339
340    if (stream_format_code & 0x2) {
341        q->flcoeffs4[0] = limit;
342        q->flcoeffs4[1] = limit;
343        q->flcoeffs4[2] = limit;
344        q->flcoeffs4[3] = limit;
345    }
346
347    for(i = (stream_format_code & 0x2)?4:0; i < BANDS-1; i++) {
348        iacc += q->bandWidthT[i];
349        summa += q->bandWidthT[i] * q->flcoeffs4[i];
350    }
351    q->bandWidthT[BANDS-1] = 0;
352    summa = (summa * 0.5 - freebits) / iacc;
353
354
355    for(i = 0; i < BANDS/2; i++) {
356        rres = summer - freebits;
357        if((rres >= -8) && (rres <= 8)) break;
358
359        summer = 0;
360        iacc = 0;
361
362        for(j = (stream_format_code & 0x2)?4:0; j < BANDS; j++) {
363            cwlen = av_clip((int)((q->flcoeffs4[j] * 0.5) - summa + 0.5), 0, 6);
364
365            q->bitsBandT[j] = cwlen;
366            summer += q->bandWidthT[j] * cwlen;
367
368            if (cwlen > 0)
369                iacc += q->bandWidthT[j];
370        }
371
372        flg = t2;
373        t2 = 1;
374        if (freebits < summer)
375            t2 = -1;
376        if (i == 0)
377            flg = t2;
378        if(flg != t2)
379            t1++;
380
381        summa = (float)(summer - freebits) / ((t1 + 1) * iacc) + summa;
382    }
383
384    for(i = (stream_format_code & 0x2)?4:0; i < BANDS; i++) {
385        for(j = band_tab[i]; j < band_tab[i+1]; j++)
386            q->CWlengthT[j] = q->bitsBandT[i];
387    }
388
389    if (freebits > summer) {
390        for(i = 0; i < BANDS; i++) {
391            workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
392        }
393
394        highest = 0.0;
395
396        do{
397            if (highest <= -1.e20)
398                break;
399
400            found_indx = 0;
401            highest = -1.e20;
402
403            for(i = 0; i < BANDS; i++) {
404                if (workT[i] > highest) {
405                    highest = workT[i];
406                    found_indx = i;
407                }
408            }
409
410            if (highest > -1.e20) {
411                workT[found_indx] -= 2.0;
412                if (++(q->bitsBandT[found_indx]) == 6)
413                    workT[found_indx] = -1.e20;
414
415                for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (freebits > summer); j++){
416                    q->CWlengthT[j]++;
417                    summer++;
418                }
419            }
420        }while (freebits > summer);
421    }
422    if (freebits < summer) {
423        for(i = 0; i < BANDS; i++) {
424            workT[i] = q->bitsBandT[i] ? (q->bitsBandT[i] * -2 + q->flcoeffs4[i] + 1.585) : 1.e20;
425        }
426        if (stream_format_code & 0x2) {
427            workT[0] = 1.e20;
428            workT[1] = 1.e20;
429            workT[2] = 1.e20;
430            workT[3] = 1.e20;
431        }
432        while (freebits < summer){
433            lowest = 1.e10;
434            low_indx = 0;
435            for(i = 0; i < BANDS; i++) {
436                if (workT[i] < lowest) {
437                    lowest = workT[i];
438                    low_indx = i;
439                }
440            }
441            //if(lowest >= 1.e10) break;
442            workT[low_indx] = lowest + 2.0;
443
444            if (!(--q->bitsBandT[low_indx]))
445                workT[low_indx] = 1.e20;
446
447            for(j = band_tab[low_indx]; j < band_tab[low_indx+1] && (freebits < summer); j++){
448                if(q->CWlengthT[j] > 0){
449                    q->CWlengthT[j]--;
450                    summer--;
451                }
452            }
453        }
454    }
455    return 0;
456}
457
458static void imc_get_skip_coeff(IMCContext* q) {
459    int i, j;
460
461    memset(q->skipFlagBits, 0, sizeof(q->skipFlagBits));
462    memset(q->skipFlagCount, 0, sizeof(q->skipFlagCount));
463    for(i = 0; i < BANDS; i++) {
464        if (!q->bandFlagsBuf[i] || !q->bandWidthT[i])
465            continue;
466
467        if (!q->skipFlagRaw[i]) {
468            q->skipFlagBits[i] = band_tab[i+1] - band_tab[i];
469
470            for(j = band_tab[i]; j < band_tab[i+1]; j++) {
