1/*
2 * Monkey's Audio lossless audio decoder
3 * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4 *  based upon libdemac from Dave Chapman.
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23#define ALT_BITSTREAM_READER_LE
24#include "avcodec.h"
25#include "dsputil.h"
26#include "bitstream.h"
27#include "bytestream.h"
28
29/**
30 * @file libavcodec/apedec.c
31 * Monkey's Audio lossless audio decoder
32 */
33
34#define BLOCKS_PER_LOOP     4608
35#define MAX_CHANNELS        2
36#define MAX_BYTESPERSAMPLE  3
37
38#define APE_FRAMECODE_MONO_SILENCE    1
39#define APE_FRAMECODE_STEREO_SILENCE  3
40#define APE_FRAMECODE_PSEUDO_STEREO   4
41
42#define HISTORY_SIZE 512
43#define PREDICTOR_ORDER 8
44/** Total size of all predictor histories */
45#define PREDICTOR_SIZE 50
46
47#define YDELAYA (18 + PREDICTOR_ORDER*4)
48#define YDELAYB (18 + PREDICTOR_ORDER*3)
49#define XDELAYA (18 + PREDICTOR_ORDER*2)
50#define XDELAYB (18 + PREDICTOR_ORDER)
51
52#define YADAPTCOEFFSA 18
53#define XADAPTCOEFFSA 14
54#define YADAPTCOEFFSB 10
55#define XADAPTCOEFFSB 5
56
57/**
58 * Possible compression levels
59 * @{
60 */
61enum APECompressionLevel {
62    COMPRESSION_LEVEL_FAST       = 1000,
63    COMPRESSION_LEVEL_NORMAL     = 2000,
64    COMPRESSION_LEVEL_HIGH       = 3000,
65    COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
66    COMPRESSION_LEVEL_INSANE     = 5000
67};
68/** @} */
69
70#define APE_FILTER_LEVELS 3
71
72/** Filter orders depending on compression level */
73static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
74    {  0,   0,    0 },
75    { 16,   0,    0 },
76    { 64,   0,    0 },
77    { 32, 256,    0 },
78    { 16, 256, 1280 }
79};
80
81/** Filter fraction bits depending on compression level */
82static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
83    {  0,  0,  0 },
84    { 11,  0,  0 },
85    { 11,  0,  0 },
86    { 10, 13,  0 },
87    { 11, 13, 15 }
88};
89
90
91/** Filters applied to the decoded data */
92typedef struct APEFilter {
93    int16_t *coeffs;        ///< actual coefficients used in filtering
94    int16_t *adaptcoeffs;   ///< adaptive filter coefficients used for correcting of actual filter coefficients
95    int16_t *historybuffer; ///< filter memory
96    int16_t *delay;         ///< filtered values
97
98    int avg;
99} APEFilter;
100
101typedef struct APERice {
102    uint32_t k;
103    uint32_t ksum;
104} APERice;
105
106typedef struct APERangecoder {
107    uint32_t low;           ///< low end of interval
108    uint32_t range;         ///< length of interval
109    uint32_t help;          ///< bytes_to_follow resp. intermediate value
110    unsigned int buffer;    ///< buffer for input/output
111} APERangecoder;
112
113/** Filter histories */
114typedef struct APEPredictor {
115    int32_t *buf;
116
117    int32_t lastA[2];
118
119    int32_t filterA[2];
120    int32_t filterB[2];
121
122    int32_t coeffsA[2][4];  ///< adaption coefficients
123    int32_t coeffsB[2][5];  ///< adaption coefficients
124    int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
125} APEPredictor;
126
127/** Decoder context */
128typedef struct APEContext {
129    AVCodecContext *avctx;
130    DSPContext dsp;
131    int channels;
132    int samples;                             ///< samples left to decode in current frame
133
134    int fileversion;                         ///< codec version, very important in decoding process
135    int compression_level;                   ///< compression levels
136    int fset;                                ///< which filter set to use (calculated from compression level)
137    int flags;                               ///< global decoder flags
138
139    uint32_t CRC;                            ///< frame CRC
140    int frameflags;                          ///< frame flags
141    int currentframeblocks;                  ///< samples (per channel) in current frame
142    int blocksdecoded;                       ///< count of decoded samples in current frame
