1/**
2 * FLAC audio encoder
3 * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22#include "libavutil/crc.h"
23#include "libavutil/lls.h"
24#include "libavutil/md5.h"
25#include "avcodec.h"
26#include "bitstream.h"
27#include "dsputil.h"
28#include "golomb.h"
29#include "lpc.h"
30
31#define FLAC_MAX_CH  8
32#define FLAC_MIN_BLOCKSIZE  16
33#define FLAC_MAX_BLOCKSIZE  65535
34
35#define FLAC_SUBFRAME_CONSTANT  0
36#define FLAC_SUBFRAME_VERBATIM  1
37#define FLAC_SUBFRAME_FIXED     8
38#define FLAC_SUBFRAME_LPC      32
39
40#define FLAC_CHMODE_NOT_STEREO      0
41#define FLAC_CHMODE_LEFT_RIGHT      1
42#define FLAC_CHMODE_LEFT_SIDE       8
43#define FLAC_CHMODE_RIGHT_SIDE      9
44#define FLAC_CHMODE_MID_SIDE       10
45
46#define FLAC_STREAMINFO_SIZE  34
47
48#define MAX_FIXED_ORDER     4
49#define MAX_PARTITION_ORDER 8
50#define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
51#define MAX_LPC_PRECISION  15
52#define MAX_LPC_SHIFT      15
53#define MAX_RICE_PARAM     14
54
55typedef struct CompressionOptions {
56    int compression_level;
57    int block_time_ms;
58    int use_lpc;
59    int lpc_coeff_precision;
60    int min_prediction_order;
61    int max_prediction_order;
62    int prediction_order_method;
63    int min_partition_order;
64    int max_partition_order;
65} CompressionOptions;
66
67typedef struct RiceContext {
68    int porder;
69    int params[MAX_PARTITIONS];
70} RiceContext;
71
72typedef struct FlacSubframe {
73    int type;
74    int type_code;
75    int obits;
76    int order;
77    int32_t coefs[MAX_LPC_ORDER];
78    int shift;
79    RiceContext rc;
80    int32_t samples[FLAC_MAX_BLOCKSIZE];
81    int32_t residual[FLAC_MAX_BLOCKSIZE+1];
82} FlacSubframe;
83
84typedef struct FlacFrame {
85    FlacSubframe subframes[FLAC_MAX_CH];
86    int blocksize;
87    int bs_code[2];
88    uint8_t crc8;
89    int ch_mode;
90} FlacFrame;
91
92typedef struct FlacEncodeContext {
93    PutBitContext pb;
94    int channels;
95    int ch_code;
96    int samplerate;
97    int sr_code[2];
98    int min_framesize;
99    int min_encoded_framesize;
100    int max_framesize;
101    int max_encoded_framesize;
102    uint32_t frame_count;
103    uint64_t sample_count;
104    uint8_t md5sum[16];
105    FlacFrame frame;
106    CompressionOptions options;
107    AVCodecContext *avctx;
108    DSPContext dsp;
109    struct AVMD5 *md5ctx;
110} FlacEncodeContext;
111
112static const int flac_samplerates[16] = {
113    0, 0, 0, 0,
114    8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
115    0, 0, 0, 0
116};
117
118static const int flac_blocksizes[16] = {
119    0,
120    192,
121    576, 1152, 2304, 4608,
122    0, 0,
123    256, 512, 1024, 2048, 4096, 8192, 16384, 32768
124};
125
126/**
127 * Writes streaminfo metadata block to byte array
128 */
129static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
130{
131    PutBitContext pb;
132
133    memset(header, 0, FLAC_STREAMINFO_SIZE);
134    init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
135
136    /* streaminfo metadata block */
137    put_bits(&pb, 16, s->avctx->frame_size);
138    put_bits(&pb, 16, s->avctx->frame_size);
139    put_bits(&pb, 24, s->min_framesize);
140    put_bits(&pb, 24, s->max_framesize);
141    put_bits(&pb, 20, s->samplerate);
142    put_bits(&pb, 3, s->channels-1);
143    put_bits(&pb, 5, 15);       /* bits per sample - 1 */
144    /* write 36-bit sample count in 2 put_bits() calls */
145    put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
146    put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
147    flush_put_bits(&pb);
148    memcpy(&header[18], s->md5sum, 16);
149}
150
151/**
152 * Sets blocksize based on samplerate
153 * Chooses the closest predefined blocksize >= BLOCK_TIME_MS milliseconds
154 */
155static int select_blocksize(int samplerate, int block_time_ms)
156{
157    int i;
158    int target;
159    int blocksize;
160
161    assert(samplerate > 0);
162    blocksize = flac_blocksizes[1];
163    target = (samplerate * block_time_ms) / 1000;
164    for(i=0; i<16; i++) {
165        if(target >= flac_blocksizes[i] && flac_blocksizes[i] > blocksize) {
166            blocksize = flac_blocksizes[i];
167        }
168    }
169    return blocksize;
170}
171
172static av_cold int flac_encode_init(AVCodecContext *avctx)
173{
174    int freq = avctx->sample_rate;
175    int channels = avctx->channels;
176    FlacEncodeContext *s = avctx->priv_data;
177    int i, level;
178    uint8_t *streaminfo;
179
180    s->avctx = avctx;
181
182    dsputil_init(&s->dsp, avctx);
183
184    if(avctx->sample_fmt != SAMPLE_FMT_S16) {
185        return -1;
186    }
187
188    if(channels < 1 || channels > FLAC_MAX_CH) {
189        return -1;
190    }
191    s->channels = channels;
192    s->ch_code = s->channels-1;
193
194    /* find samplerate in table */
195    if(freq < 1)
196        return -1;
197    for(i=4; i<12; i++) {
198        if(freq == flac_samplerates[i]) {
199            s->samplerate = flac_samplerates[i];
200            s->sr_code[0] = i;
201            s->sr_code[1] = 0;
202            break;
203        }
204    }
205    /* if not in table, samplerate is non-standard */
206    if(i == 12) {
207        if(freq % 1000 == 0 && freq < 255000) {
208            s->sr_code[0] = 12;
209            s->sr_code[1] = freq / 1000;
210        } else if(freq % 10 == 0 && freq < 655350) {
211            s->sr_code[0] = 14;
212            s->sr_code[1] = freq / 10;
213        } else if(freq < 65535) {
214            s->sr_code[0] = 13;