471                if ((q->skipFlags[j] = get_bits1(&q->gb)))
472                    q->skipFlagCount[i]++;
473            }
474        } else {
475            for(j = band_tab[i]; j < (band_tab[i+1]-1); j += 2) {
476                if(!get_bits1(&q->gb)){//0
477                    q->skipFlagBits[i]++;
478                    q->skipFlags[j]=1;
479                    q->skipFlags[j+1]=1;
480                    q->skipFlagCount[i] += 2;
481                }else{
482                    if(get_bits1(&q->gb)){//11
483                        q->skipFlagBits[i] +=2;
484                        q->skipFlags[j]=0;
485                        q->skipFlags[j+1]=1;
486                        q->skipFlagCount[i]++;
487                    }else{
488                        q->skipFlagBits[i] +=3;
489                        q->skipFlags[j+1]=0;
490                        if(!get_bits1(&q->gb)){//100
491                            q->skipFlags[j]=1;
492                            q->skipFlagCount[i]++;
493                        }else{//101
494                            q->skipFlags[j]=0;
495                        }
496                    }
497                }
498            }
499
500            if (j < band_tab[i+1]) {
501                q->skipFlagBits[i]++;
502                if ((q->skipFlags[j] = get_bits1(&q->gb)))
503                    q->skipFlagCount[i]++;
504            }
505        }
506    }
507}
508
509/**
510 * Increase highest' band coefficient sizes as some bits won't be used
511 */
512static void imc_adjust_bit_allocation (IMCContext* q, int summer) {
513    float workT[32];
514    int corrected = 0;
515    int i, j;
516    float highest = 0;
517    int found_indx=0;
518
519    for(i = 0; i < BANDS; i++) {
520        workT[i] = (q->bitsBandT[i] == 6) ? -1.e20 : (q->bitsBandT[i] * -2 + q->flcoeffs4[i] - 0.415);
521    }
522
523    while (corrected < summer) {
524        if(highest <= -1.e20)
525            break;
526
527        highest = -1.e20;
528
529        for(i = 0; i < BANDS; i++) {
530            if (workT[i] > highest) {
531                highest = workT[i];
532                found_indx = i;
533            }
534        }
535
536        if (highest > -1.e20) {
537            workT[found_indx] -= 2.0;
538            if (++(q->bitsBandT[found_indx]) == 6)
539                workT[found_indx] = -1.e20;
540
541            for(j = band_tab[found_indx]; j < band_tab[found_indx+1] && (corrected < summer); j++) {
542                if (!q->skipFlags[j] && (q->CWlengthT[j] < 6)) {
543                    q->CWlengthT[j]++;
544                    corrected++;
545                }
546            }
547        }
548    }
549}
550
551static void imc_imdct256(IMCContext *q) {
552    int i;
553    float re, im;
554
555    /* prerotation */
556    for(i=0; i < COEFFS/2; i++){
557        q->samples[i].re = -(q->pre_coef1[i] * q->CWdecoded[COEFFS-1-i*2]) -
558                           (q->pre_coef2[i] * q->CWdecoded[i*2]);
559        q->samples[i].im = (q->pre_coef2[i] * q->CWdecoded[COEFFS-1-i*2]) -
560                           (q->pre_coef1[i] * q->CWdecoded[i*2]);
561    }
562
563    /* FFT */
564    ff_fft_permute(&q->fft, q->samples);
565    ff_fft_calc (&q->fft, q->samples);
566
567    /* postrotation, window and reorder */
568    for(i = 0; i < COEFFS/2; i++){
569        re = (q->samples[i].re * q->post_cos[i]) + (-q->samples[i].im * q->post_sin[i]);
570        im = (-q->samples[i].im * q->post_cos[i]) - (q->samples[i].re * q->post_sin[i]);
571        q->out_samples[i*2] = (q->mdct_sine_window[COEFFS-1-i*2] * q->last_fft_im[i]) + (q->mdct_sine_window[i*2] * re);
572        q->out_samples[COEFFS-1-i*2] = (q->mdct_sine_window[i*2] * q->last_fft_im[i]) - (q->mdct_sine_window[COEFFS-1-i*2] * re);
573        q->last_fft_im[i] = im;
574    }
575}
576
577static int inverse_quant_coeff (IMCContext* q, int stream_format_code) {
578    int i, j;
579    int middle_value, cw_len, max_size;
580    const float* quantizer;
581
582    for(i = 0; i < BANDS; i++) {
583        for(j = band_tab[i]; j < band_tab[i+1]; j++) {
584            q->CWdecoded[j] = 0;
585            cw_len = q->CWlengthT[j];
586