143    APEPredictor predictor;                  ///< predictor used for final reconstruction
144
145    int32_t decoded0[BLOCKS_PER_LOOP];       ///< decoded data for the first channel
146    int32_t decoded1[BLOCKS_PER_LOOP];       ///< decoded data for the second channel
147
148    int16_t* filterbuf[APE_FILTER_LEVELS];   ///< filter memory
149
150    APERangecoder rc;                        ///< rangecoder used to decode actual values
151    APERice riceX;                           ///< rice code parameters for the second channel
152    APERice riceY;                           ///< rice code parameters for the first channel
153    APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
154
155    uint8_t *data;                           ///< current frame data
156    uint8_t *data_end;                       ///< frame data end
157    const uint8_t *ptr;                      ///< current position in frame data
158    const uint8_t *last_ptr;                 ///< position where last 4608-sample block ended
159
160    int error;
161} APEContext;
162
163// TODO: dsputilize
164
165static av_cold int ape_decode_init(AVCodecContext * avctx)
166{
167    APEContext *s = avctx->priv_data;
168    int i;
169
170    if (avctx->extradata_size != 6) {
171        av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
172        return -1;
173    }
174    if (avctx->bits_per_coded_sample != 16) {
175        av_log(avctx, AV_LOG_ERROR, "Only 16-bit samples are supported\n");
176        return -1;
177    }
178    if (avctx->channels > 2) {
179        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
180        return -1;
181    }
182    s->avctx             = avctx;
183    s->channels          = avctx->channels;
184    s->fileversion       = AV_RL16(avctx->extradata);
185    s->compression_level = AV_RL16(avctx->extradata + 2);
186    s->flags             = AV_RL16(avctx->extradata + 4);
187
188    av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n", s->compression_level, s->flags);
189    if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE) {
190        av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n", s->compression_level);
191        return -1;
192    }
193    s->fset = s->compression_level / 1000 - 1;
194    for (i = 0; i < APE_FILTER_LEVELS; i++) {
195        if (!ape_filter_orders[s->fset][i])
196            break;
197        s->filterbuf[i] = av_malloc((ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4);
198    }
199
200    dsputil_init(&s->dsp, avctx);
201    avctx->sample_fmt = SAMPLE_FMT_S16;
202    avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
203    return 0;
204}
205
206static av_cold int ape_decode_close(AVCodecContext * avctx)
207{
208    APEContext *s = avctx->priv_data;
209    int i;
210
211    for (i = 0; i < APE_FILTER_LEVELS; i++)
212        av_freep(&s->filterbuf[i]);
213
214    return 0;
215}
216
217/**
218 * @defgroup rangecoder APE range decoder
219 * @{
220 */
221
222#define CODE_BITS    32
223#define TOP_VALUE    ((unsigned int)1 << (CODE_BITS-1))
224#define SHIFT_BITS   (CODE_BITS - 9)
225#define EXTRA_BITS   ((CODE_BITS-2) % 8 + 1)
226#define BOTTOM_VALUE (TOP_VALUE >> 8)
227
228/** Start the decoder */
229static inline void range_start_decoding(APEContext * ctx)
230{
231    ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
232    ctx->rc.low    = ctx->rc.buffer >> (8 - EXTRA_BITS);
233    ctx->rc.range  = (uint32_t) 1 << EXTRA_BITS;
234}
235
236/** Perform normalization */
237static inline void range_dec_normalize(APEContext * ctx)
238{
239    while (ctx->rc.range <= BOTTOM_VALUE) {
240        ctx->rc.buffer <<= 8;
241        if(ctx->ptr < ctx->data_end)
242            ctx->rc.buffer += *ctx->ptr;
243        ctx->ptr++;
244        ctx->rc.low    = (ctx->rc.low << 8)    | ((ctx->rc.buffer >> 1) & 0xFF);
245        ctx->rc.range  <<= 8;
246    }
247}
248
249/**
250 * Calculate culmulative frequency for next symbol. Does NO update!