215            s->sr_code[1] = freq;
216        } else {
217            return -1;
218        }
219        s->samplerate = freq;
220    }
221
222    /* set compression option defaults based on avctx->compression_level */
223    if(avctx->compression_level < 0) {
224        s->options.compression_level = 5;
225    } else {
226        s->options.compression_level = avctx->compression_level;
227    }
228    av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", s->options.compression_level);
229
230    level= s->options.compression_level;
231    if(level > 12) {
232        av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
233               s->options.compression_level);
234        return -1;
235    }
236
237    s->options.block_time_ms       = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
238    s->options.use_lpc             = ((int[]){  0,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
239    s->options.min_prediction_order= ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
240    s->options.max_prediction_order= ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
241    s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
242                                                   ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
243                                                   ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
244                                                   ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
245                                                   ORDER_METHOD_SEARCH})[level];
246    s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
247    s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
248
249    /* set compression option overrides from AVCodecContext */
250    if(avctx->use_lpc >= 0) {
251        s->options.use_lpc = av_clip(avctx->use_lpc, 0, 11);
252    }
253    if(s->options.use_lpc == 1)
254        av_log(avctx, AV_LOG_DEBUG, " use lpc: Levinson-Durbin recursion with Welch window\n");
255    else if(s->options.use_lpc > 1)
256        av_log(avctx, AV_LOG_DEBUG, " use lpc: Cholesky factorization\n");
257
258    if(avctx->min_prediction_order >= 0) {
259        if(s->options.use_lpc) {
260            if(avctx->min_prediction_order < MIN_LPC_ORDER ||
261                    avctx->min_prediction_order > MAX_LPC_ORDER) {
262                av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
263                       avctx->min_prediction_order);
264                return -1;
265            }
266        } else {
267            if(avctx->min_prediction_order > MAX_FIXED_ORDER) {
268                av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
269                       avctx->min_prediction_order);
270                return -1;
271            }
272        }
273        s->options.min_prediction_order = avctx->min_prediction_order;
274    }
275    if(avctx->max_prediction_order >= 0) {
276        if(s->options.use_lpc) {
277            if(avctx->max_prediction_order < MIN_LPC_ORDER ||
278                    avctx->max_prediction_order > MAX_LPC_ORDER) {
279                av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
280                       avctx->max_prediction_order);
281                return -1;
282            }
283        } else {
284            if(avctx->max_prediction_order > MAX_FIXED_ORDER) {
285                av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
286                       avctx->max_prediction_order);
287                return -1;
288            }
289        }
290        s->options.max_prediction_order = avctx->max_prediction_order;
291    }
292    if(s->options.max_prediction_order < s->options.min_prediction_order) {
293        av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
294               s->options.min_prediction_order, s->options.max_prediction_order);
295        return -1;
296    }
297    av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
298           s->options.min_prediction_order, s->options.max_prediction_order);
299
300    if(avctx->prediction_order_method >= 0) {
301        if(avctx->prediction_order_method > ORDER_METHOD_LOG) {
302            av_log(avctx, AV_LOG_ERROR, "invalid prediction order method: %d\n",
303                   avctx->prediction_order_method);
304            return -1;
305        }
306        s->options.prediction_order_method = avctx->prediction_order_method;
307    }
308    switch(s->options.prediction_order_method) {
309        case ORDER_METHOD_EST:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
310                                         "estimate"); break;
311        case ORDER_METHOD_2LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
312                                         "2-level"); break;
313        case ORDER_METHOD_4LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
314                                         "4-level"); break;
315        case ORDER_METHOD_8LEVEL: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
316                                         "8-level"); break;
317        case ORDER_METHOD_SEARCH: av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
318                                         "full search"); break;
319        case ORDER_METHOD_LOG:    av_log(avctx, AV_LOG_DEBUG, " order method: %s\n",
320                                         "log search"); break;
321    }
322
323    if(avctx->min_partition_order >= 0) {
324        if(avctx->min_partition_order > MAX_PARTITION_ORDER) {