587            if (cw_len <= 0 || q->skipFlags[j])
588                continue;
589
590            max_size = 1 << cw_len;
591            middle_value = max_size >> 1;
592
593            if (q->codewords[j] >= max_size || q->codewords[j] < 0)
594                return -1;
595
596            if (cw_len >= 4){
597                quantizer = imc_quantizer2[(stream_format_code & 2) >> 1];
598                if (q->codewords[j] >= middle_value)
599                    q->CWdecoded[j] = quantizer[q->codewords[j] - 8] * q->flcoeffs6[i];
600                else
601                    q->CWdecoded[j] = -quantizer[max_size - q->codewords[j] - 8 - 1] * q->flcoeffs6[i];
602            }else{
603                quantizer = imc_quantizer1[((stream_format_code & 2) >> 1) | (q->bandFlagsBuf[i] << 1)];
604                if (q->codewords[j] >= middle_value)
605                    q->CWdecoded[j] = quantizer[q->codewords[j] - 1] * q->flcoeffs6[i];
606                else
607                    q->CWdecoded[j] = -quantizer[max_size - 2 - q->codewords[j]] * q->flcoeffs6[i];
608            }
609        }
610    }
611    return 0;
612}
613
614
615static int imc_get_coeffs (IMCContext* q) {
616    int i, j, cw_len, cw;
617
618    for(i = 0; i < BANDS; i++) {
619        if(!q->sumLenArr[i]) continue;
620        if (q->bandFlagsBuf[i] || q->bandWidthT[i]) {
621            for(j = band_tab[i]; j < band_tab[i+1]; j++) {
622                cw_len = q->CWlengthT[j];
623                cw = 0;
624
625                if (get_bits_count(&q->gb) + cw_len > 512){
626//av_log(NULL,0,"Band %i coeff %i cw_len %i\n",i,j,cw_len);
627                    return -1;
628                }
629
630                if(cw_len && (!q->bandFlagsBuf[i] || !q->skipFlags[j]))
631                    cw = get_bits(&q->gb, cw_len);
632
633                q->codewords[j] = cw;
634            }
635        }
636    }
637    return 0;
638}
639
640static int imc_decode_frame(AVCodecContext * avctx,
641                            void *data, int *data_size,
642                            const uint8_t * buf, int buf_size)
643{
644
645    IMCContext *q = avctx->priv_data;
646
647    int stream_format_code;
648    int imc_hdr, i, j;
649    int flag;
650    int bits, summer;
651    int counter, bitscount;
652    uint16_t buf16[IMC_BLOCK_SIZE / 2];
653
654    if (buf_size < IMC_BLOCK_SIZE) {
655        av_log(avctx, AV_LOG_ERROR, "imc frame too small!\n");
656        return -1;
657    }
658    for(i = 0; i < IMC_BLOCK_SIZE / 2; i++)
659        buf16[i] = bswap_16(((const uint16_t*)buf)[i]);
660
661    init_get_bits(&q->gb, (const uint8_t*)buf16, IMC_BLOCK_SIZE * 8);
662
663    /* Check the frame header */
664    imc_hdr = get_bits(&q->gb, 9);
665    if (imc_hdr != IMC_FRAME_ID) {
666        av_log(avctx, AV_LOG_ERROR, "imc frame header check failed!\n");
667        av_log(avctx, AV_LOG_ERROR, "got %x instead of 0x21.\n", imc_hdr);
668        return -1;
669    }
670    stream_format_code = get_bits(&q->gb, 3);
671
672    if(stream_format_code & 1){
673        av_log(avctx, AV_LOG_ERROR, "Stream code format %X is not supported\n", stream_format_code);
674        return -1;
675    }
676
677//    av_log(avctx, AV_LOG_DEBUG, "stream_format_code = %d\n", stream_format_code);
678
679    if (stream_format_code & 0x04)
680        q->decoder_reset = 1;
681
682    if(q->decoder_reset) {
683        memset(q->out_samples, 0, sizeof(q->out_samples));
684        for(i = 0; i < BANDS; i++)q->old_floor[i] = 1.0;
685        for(i = 0; i < COEFFS; i++)q->CWdecoded[i] = 0;
686        q->decoder_reset = 0;
687    }
688
689    flag = get_bits1(&q->gb);
690    imc_read_level_coeffs(q, stream_format_code, q->levlCoeffBuf);
691
692    if (stream_format_code & 0x4)
693        imc_decode_level_coefficients(q, q->levlCoeffBuf, q->flcoeffs1, q->flcoeffs2);
694    else
695        imc_decode_level_coefficients2(q, q->levlCoeffBuf, q->old_floor, q->flcoeffs1, q->flcoeffs2);
696
697    memcpy(q->old_floor, q->flcoeffs1, 32 * sizeof(float));
698
699    counter = 0;
700    for (i=0 ; i<BANDS ; i++) {
701        if (q->levlCoeffBuf[i] == 16) {
702            q->bandWidthT[i] = 0;