251 * @param ctx decoder context
252 * @param tot_f is the total frequency or (code_value)1<<shift
253 * @return the culmulative frequency
254 */
255static inline int range_decode_culfreq(APEContext * ctx, int tot_f)
256{
257    range_dec_normalize(ctx);
258    ctx->rc.help = ctx->rc.range / tot_f;
259    return ctx->rc.low / ctx->rc.help;
260}
261
262/**
263 * Decode value with given size in bits
264 * @param ctx decoder context
265 * @param shift number of bits to decode
266 */
267static inline int range_decode_culshift(APEContext * ctx, int shift)
268{
269    range_dec_normalize(ctx);
270    ctx->rc.help = ctx->rc.range >> shift;
271    return ctx->rc.low / ctx->rc.help;
272}
273
274
275/**
276 * Update decoding state
277 * @param ctx decoder context
278 * @param sy_f the interval length (frequency of the symbol)
279 * @param lt_f the lower end (frequency sum of < symbols)
280 */
281static inline void range_decode_update(APEContext * ctx, int sy_f, int lt_f)
282{
283    ctx->rc.low  -= ctx->rc.help * lt_f;
284    ctx->rc.range = ctx->rc.help * sy_f;
285}
286
287/** Decode n bits (n <= 16) without modelling */
288static inline int range_decode_bits(APEContext * ctx, int n)
289{
290    int sym = range_decode_culshift(ctx, n);
291    range_decode_update(ctx, 1, sym);
292    return sym;
293}
294
295
296#define MODEL_ELEMENTS 64
297
298/**
299 * Fixed probabilities for symbols in Monkey Audio version 3.97
300 */
301static const uint16_t counts_3970[22] = {
302        0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
303    62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
304    65450, 65469, 65480, 65487, 65491, 65493,
305};
306
307/**
308 * Probability ranges for symbols in Monkey Audio version 3.97
309 */
310static const uint16_t counts_diff_3970[21] = {
311    14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
312    1104, 677, 415, 248, 150, 89, 54, 31,
313    19, 11, 7, 4, 2,
314};
315
316/**
317 * Fixed probabilities for symbols in Monkey Audio version 3.98
318 */
319static const uint16_t counts_3980[22] = {
320        0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
321    64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
322    65485, 65488, 65490, 65491, 65492, 65493,
323};
324
325/**
326 * Probability ranges for symbols in Monkey Audio version 3.98
327 */
328static const uint16_t counts_diff_3980[21] = {
329    19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
330    261, 119, 65, 31, 19, 10, 6, 3,
331    3, 2, 1, 1, 1,
332};
333
334/**
335 * Decode symbol
336 * @param ctx decoder context
337 * @param counts probability range start position
338 * @param counts_diff probability range widths
339 */
340static inline int range_get_symbol(APEContext * ctx,
341                                   const uint16_t counts[],
342                                   const uint16_t counts_diff[])
343{
344    int symbol, cf;
345
346    cf = range_decode_culshift(ctx, 16);
347
348    if(cf > 65492){
349        symbol= cf - 65535 + 63;
350        range_decode_update(ctx, 1, cf);
351        if(cf > 65535)
352            ctx->error=1;
353        return symbol;
354    }
355    /* figure out the symbol inefficiently; a binary search would be much better */
356    for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
357
358    range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
359
360    return symbol;
361}
362/** @} */ // group rangecoder
363
364static inline void update_rice(APERice *rice, int x)
365{
366    int lim = rice->k ? (1 << (rice->k + 4)) : 0;
367    rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
368
369    if (rice->ksum < lim)
370        rice->k--;
371    else if (rice->ksum >= (1 << (rice->k + 5)))
372        rice->k++;
373}
374
375static inline int ape_decode_value(APEContext * ctx, APERice *rice)
376{
377    int x, overflow;
378
379    if (ctx->fileversion < 3990) {
380        int tmpk;
381
382        overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
383
384        if (overflow == (MODEL_ELEMENTS - 1)) {
385            tmpk = range_decode_bits(ctx, 5);
386            overflow = 0;
387        } else
388            tmpk = (rice->k < 1) ? 0 : rice->k - 1;
389
390        if (tmpk <= 16)