325            av_log(avctx, AV_LOG_ERROR, "invalid min partition order: %d\n",
326                   avctx->min_partition_order);
327            return -1;
328        }
329        s->options.min_partition_order = avctx->min_partition_order;
330    }
331    if(avctx->max_partition_order >= 0) {
332        if(avctx->max_partition_order > MAX_PARTITION_ORDER) {
333            av_log(avctx, AV_LOG_ERROR, "invalid max partition order: %d\n",
334                   avctx->max_partition_order);
335            return -1;
336        }
337        s->options.max_partition_order = avctx->max_partition_order;
338    }
339    if(s->options.max_partition_order < s->options.min_partition_order) {
340        av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
341               s->options.min_partition_order, s->options.max_partition_order);
342        return -1;
343    }
344    av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
345           s->options.min_partition_order, s->options.max_partition_order);
346
347    if(avctx->frame_size > 0) {
348        if(avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
349                avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
350            av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
351                   avctx->frame_size);
352            return -1;
353        }
354    } else {
355        s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
356    }
357    av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", s->avctx->frame_size);
358
359    /* set LPC precision */
360    if(avctx->lpc_coeff_precision > 0) {
361        if(avctx->lpc_coeff_precision > MAX_LPC_PRECISION) {
362            av_log(avctx, AV_LOG_ERROR, "invalid lpc coeff precision: %d\n",
363                   avctx->lpc_coeff_precision);
364            return -1;
365        }
366        s->options.lpc_coeff_precision = avctx->lpc_coeff_precision;
367    } else {
368        /* default LPC precision */
369        s->options.lpc_coeff_precision = 15;
370    }
371    av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
372           s->options.lpc_coeff_precision);
373
374    /* set maximum encoded frame size in verbatim mode */
375    if(s->channels == 2) {
376        s->max_framesize = 14 + ((s->avctx->frame_size * 33 + 7) >> 3);
377    } else {
378        s->max_framesize = 14 + (s->avctx->frame_size * s->channels * 2);
379    }
380    s->min_encoded_framesize = 0xFFFFFF;
381
382    /* initialize MD5 context */
383    s->md5ctx = av_malloc(av_md5_size);
384    if(!s->md5ctx)
385        return AVERROR_NOMEM;
386    av_md5_init(s->md5ctx);
387
388    streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
389    write_streaminfo(s, streaminfo);
390    avctx->extradata = streaminfo;
391    avctx->extradata_size = FLAC_STREAMINFO_SIZE;
392
393    s->frame_count = 0;
394
395    avctx->coded_frame = avcodec_alloc_frame();
396    avctx->coded_frame->key_frame = 1;
397
398    return 0;
399}
400
401static void init_frame(FlacEncodeContext *s)
402{
403    int i, ch;
404    FlacFrame *frame;
405
406    frame = &s->frame;
407
408    for(i=0; i<16; i++) {
409        if(s->avctx->frame_size == flac_blocksizes[i]) {
410            frame->blocksize = flac_blocksizes[i];
411            frame->bs_code[0] = i;
412            frame->bs_code[1] = 0;
413            break;
414        }
415    }
416    if(i == 16) {
417        frame->blocksize = s->avctx->frame_size;
418        if(frame->blocksize <= 256) {
419            frame->bs_code[0] = 6;
420            frame->bs_code[1] = frame->blocksize-1;
421        } else {
422            frame->bs_code[0] = 7;
423            frame->bs_code[1] = frame->blocksize-1;
424        }
425    }
426
427    for(ch=0; ch<s->channels; ch++) {
428        frame->subframes[ch].obits = 16;
429    }
430}
431
432/**
433 * Copy channel-interleaved input samples into separate subframes
434 */
435static void copy_samples(FlacEncodeContext *s, int16_t *samples)
436{
437    int i, j, ch;
438    FlacFrame *frame;
439
440    frame = &s->frame;
441    for(i=0,j=0; i<frame->blocksize; i++) {
442        for(ch=0; ch<s->channels; ch++,j++) {
443            frame->subframes[ch].samples[i] = samples[j];
444        }
445    }
446}
447
448
449#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
450
451/**
452 * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0
453 */
454static int find_optimal_param(uint32_t sum, int n)
455{
456    int k;
457    uint32_t sum2;
458
459    if(sum <= n>>1)
460        return 0;
461    sum2 = sum-(n>>1);
462    k = av_log2(n<256 ? FASTDIV(sum2,n) : sum2/n);
463    return FFMIN(k, MAX_RICE_PARAM);
464}
465
466static uint32_t calc_optimal_rice_params(RiceContext *rc, int porder,
467                                         uint32_t *sums, int n, int pred_order)
468{
469    int i;
470    int k, cnt, part;
471    uint32_t all_bits;
472
473    part = (1 << porder);
474    all_bits = 4 * part;
475
476    cnt = (n >> porder) - pred_order;
477    for(i=0; i<part; i++) {
478        k = find_optimal_param(sums[i], cnt);
479        rc->params[i] = k;
480        all_bits += rice_encode_count(sums[i], cnt, k);
481        cnt = n >> porder;
482    }
483
484    rc->porder = porder;
485
486    return all_bits;
487}
488
489static void calc_sums(int pmin, int pmax, uint32_t *data, int n, int pred_order,
490                      uint32_t sums[][MAX_PARTITIONS])
491{
492    int i, j;
493    int parts;
494    uint32_t *res, *res_end;
495