703            counter++;
704        } else
705            q->bandWidthT[i] = band_tab[i+1] - band_tab[i];
706    }
707    memset(q->bandFlagsBuf, 0, BANDS * sizeof(int));
708    for(i = 0; i < BANDS-1; i++) {
709        if (q->bandWidthT[i])
710            q->bandFlagsBuf[i] = get_bits1(&q->gb);
711    }
712
713    imc_calculate_coeffs(q, q->flcoeffs1, q->flcoeffs2, q->bandWidthT, q->flcoeffs3, q->flcoeffs5);
714
715    bitscount = 0;
716    /* first 4 bands will be assigned 5 bits per coefficient */
717    if (stream_format_code & 0x2) {
718        bitscount += 15;
719
720        q->bitsBandT[0] = 5;
721        q->CWlengthT[0] = 5;
722        q->CWlengthT[1] = 5;
723        q->CWlengthT[2] = 5;
724        for(i = 1; i < 4; i++){
725            bits = (q->levlCoeffBuf[i] == 16) ? 0 : 5;
726            q->bitsBandT[i] = bits;
727            for(j = band_tab[i]; j < band_tab[i+1]; j++) {
728                q->CWlengthT[j] = bits;
729                bitscount += bits;
730            }
731        }
732    }
733
734    if(bit_allocation (q, stream_format_code, 512 - bitscount - get_bits_count(&q->gb), flag) < 0) {
735        av_log(avctx, AV_LOG_ERROR, "Bit allocations failed\n");
736        q->decoder_reset = 1;
737        return -1;
738    }
739
740    for(i = 0; i < BANDS; i++) {
741        q->sumLenArr[i] = 0;
742        q->skipFlagRaw[i] = 0;
743        for(j = band_tab[i]; j < band_tab[i+1]; j++)
744            q->sumLenArr[i] += q->CWlengthT[j];
745        if (q->bandFlagsBuf[i])
746            if( (((band_tab[i+1] - band_tab[i]) * 1.5) > q->sumLenArr[i]) && (q->sumLenArr[i] > 0))
747                q->skipFlagRaw[i] = 1;
748    }
749
750    imc_get_skip_coeff(q);
751
752    for(i = 0; i < BANDS; i++) {
753        q->flcoeffs6[i] = q->flcoeffs1[i];
754        /* band has flag set and at least one coded coefficient */
755        if (q->bandFlagsBuf[i] && (band_tab[i+1] - band_tab[i]) != q->skipFlagCount[i]){
756                q->flcoeffs6[i] *= q->sqrt_tab[band_tab[i+1] - band_tab[i]] /
757                                   q->sqrt_tab[(band_tab[i+1] - band_tab[i] - q->skipFlagCount[i])];
758        }
759    }
760
761    /* calculate bits left, bits needed and adjust bit allocation */
762    bits = summer = 0;
763
764    for(i = 0; i < BANDS; i++) {
765        if (q->bandFlagsBuf[i]) {
766            for(j = band_tab[i]; j < band_tab[i+1]; j++) {
767                if(q->skipFlags[j]) {
768                    summer += q->CWlengthT[j];
769                    q->CWlengthT[j] = 0;
770                }
771            }
772            bits += q->skipFlagBits[i];
773            summer -= q->skipFlagBits[i];
774        }
775    }
776    imc_adjust_bit_allocation(q, summer);
777
778    for(i = 0; i < BANDS; i++) {
779        q->sumLenArr[i] = 0;
780
781        for(j = band_tab[i]; j < band_tab[i+1]; j++)
782            if (!q->skipFlags[j])
783                q->sumLenArr[i] += q->CWlengthT[j];
784    }
785
786    memset(q->codewords, 0, sizeof(q->codewords));
787
788    if(imc_get_coeffs(q) < 0) {
789        av_log(avctx, AV_LOG_ERROR, "Read coefficients failed\n");
790        q->decoder_reset = 1;
791        return 0;
792    }
793
794    if(inverse_quant_coeff(q, stream_format_code) < 0) {
795        av_log(avctx, AV_LOG_ERROR, "Inverse quantization of coefficients failed\n");
796        q->decoder_reset = 1;
797        return 0;
798    }
799
800    memset(q->skipFlags, 0, sizeof(q->skipFlags));
801
802    imc_imdct256(q);
803
804    q->dsp.float_to_int16(data, q->out_samples, COEFFS);
805
806    *data_size = COEFFS * sizeof(int16_t);
807
808    return IMC_BLOCK_SIZE;
809}
810
811
812static av_cold int imc_decode_close(AVCodecContext * avctx)
813{
814    IMCContext *q = avctx->priv_data;
815
816    ff_fft_end(&q->fft);
817    return 0;
818}
819
820
821AVCodec imc_decoder = {
822    .name = "imc",
823    .type = CODEC_TYPE_AUDIO,
824    .id = CODEC_ID_IMC,
825    .priv_data_size = sizeof(IMCContext),
826    .init = imc_decode_init,
827    .close = imc_decode_close,
828    .decode = imc_decode_frame,
829    .long_name = NULL_IF_CONFIG_SMALL("IMC (Intel Music Coder)"),
830};
831