391            x = range_decode_bits(ctx, tmpk);
392        else {
393            x = range_decode_bits(ctx, 16);
394            x |= (range_decode_bits(ctx, tmpk - 16) << 16);
395        }
396        x += overflow << tmpk;
397    } else {
398        int base, pivot;
399
400        pivot = rice->ksum >> 5;
401        if (pivot == 0)
402            pivot = 1;
403
404        overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
405
406        if (overflow == (MODEL_ELEMENTS - 1)) {
407            overflow  = range_decode_bits(ctx, 16) << 16;
408            overflow |= range_decode_bits(ctx, 16);
409        }
410
411        base = range_decode_culfreq(ctx, pivot);
412        range_decode_update(ctx, 1, base);
413
414        x = base + overflow * pivot;
415    }
416
417    update_rice(rice, x);
418
419    /* Convert to signed */
420    if (x & 1)
421        return (x >> 1) + 1;
422    else
423        return -(x >> 1);
424}
425
426static void entropy_decode(APEContext * ctx, int blockstodecode, int stereo)
427{
428    int32_t *decoded0 = ctx->decoded0;
429    int32_t *decoded1 = ctx->decoded1;
430
431    ctx->blocksdecoded = blockstodecode;
432
433    if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
434        /* We are pure silence, just memset the output buffer. */
435        memset(decoded0, 0, blockstodecode * sizeof(int32_t));
436        memset(decoded1, 0, blockstodecode * sizeof(int32_t));
437    } else {
438        while (blockstodecode--) {
439            *decoded0++ = ape_decode_value(ctx, &ctx->riceY);
440            if (stereo)
441                *decoded1++ = ape_decode_value(ctx, &ctx->riceX);
442        }
443    }
444
445    if (ctx->blocksdecoded == ctx->currentframeblocks)
446        range_dec_normalize(ctx);   /* normalize to use up all bytes */
447}
448
449static void init_entropy_decoder(APEContext * ctx)
450{
451    /* Read the CRC */
452    ctx->CRC = bytestream_get_be32(&ctx->ptr);
453
454    /* Read the frame flags if they exist */
455    ctx->frameflags = 0;
456    if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
457        ctx->CRC &= ~0x80000000;
458
459        ctx->frameflags = bytestream_get_be32(&ctx->ptr);
460    }
461
462    /* Keep a count of the blocks decoded in this frame */
463    ctx->blocksdecoded = 0;
464
465    /* Initialize the rice structs */
466    ctx->riceX.k = 10;
467    ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
468    ctx->riceY.k = 10;
469    ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
470
471    /* The first 8 bits of input are ignored. */
472    ctx->ptr++;
473
474    range_start_decoding(ctx);
475}
476
477static const int32_t initial_coeffs[4] = {
478    360, 317, -109, 98
479};
480
481static void init_predictor_decoder(APEContext * ctx)
482{
483    APEPredictor *p = &ctx->predictor;
484
485    /* Zero the history buffers */
486    memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
487    p->buf = p->historybuffer;
488
489    /* Initialize and zero the coefficients */
490    memcpy(p->coeffsA[0], initial_coeffs, sizeof(initial_coeffs));
491    memcpy(p->coeffsA[1], initial_coeffs, sizeof(initial_coeffs));
492    memset(p->coeffsB, 0, sizeof(p->coeffsB));
493
494    p->filterA[0] = p->filterA[1] = 0;
495    p->filterB[0] = p->filterB[1] = 0;
496    p->lastA[0]   = p->lastA[1]   = 0;
497}
498
499/** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
500static inline int APESIGN(int32_t x) {
501    return (x < 0) - (x > 0);
502}
503
504static int predictor_update_filter(APEPredictor *p, const int decoded, const int filter, const int delayA, const int delayB, const int adaptA, const int adaptB)
505{
506    int32_t predictionA, predictionB;
507
508    p->buf[delayA]     = p->lastA[filter];
509    p->buf[adaptA]     = APESIGN(p->buf[delayA]);
510    p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
511    p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
512
513    predictionA = p->buf[delayA    ] * p->coeffsA[filter][0] +
514                  p->buf[delayA - 1] * p->coeffsA[filter][1] +
515                  p->buf[delayA - 2] * p->coeffsA[filter][2] +
516                  p->buf[delayA - 3] * p->coeffsA[filter][3];
517
518    /*  Apply a scaled first-order filter compression */