496    /* sums for highest level */
497    parts = (1 << pmax);
498    res = &data[pred_order];
499    res_end = &data[n >> pmax];
500    for(i=0; i<parts; i++) {
501        uint32_t sum = 0;
502        while(res < res_end){
503            sum += *(res++);
504        }
505        sums[pmax][i] = sum;
506        res_end+= n >> pmax;
507    }
508    /* sums for lower levels */
509    for(i=pmax-1; i>=pmin; i--) {
510        parts = (1 << i);
511        for(j=0; j<parts; j++) {
512            sums[i][j] = sums[i+1][2*j] + sums[i+1][2*j+1];
513        }
514    }
515}
516
517static uint32_t calc_rice_params(RiceContext *rc, int pmin, int pmax,
518                                 int32_t *data, int n, int pred_order)
519{
520    int i;
521    uint32_t bits[MAX_PARTITION_ORDER+1];
522    int opt_porder;
523    RiceContext tmp_rc;
524    uint32_t *udata;
525    uint32_t sums[MAX_PARTITION_ORDER+1][MAX_PARTITIONS];
526
527    assert(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
528    assert(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
529    assert(pmin <= pmax);
530
531    udata = av_malloc(n * sizeof(uint32_t));
532    for(i=0; i<n; i++) {
533        udata[i] = (2*data[i]) ^ (data[i]>>31);
534    }
535
536    calc_sums(pmin, pmax, udata, n, pred_order, sums);
537
538    opt_porder = pmin;
539    bits[pmin] = UINT32_MAX;
540    for(i=pmin; i<=pmax; i++) {
541        bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums[i], n, pred_order);
542        if(bits[i] <= bits[opt_porder]) {
543            opt_porder = i;
544            *rc= tmp_rc;
545        }
546    }
547
548    av_freep(&udata);
549    return bits[opt_porder];
550}
551
552static int get_max_p_order(int max_porder, int n, int order)
553{
554    int porder = FFMIN(max_porder, av_log2(n^(n-1)));
555    if(order > 0)
556        porder = FFMIN(porder, av_log2(n/order));
557    return porder;
558}
559
560static uint32_t calc_rice_params_fixed(RiceContext *rc, int pmin, int pmax,
561                                       int32_t *data, int n, int pred_order,
562                                       int bps)
563{
564    uint32_t bits;
565    pmin = get_max_p_order(pmin, n, pred_order);
566    pmax = get_max_p_order(pmax, n, pred_order);
567    bits = pred_order*bps + 6;
568    bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
569    return bits;
570}
571
572static uint32_t calc_rice_params_lpc(RiceContext *rc, int pmin, int pmax,
573                                     int32_t *data, int n, int pred_order,
574                                     int bps, int precision)
575{
576    uint32_t bits;
577    pmin = get_max_p_order(pmin, n, pred_order);
578    pmax = get_max_p_order(pmax, n, pred_order);
579    bits = pred_order*bps + 4 + 5 + pred_order*precision + 6;
580    bits += calc_rice_params(rc, pmin, pmax, data, n, pred_order);
581    return bits;
582}
583
584/**
585 * Apply Welch window function to audio block
586 */
587static void apply_welch_window(const int32_t *data, int len, double *w_data)
588{
589    int i, n2;
590    double w;
591    double c;
592
593    assert(!(len&1)); //the optimization in r11881 does not support odd len
594                      //if someone wants odd len extend the change in r11881
595
596    n2 = (len >> 1);
597    c = 2.0 / (len - 1.0);
598
599    w_data+=n2;
600      data+=n2;
601    for(i=0; i<n2; i++) {
602        w = c - n2 + i;
603        w = 1.0 - (w * w);
604        w_data[-i-1] = data[-i-1] * w;
605        w_data[+i  ] = data[+i  ] * w;
606    }
607}
608
609/**
610 * Calculates autocorrelation data from audio samples
611 * A Welch window function is applied before calculation.
612 */
613void ff_flac_compute_autocorr(const int32_t *data, int len, int lag,
614                              double *autoc)
615{
616    int i, j;
617    double tmp[len + lag + 1];
618    double *data1= tmp + lag;
619
620    apply_welch_window(data, len, data1);
621
622    for(j=0; j<lag; j++)
623        data1[j-lag]= 0.0;
624    data1[len] = 0.0;
625
626    for(j=0; j<lag; j+=2){
627        double sum0 = 1.0, sum1 = 1.0;
628        for(i=0; i<len; i++){
629            sum0 += data1[i] * data1[i-j];
630            sum1 += data1[i] * data1[i-j-1];
631        }
632        autoc[j  ] = sum0;
633        autoc[j+1] = sum1;
634    }
635
636    if(j==lag){
637        double sum = 1.0;
638        for(i=0; i<len; i+=2){
639            sum += data1[i  ] * data1[i-j  ]
640                 + data1[i+1] * data1[i-j+1];
641        }
642        autoc[j] = sum;
643    }
644}
645
646
647static void encode_residual_verbatim(int32_t *res, int32_t *smp, int n)
648{
649    assert(n > 0);
650    memcpy(res, smp, n * sizeof(int32_t));
651}
652
653static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
654                                  int order)
655{
656    int i;
657
658    for(i=0; i<order; i++) {
659        res[i] = smp[i];
660    }
661
662    if(order==0){
663        for(i=order; i<n; i++)
664            res[i]= smp[i];
665    }else if(order==1){
666        for(i=order; i<n; i++)
667            res[i]= smp[i] - smp[i-1];
668    }else if(order==2){
669        int a = smp[order-1] - smp[order-2];
670        for(i=order; i<n; i+=2) {
671            int b = smp[i] - smp[i-1];
672            res[i]= b - a;
673            a = smp[i+1] - smp[i];
674            res[i+1]= a - b;
675        }
676    }else if(order==3){
677        int a = smp[order-1] - smp[order-2];
678        int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
679        for(i=order; i<n; i+=2) {