519    p->buf[delayB]     = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
520    p->buf[adaptB]     = APESIGN(p->buf[delayB]);
521    p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
522    p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
523    p->filterB[filter] = p->filterA[filter ^ 1];
524
525    predictionB = p->buf[delayB    ] * p->coeffsB[filter][0] +
526                  p->buf[delayB - 1] * p->coeffsB[filter][1] +
527                  p->buf[delayB - 2] * p->coeffsB[filter][2] +
528                  p->buf[delayB - 3] * p->coeffsB[filter][3] +
529                  p->buf[delayB - 4] * p->coeffsB[filter][4];
530
531    p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
532    p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
533
534    if (!decoded) // no need updating filter coefficients
535        return p->filterA[filter];
536
537    if (decoded > 0) {
538        p->coeffsA[filter][0] -= p->buf[adaptA    ];
539        p->coeffsA[filter][1] -= p->buf[adaptA - 1];
540        p->coeffsA[filter][2] -= p->buf[adaptA - 2];
541        p->coeffsA[filter][3] -= p->buf[adaptA - 3];
542
543        p->coeffsB[filter][0] -= p->buf[adaptB    ];
544        p->coeffsB[filter][1] -= p->buf[adaptB - 1];
545        p->coeffsB[filter][2] -= p->buf[adaptB - 2];
546        p->coeffsB[filter][3] -= p->buf[adaptB - 3];
547        p->coeffsB[filter][4] -= p->buf[adaptB - 4];
548    } else {
549        p->coeffsA[filter][0] += p->buf[adaptA    ];
550        p->coeffsA[filter][1] += p->buf[adaptA - 1];
551        p->coeffsA[filter][2] += p->buf[adaptA - 2];
552        p->coeffsA[filter][3] += p->buf[adaptA - 3];
553
554        p->coeffsB[filter][0] += p->buf[adaptB    ];
555        p->coeffsB[filter][1] += p->buf[adaptB - 1];
556        p->coeffsB[filter][2] += p->buf[adaptB - 2];
557        p->coeffsB[filter][3] += p->buf[adaptB - 3];
558        p->coeffsB[filter][4] += p->buf[adaptB - 4];
559    }
560    return p->filterA[filter];
561}
562
563static void predictor_decode_stereo(APEContext * ctx, int count)
564{
565    int32_t predictionA, predictionB;
566    APEPredictor *p = &ctx->predictor;
567    int32_t *decoded0 = ctx->decoded0;
568    int32_t *decoded1 = ctx->decoded1;
569
570    while (count--) {
571        /* Predictor Y */
572        predictionA = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB, YADAPTCOEFFSA, YADAPTCOEFFSB);
573        predictionB = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB, XADAPTCOEFFSA, XADAPTCOEFFSB);
574        *(decoded0++) = predictionA;
575        *(decoded1++) = predictionB;
576
577        /* Combined */
578        p->buf++;
579
580        /* Have we filled the history buffer? */
581        if (p->buf == p->historybuffer + HISTORY_SIZE) {
582            memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
583            p->buf = p->historybuffer;
584        }
585    }
586}
587
588static void predictor_decode_mono(APEContext * ctx, int count)
589{
590    APEPredictor *p = &ctx->predictor;
591    int32_t *decoded0 = ctx->decoded0;
592    int32_t predictionA, currentA, A;
593
594    currentA = p->lastA[0];
595
596    while (count--) {
597        A = *decoded0;
598
599        p->buf[YDELAYA] = currentA;
600        p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
601
602        predictionA = p->buf[YDELAYA    ] * p->coeffsA[0][0] +
603                      p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
604                      p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
605                      p->buf[YDELAYA - 3] * p->coeffsA[0][3];
606
607        currentA = A + (predictionA >> 10);
608
609        p->buf[YADAPTCOEFFSA]     = APESIGN(p->buf[YDELAYA    ]);
610        p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
611
612        if (A > 0) {
613            p->coeffsA[0][0] -= p->buf[YADAPTCOEFFSA    ];
614            p->coeffsA[0][1] -= p->buf[YADAPTCOEFFSA - 1];
615            p->coeffsA[0][2] -= p->buf[YADAPTCOEFFSA - 2];
616            p->coeffsA[0][3] -= p->buf[YADAPTCOEFFSA - 3];
617        } else if (A < 0) {
618            p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA    ];
619            p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1];
620            p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2];
621            p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3];
622        }
623
624        p->buf++;
625
626        /* Have we filled the history buffer? */
627        if (p->buf == p->historybuffer + HISTORY_SIZE) {
628            memmove(p->historybuffer, p->buf, PREDICTOR_SIZE * sizeof(int32_t));
629            p->buf = p->historybuffer;
630        }
631
632        p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
633        *(decoded0++) = p->filterA[0];
634    }
635
636    p->lastA[0] = currentA;
637}
638
639static void do_init_filter(APEFilter *f, int16_t * buf, int order)
640{
641    f->coeffs = buf;
642    f->historybuffer = buf + order;
643    f->delay       = f->historybuffer + order * 2;
644    f->adaptcoeffs = f->historybuffer + order;
645
646    memset(f->historybuffer, 0, (order * 2) * sizeof(int16_t));
647    memset(f->coeffs, 0, order * sizeof(int16_t));
648    f->avg = 0;
649}
650
651static void init_filter(APEContext * ctx, APEFilter *f, int16_t * buf, int order)
652{
653    do_init_filter(&f[0], buf, order);
654    do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
655}
656
657static inline void do_apply_filter(APEContext * ctx, int version, APEFilter *f, int32_t *data, int count, int order, int fracbits)
658{
659    int res;
660    int absres;
661
662    while (count--) {
663        /* round fixedpoint scalar product */
664        res = (ctx->dsp.scalarproduct_int16(f->delay - order, f->coeffs, order, 0) + (1 << (fracbits - 1))) >> fracbits;
665
666        if (*data < 0)
667            ctx->dsp.add_int16(f->coeffs, f->adaptcoeffs - order, order);
668        else if (*data > 0)
669            ctx->dsp.sub_int16(f->coeffs, f->adaptcoeffs - order, order);
670
671        res += *data;
672
673        *data++ = res;
674
675        /* Update the output history */
676        *f->delay++ = av_clip_int16(res);
677
678        if (version < 3980) {
679            /* Version ??? to < 3.98 files (untested) */
680            f->adaptcoeffs[0]  = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
681            f->adaptcoeffs[-4] >>= 1;
682            f->adaptcoeffs[-8] >>= 1;
683        } else {
684            /* Version 3.98 and later files */
685
686            /* Update the adaption coefficients */
687            absres = (res < 0 ? -res : res);
688
689            if (absres > (f->avg * 3))
690                *f->adaptcoeffs = ((res >> 25) & 64) - 32;
691            else if (absres > (f->avg * 4) / 3)
692                *f->adaptcoeffs = ((res >> 26) & 32) - 16;
693            else if (absres > 0)
694                *f->adaptcoeffs = ((res >> 27) & 16) - 8;
695            else
696                *f->adaptcoeffs = 0;
697
698            f->avg += (absres - f->avg) / 16;
699
700            f->adaptcoeffs[-1] >>= 1;
701            f->adaptcoeffs[-2] >>= 1;
702            f->adaptcoeffs[-8] >>= 1;
703        }
704
705        f->adaptcoeffs++;
706
707        /* Have we filled the history buffer? */
708        if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
709            memmove(f->historybuffer, f->delay - (order * 2),
710                    (order * 2) * sizeof(int16_t));
711            f->delay = f->historybuffer + order * 2;
712            f->adaptcoeffs = f->historybuffer + order;
713        }
714    }
715}
716
717static void apply_filter(APEContext * ctx, APEFilter *f,
718                         int32_t * data0, int32_t * data1,
719                         int count, int order, int fracbits)
720{
721    do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
722    if (data1)
723        do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
724}
725
726static void ape_apply_filters(APEContext * ctx, int32_t * decoded0,
727                              int32_t * decoded1, int count)
728{
729    int i;
730
731    for (i = 0; i < APE_FILTER_LEVELS; i++) {
732        if (!ape_filter_orders[ctx->fset][i])
733            break;
734        apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count, ape_filter_orders[ctx->fset][i], ape_filter_fracbits[ctx->fset][i]);
735    }
736}
737