680            int b = smp[i] - smp[i-1];
681            int d = b - a;
682            res[i]= d - c;
683            a = smp[i+1] - smp[i];
684            c = a - b;
685            res[i+1]= c - d;
686        }
687    }else{
688        int a = smp[order-1] - smp[order-2];
689        int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
690        int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
691        for(i=order; i<n; i+=2) {
692            int b = smp[i] - smp[i-1];
693            int d = b - a;
694            int f = d - c;
695            res[i]= f - e;
696            a = smp[i+1] - smp[i];
697            c = a - b;
698            e = c - d;
699            res[i+1]= e - f;
700        }
701    }
702}
703
704#define LPC1(x) {\
705    int c = coefs[(x)-1];\
706    p0 += c*s;\
707    s = smp[i-(x)+1];\
708    p1 += c*s;\
709}
710
711static av_always_inline void encode_residual_lpc_unrolled(
712    int32_t *res, const int32_t *smp, int n,
713    int order, const int32_t *coefs, int shift, int big)
714{
715    int i;
716    for(i=order; i<n; i+=2) {
717        int s = smp[i-order];
718        int p0 = 0, p1 = 0;
719        if(big) {
720            switch(order) {
721                case 32: LPC1(32)
722                case 31: LPC1(31)
723                case 30: LPC1(30)
724                case 29: LPC1(29)
725                case 28: LPC1(28)
726                case 27: LPC1(27)
727                case 26: LPC1(26)
728                case 25: LPC1(25)
729                case 24: LPC1(24)
730                case 23: LPC1(23)
731                case 22: LPC1(22)
732                case 21: LPC1(21)
733                case 20: LPC1(20)
734                case 19: LPC1(19)
735                case 18: LPC1(18)
736                case 17: LPC1(17)
737                case 16: LPC1(16)
738                case 15: LPC1(15)
739                case 14: LPC1(14)
740                case 13: LPC1(13)
741                case 12: LPC1(12)
742                case 11: LPC1(11)
743                case 10: LPC1(10)
744                case  9: LPC1( 9)
745                         LPC1( 8)
746                         LPC1( 7)
747                         LPC1( 6)
748                         LPC1( 5)
749                         LPC1( 4)
750                         LPC1( 3)
751                         LPC1( 2)
752                         LPC1( 1)
753            }
754        } else {
755            switch(order) {
756                case  8: LPC1( 8)
757                case  7: LPC1( 7)
758                case  6: LPC1( 6)
759                case  5: LPC1( 5)
760                case  4: LPC1( 4)
761                case  3: LPC1( 3)
762                case  2: LPC1( 2)
763                case  1: LPC1( 1)
764            }
765        }
766        res[i  ] = smp[i  ] - (p0 >> shift);
767        res[i+1] = smp[i+1] - (p1 >> shift);
768    }
769}
770
771static void encode_residual_lpc(int32_t *res, const int32_t *smp, int n,
772                                int order, const int32_t *coefs, int shift)
773{
774    int i;
775    for(i=0; i<order; i++) {
776        res[i] = smp[i];
777    }
778#if CONFIG_SMALL
779    for(i=order; i<n; i+=2) {
780        int j;
781        int s = smp[i];
782        int p0 = 0, p1 = 0;
783        for(j=0; j<order; j++) {
784            int c = coefs[j];
785            p1 += c*s;
786            s = smp[i-j-1];
787            p0 += c*s;
788        }
789        res[i  ] = smp[i  ] - (p0 >> shift);
790        res[i+1] = smp[i+1] - (p1 >> shift);
791    }
792#else
793    switch(order) {
794        case  1: encode_residual_lpc_unrolled(res, smp, n, 1, coefs, shift, 0); break;
795        case  2: encode_residual_lpc_unrolled(res, smp, n, 2, coefs, shift, 0); break;
796        case  3: encode_residual_lpc_unrolled(res, smp, n, 3, coefs, shift, 0); break;
797        case  4: encode_residual_lpc_unrolled(res, smp, n, 4, coefs, shift, 0); break;
798        case  5: encode_residual_lpc_unrolled(res, smp, n, 5, coefs, shift, 0); break;
799        case  6: encode_residual_lpc_unrolled(res, smp, n, 6, coefs, shift, 0); break;
800        case  7: encode_residual_lpc_unrolled(res, smp, n, 7, coefs, shift, 0); break;
801        case  8: encode_residual_lpc_unrolled(res, smp, n, 8, coefs, shift, 0); break;
802        default: encode_residual_lpc_unrolled(res, smp, n, order, coefs, shift, 1); break;
803    }
804#endif
805}
806
807static int encode_residual(FlacEncodeContext *ctx, int ch)
808{
809    int i, n;
810    int min_order, max_order, opt_order, precision, omethod;
811    int min_porder, max_porder;
812    FlacFrame *frame;
813    FlacSubframe *sub;
814    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
815    int shift[MAX_LPC_ORDER];
816    int32_t *res, *smp;
817
818    frame = &ctx->frame;
819    sub = &frame->subframes[ch];
820    res = sub->residual;
821    smp = sub->samples;
822    n = frame->blocksize;
823
824    /* CONSTANT */
825    for(i=1; i<n; i++) {
826        if(smp[i] != smp[0]) break;
827    }
828    if(i == n) {
829        sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
830        res[0] = smp[0];
831        return sub->obits;
832    }
833
834    /* VERBATIM */
835    if(n < 5) {
836        sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
837        encode_residual_verbatim(res, smp, n);
838        return sub->obits * n;
839    }
840
841    min_order = ctx->options.min_prediction_order;
842    max_order = ctx->options.max_prediction_order;
843    min_porder = ctx->options.min_partition_order;
844    max_porder = ctx->options.max_partition_order;
845    precision = ctx->options.lpc_coeff_precision;
846    omethod = ctx->options.prediction_order_method;
847
848    /* FIXED */
849    if(!ctx->options.use_lpc || max_order == 0 || (n <= max_order)) {
850        uint32_t bits[MAX_FIXED_ORDER+1];
851        if(max_order > MAX_FIXED_ORDER) max_order = MAX_FIXED_ORDER;
852        opt_order = 0;
853        bits[0] = UINT32_MAX;
854        for(i=min_order; i<=max_order; i++) {
855            encode_residual_fixed(res, smp, n, i);
856            bits[i] = calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res,
857                                             n, i, sub->obits);
858            if(bits[i] < bits[opt_order]) {
859                opt_order = i;
860            }
861        }
862        sub->order = opt_order;
863        sub->type = FLAC_SUBFRAME_FIXED;
864        sub->type_code = sub->type | sub->order;
865        if(sub->order != max_order) {
866            encode_residual_fixed(res, smp, n, sub->order);
867            return calc_rice_params_fixed(&sub->rc, min_porder, max_porder, res, n,
868                                          sub->order, sub->obits);
869        }
870        return bits[sub->order];
871    }
872
873    /* LPC */
874    opt_order = ff_lpc_calc_coefs(&ctx->dsp, smp, n, min_order, max_order,
875                                  precision, coefs, shift, ctx->options.use_lpc,
876                                  omethod, MAX_LPC_SHIFT, 0);
877
878    if(omethod == ORDER_METHOD_2LEVEL ||
879       omethod == ORDER_METHOD_4LEVEL ||
880       omethod == ORDER_METHOD_8LEVEL) {
881        int levels = 1 << omethod;
882        uint32_t bits[levels];
883        int order;
884        int opt_index = levels-1;
885        opt_order = max_order-1;
886        bits[opt_index] = UINT32_MAX;
887        for(i=levels-1; i>=0; i--) {
888            order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
889            if(order < 0) order = 0;
890            encode_residual_lpc(res, smp, n, order+1, coefs[order], shift[order]);
891            bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
892                                           res, n, order+1, sub->obits, precision);
893            if(bits[i] < bits[opt_index]) {
894                opt_index = i;
895                opt_order = order;
896            }
897        }
898        opt_order++;
899    } else if(omethod == ORDER_METHOD_SEARCH) {
900        // brute-force optimal order search
901        uint32_t bits[MAX_LPC_ORDER];
902        opt_order = 0;
903        bits[0] = UINT32_MAX;
904        for(i=min_order-1; i<max_order; i++) {
905            encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
906            bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
907                                           res, n, i+1, sub->obits, precision);
908            if(bits[i] < bits[opt_order]) {
909                opt_order = i;
910            }
911        }
912        opt_order++;
913    } else if(omethod == ORDER_METHOD_LOG) {
914        uint32_t bits[MAX_LPC_ORDER];
915        int step;
916
917        opt_order= min_order - 1 + (max_order-min_order)/3;
918        memset(bits, -1, sizeof(bits));
919
920        for(step=16 ;step; step>>=1){
921            int last= opt_order;
922            for(i=last-step; i<=last+step; i+= step){
923                if(i<min_order-1 || i>=max_order || bits[i] < UINT32_MAX)
924                    continue;
925                encode_residual_lpc(res, smp, n, i+1, coefs[i], shift[i]);
926                bits[i] = calc_rice_params_lpc(&sub->rc, min_porder, max_porder,
927                                            res, n, i+1, sub->obits, precision);
928                if(bits[i] < bits[opt_order])
929                    opt_order= i;
930            }
931        }
932        opt_order++;
933    }
934
935    sub->order = opt_order;
936    sub->type = FLAC_SUBFRAME_LPC;
937    sub->type_code = sub->type | (sub->order-1);
938    sub->shift = shift[sub->order-1];
939    for(i=0; i<sub->order; i++) {
940        sub->coefs[i] = coefs[sub->order-1][i];
941    }
942    encode_residual_lpc(res, smp, n, sub->order, sub->coefs, sub->shift);
943    return calc_rice_params_lpc(&sub->rc, min_porder, max_porder, res, n, sub->order,
944                                sub->obits, precision);
945}
946
947static int encode_residual_v(FlacEncodeContext *ctx, int ch)
948{
949    int i, n;
950    FlacFrame *frame;
951    FlacSubframe *sub;
952    int32_t *res, *smp;
953
954    frame = &ctx->frame;
955    sub = &frame->subframes[ch];
956    res = sub->residual;
957    smp = sub->samples;
958    n = frame->blocksize;
959
960    /* CONSTANT */
961    for(i=1; i<n; i++) {
962        if(smp[i] != smp[0]) break;
963    }
964    if(i == n) {
965        sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
966        res[0] = smp[0];
967        return sub->obits;
968    }
969
970    /* VERBATIM */
971    sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
972    encode_residual_verbatim(res, smp, n);
973    return sub->obits * n;
974}
975
976static int estimate_stereo_mode(int32_t *left_ch, int32_t *right_ch, int n)
977{
978    int i, best;
979    int32_t lt, rt;
980    uint64_t sum[4];
981    uint64_t score[4];
982    int k;
983
984    /* calculate sum of 2nd order residual for each channel */
985    sum[0] = sum[1] = sum[2] = sum[3] = 0;
986    for(i=2; i<n; i++) {
987        lt = left_ch[i] - 2*left_ch[i-1] + left_ch[i-2];
988        rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
989        sum[2] += FFABS((lt + rt) >> 1);
990        sum[3] += FFABS(lt - rt);
991        sum[0] += FFABS(lt);
992        sum[1] += FFABS(rt);
993    }
994    /* estimate bit counts */
995    for(i=0; i<4; i++) {
996        k = find_optimal_param(2*sum[i], n);
997        sum[i] = rice_encode_count(2*sum[i], n, k);
998    }
999
1000    /* calculate score for each mode */
1001    score[0] = sum[0] + sum[1];
1002    score[1] = sum[0] + sum[3];
1003    score[2] = sum[1] + sum[3];
1004    score[3] = sum[2] + sum[3];
1005
1006    /* return mode with lowest score */
1007    best = 0;
1008    for(i=1; i<4; i++) {
1009        if(score[i] < score[best]) {
1010            best = i;
1011        }
1012    }
1013    if(best == 0) {
1014        return FLAC_CHMODE_LEFT_RIGHT;
1015    } else if(best == 1) {
1016        return FLAC_CHMODE_LEFT_SIDE;
1017    } else if(best == 2) {
1018        return FLAC_CHMODE_RIGHT_SIDE;
1019    } else {
1020        return FLAC_CHMODE_MID_SIDE;
1021    }
1022}
1023
1024/**
1025 * Perform stereo channel decorrelation
1026 */
1027static void channel_decorrelation(FlacEncodeContext *ctx)
1028{
1029    FlacFrame *frame;
1030    int32_t *left, *right;
1031    int i, n;
1032
1033    frame = &ctx->frame;
1034    n = frame->blocksize;
1035    left  = frame->subframes[0].samples;
1036    right = frame->subframes[1].samples;
1037
1038    if(ctx->channels != 2) {
1039        frame->ch_mode = FLAC_CHMODE_NOT_STEREO;
1040        return;
1041    }
1042
1043    frame->ch_mode = estimate_stereo_mode(left, right, n);
1044
1045    /* perform decorrelation and adjust bits-per-sample */
1046    if(frame->ch_mode == FLAC_CHMODE_LEFT_RIGHT) {
1047        return;
1048    }
1049    if(frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
1050        int32_t tmp;
1051        for(i=0; i<n; i++) {
1052            tmp = left[i];
1053            left[i] = (tmp + right[i]) >> 1;
1054            right[i] = tmp - right[i];
1055        }
1056        frame->subframes[1].obits++;
1057    } else if(frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
1058        for(i=0; i<n; i++) {
1059            right[i] = left[i] - right[i];
1060        }
1061        frame->subframes[1].obits++;
1062    } else {
1063        for(i=0; i<n; i++) {
1064            left[i] -= right[i];
1065        }
1066        frame->subframes[0].obits++;
1067    }
1068}
1069
1070static void write_utf8(PutBitContext *pb, uint32_t val)
1071{
1072    uint8_t tmp;
1073    PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
1074}
1075
1076static void output_frame_header(FlacEncodeContext *s)
1077{
1078    FlacFrame *frame;
1079    int crc;
1080
1081    frame = &s->frame;
1082
1083    put_bits(&s->pb, 16, 0xFFF8);
1084    put_bits(&s->pb, 4, frame->bs_code[0]);
1085    put_bits(&s->pb, 4, s->sr_code[0]);
1086    if(frame->ch_mode == FLAC_CHMODE_NOT_STEREO) {
1087        put_bits(&s->pb, 4, s->ch_code);
1088    } else {
1089        put_bits(&s->pb, 4, frame->ch_mode);
1090    }
1091    put_bits(&s->pb, 3, 4); /* bits-per-sample code */
1092    put_bits(&s->pb, 1, 0);
1093    write_utf8(&s->pb, s->frame_count);
1094    if(frame->bs_code[0] == 6) {
1095        put_bits(&s->pb, 8, frame->bs_code[1]);
1096    } else if(frame->bs_code[0] == 7) {
1097        put_bits(&s->pb, 16, frame->bs_code[1]);
1098    }
1099    if(s->sr_code[0] == 12) {
1100        put_bits(&s->pb, 8, s->sr_code[1]);
1101    } else if(s->sr_code[0] > 12) {
1102        put_bits(&s->pb, 16, s->sr_code[1]);
1103    }
1104    flush_put_bits(&s->pb);
1105    crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0,
1106                 s->pb.buf, put_bits_count(&s->pb)>>3);
1107    put_bits(&s->pb, 8, crc);
1108}
1109
1110static void output_subframe_constant(FlacEncodeContext *s, int ch)
1111{
1112    FlacSubframe *sub;
1113    int32_t res;
1114
1115    sub = &s->frame.subframes[ch];
1116    res = sub->residual[0];
1117    put_sbits(&s->pb, sub->obits, res);
1118}
1119
1120static void output_subframe_verbatim(FlacEncodeContext *s, int ch)
1121{
1122    int i;
1123    FlacFrame *frame;
1124    FlacSubframe *sub;
1125    int32_t res;
1126
1127    frame = &s->frame;
1128    sub = &frame->subframes[ch];
1129
1130    for(i=0; i<frame->blocksize; i++) {
1131        res = sub->residual[i];
1132        put_sbits(&s->pb, sub->obits, res);
1133    }
1134}
1135
1136static void output_residual(FlacEncodeContext *ctx, int ch)
1137{
1138    int i, j, p, n, parts;
1139    int k, porder, psize, res_cnt;
1140    FlacFrame *frame;
1141    FlacSubframe *sub;
1142    int32_t *res;
1143
1144    frame = &ctx->frame;
1145    sub = &frame->subframes[ch];
1146    res = sub->residual;
1147    n = frame->blocksize;
1148
1149    /* rice-encoded block */
1150    put_bits(&ctx->pb, 2, 0);
1151
1152    /* partition order */
1153    porder = sub->rc.porder;
1154    psize = n >> porder;
1155    parts = (1 << porder);
1156    put_bits(&ctx->pb, 4, porder);
1157    res_cnt = psize - sub->order;
1158
1159    /* residual */
1160    j = sub->order;
1161    for(p=0; p<parts; p++) {
1162        k = sub->rc.params[p];
1163        put_bits(&ctx->pb, 4, k);
1164        if(p == 1) res_cnt = psize;
1165        for(i=0; i<res_cnt && j<n; i++, j++) {
1166            set_sr_golomb_flac(&ctx->pb, res[j], k, INT32_MAX, 0);
1167        }
1168    }
1169}
1170
1171static void output_subframe_fixed(FlacEncodeContext *ctx, int ch)
1172{
1173    int i;
1174    FlacFrame *frame;
1175    FlacSubframe *sub;
1176
1177    frame = &ctx->frame;
1178    sub = &frame->subframes[ch];
1179
1180    /* warm-up samples */
1181    for(i=0; i<sub->order; i++) {
1182        put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
1183    }
1184
1185    /* residual */
1186    output_residual(ctx, ch);
1187}
1188
1189static void output_subframe_lpc(FlacEncodeContext *ctx, int ch)
1190{
1191    int i, cbits;
1192    FlacFrame *frame;
1193    FlacSubframe *sub;
1194
1195    frame = &ctx->frame;
1196    sub = &frame->subframes[ch];
1197
1198    /* warm-up samples */
1199    for(i=0; i<sub->order; i++) {
1200        put_sbits(&ctx->pb, sub->obits, sub->residual[i]);
1201    }
1202
1203    /* LPC coefficients */
1204    cbits = ctx->options.lpc_coeff_precision;
1205    put_bits(&ctx->pb, 4, cbits-1);
1206    put_sbits(&ctx->pb, 5, sub->shift);
1207    for(i=0; i<sub->order; i++) {
1208        put_sbits(&ctx->pb, cbits, sub->coefs[i]);
1209    }
1210
1211    /* residual */
1212    output_residual(ctx, ch);
1213}
1214
1215static void output_subframes(FlacEncodeContext *s)
1216{
1217    FlacFrame *frame;
1218    FlacSubframe *sub;
1219    int ch;
1220
1221    frame = &s->frame;
1222
1223    for(ch=0; ch<s->channels; ch++) {
1224        sub = &frame->subframes[ch];
1225
1226        /* subframe header */
1227        put_bits(&s->pb, 1, 0);
1228        put_bits(&s->pb, 6, sub->type_code);
1229        put_bits(&s->pb, 1, 0); /* no wasted bits */
1230
1231        /* subframe */
1232        if(sub->type == FLAC_SUBFRAME_CONSTANT) {
1233            output_subframe_constant(s, ch);
1234        } else if(sub->type == FLAC_SUBFRAME_VERBATIM) {
1235            output_subframe_verbatim(s, ch);
1236        } else if(sub->type == FLAC_SUBFRAME_FIXED) {
1237            output_subframe_fixed(s, ch);
1238        } else if(sub->type == FLAC_SUBFRAME_LPC) {
1239            output_subframe_lpc(s, ch);
1240        }
1241    }
1242}
1243
1244static void output_frame_footer(FlacEncodeContext *s)
1245{
1246    int crc;
1247    flush_put_bits(&s->pb);
1248    crc = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
1249                          s->pb.buf, put_bits_count(&s->pb)>>3));
1250    put_bits(&s->pb, 16, crc);
1251    flush_put_bits(&s->pb);
1252}
1253
1254static void update_md5_sum(FlacEncodeContext *s, int16_t *samples)
1255{
1256#ifdef WORDS_BIGENDIAN
1257    int i;
1258    for(i = 0; i < s->frame.blocksize*s->channels; i++) {
1259        int16_t smp = le2me_16(samples[i]);
1260        av_md5_update(s->md5ctx, (uint8_t *)&smp, 2);
1261    }
1262#else
1263    av_md5_update(s->md5ctx, (uint8_t *)samples, s->frame.blocksize*s->channels*2);
1264#endif
1265}
1266
1267static int flac_encode_frame(AVCodecContext *avctx, uint8_t *frame,
1268                             int buf_size, void *data)
1269{
1270    int ch;
1271    FlacEncodeContext *s;
1272    int16_t *samples = data;
1273    int out_bytes;
1274    int reencoded=0;
1275
1276    s = avctx->priv_data;
1277
1278    if(buf_size < s->max_framesize*2) {
1279        av_log(avctx, AV_LOG_ERROR, "output buffer too small\n");
1280        return 0;
1281    }
1282
1283    /* when the last block is reached, update the header in extradata */
1284    if (!data) {
1285        s->min_framesize = s->min_encoded_framesize;
1286        s->max_framesize = s->max_encoded_framesize;
1287        av_md5_final(s->md5ctx, s->md5sum);
1288        write_streaminfo(s, avctx->extradata);
1289        return 0;
1290    }
1291
1292    init_frame(s);
1293
1294    copy_samples(s, samples);
1295
1296    channel_decorrelation(s);
1297
1298    for(ch=0; ch<s->channels; ch++) {
1299        encode_residual(s, ch);
1300    }
1301
1302write_frame:
1303    init_put_bits(&s->pb, frame, buf_size);
1304    output_frame_header(s);
1305    output_subframes(s);
1306    output_frame_footer(s);
1307    out_bytes = put_bits_count(&s->pb) >> 3;
1308
1309    if(out_bytes > s->max_framesize) {
1310        if(reencoded) {
1311            /* still too large. must be an error. */
1312            av_log(avctx, AV_LOG_ERROR, "error encoding frame\n");
1313            return -1;
1314        }
1315
1316        /* frame too large. use verbatim mode */
1317        for(ch=0; ch<s->channels; ch++) {
1318            encode_residual_v(s, ch);
1319        }
1320        reencoded = 1;
1321        goto write_frame;
1322    }
1323
1324    s->frame_count++;
1325    s->sample_count += avctx->frame_size;
1326    update_md5_sum(s, samples);
1327    if (out_bytes > s->max_encoded_framesize)
1328        s->max_encoded_framesize = out_bytes;
1329    if (out_bytes < s->min_encoded_framesize)
1330        s->min_encoded_framesize = out_bytes;
1331
1332    return out_bytes;
1333}
1334
1335static av_cold int flac_encode_close(AVCodecContext *avctx)
1336{
1337    if (avctx->priv_data) {
1338        FlacEncodeContext *s = avctx->priv_data;
1339        av_freep(&s->md5ctx);
1340    }
1341    av_freep(&avctx->extradata);
1342    avctx->extradata_size = 0;
1343    av_freep(&avctx->coded_frame);
1344    return 0;
1345}
1346
1347AVCodec flac_encoder = {
1348    "flac",
1349    CODEC_TYPE_AUDIO,
1350    CODEC_ID_FLAC,
1351    sizeof(FlacEncodeContext),
1352    flac_encode_init,
1353    flac_encode_frame,
1354    flac_encode_close,
1355    NULL,
1356    .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY,
1357    .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
1358    .long_name = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
1359};
1360