738static void init_frame_decoder(APEContext * ctx)
739{
740    int i;
741    init_entropy_decoder(ctx);
742    init_predictor_decoder(ctx);
743
744    for (i = 0; i < APE_FILTER_LEVELS; i++) {
745        if (!ape_filter_orders[ctx->fset][i])
746            break;
747        init_filter(ctx, ctx->filters[i], ctx->filterbuf[i], ape_filter_orders[ctx->fset][i]);
748    }
749}
750
751static void ape_unpack_mono(APEContext * ctx, int count)
752{
753    int32_t left;
754    int32_t *decoded0 = ctx->decoded0;
755    int32_t *decoded1 = ctx->decoded1;
756
757    if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
758        entropy_decode(ctx, count, 0);
759        /* We are pure silence, so we're done. */
760        av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
761        return;
762    }
763
764    entropy_decode(ctx, count, 0);
765    ape_apply_filters(ctx, decoded0, NULL, count);
766
767    /* Now apply the predictor decoding */
768    predictor_decode_mono(ctx, count);
769
770    /* Pseudo-stereo - just copy left channel to right channel */
771    if (ctx->channels == 2) {
772        while (count--) {
773            left = *decoded0;
774            *(decoded1++) = *(decoded0++) = left;
775        }
776    }
777}
778
779static void ape_unpack_stereo(APEContext * ctx, int count)
780{
781    int32_t left, right;
782    int32_t *decoded0 = ctx->decoded0;
783    int32_t *decoded1 = ctx->decoded1;
784
785    if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
786        /* We are pure silence, so we're done. */
787        av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
788        return;
789    }
790
791    entropy_decode(ctx, count, 1);
792    ape_apply_filters(ctx, decoded0, decoded1, count);
793
794    /* Now apply the predictor decoding */
795    predictor_decode_stereo(ctx, count);
796
797    /* Decorrelate and scale to output depth */
798    while (count--) {
799        left = *decoded1 - (*decoded0 / 2);
800        right = left + *decoded0;
801
802        *(decoded0++) = left;
803        *(decoded1++) = right;
804    }
805}
806
807static int ape_decode_frame(AVCodecContext * avctx,
808                            void *data, int *data_size,
809                            const uint8_t * buf, int buf_size)
810{
811    APEContext *s = avctx->priv_data;
812    int16_t *samples = data;
813    int nblocks;
814    int i, n;
815    int blockstodecode;
816    int bytes_used;
817
818    if (buf_size == 0 && !s->samples) {
819        *data_size = 0;
820        return 0;
821    }
822
823    /* should not happen but who knows */
824    if (BLOCKS_PER_LOOP * 2 * avctx->channels > *data_size) {
825        av_log (avctx, AV_LOG_ERROR, "Packet size is too big to be handled in lavc! (max is %d where you have %d)\n", *data_size, s->samples * 2 * avctx->channels);
826        return -1;
827    }
828
829    if(!s->samples){
830        s->data = av_realloc(s->data, (buf_size + 3) & ~3);
831        s->dsp.bswap_buf((uint32_t*)s->data, (const uint32_t*)buf, buf_size >> 2);
832        s->ptr = s->last_ptr = s->data;
833        s->data_end = s->data + buf_size;
834
835        nblocks = s->samples = bytestream_get_be32(&s->ptr);
836        n =  bytestream_get_be32(&s->ptr);
837        if(n < 0 || n > 3){
838            av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
839            s->data = NULL;
840            return -1;
841        }
842        s->ptr += n;
843
844        s->currentframeblocks = nblocks;
845        buf += 4;
846        if (s->samples <= 0) {
847            *data_size = 0;
848            return buf_size;
849        }
850
851        memset(s->decoded0,  0, sizeof(s->decoded0));
852        memset(s->decoded1,  0, sizeof(s->decoded1));
853
854        /* Initialize the frame decoder */
855        init_frame_decoder(s);
856    }
857
858    if (!s->data) {
859        *data_size = 0;
860        return buf_size;
861    }
862
863    nblocks = s->samples;
864    blockstodecode = FFMIN(BLOCKS_PER_LOOP, nblocks);
865
866    s->error=0;
867
868    if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
869        ape_unpack_mono(s, blockstodecode);
870    else
871        ape_unpack_stereo(s, blockstodecode);
872
873    if(s->error || s->ptr > s->data_end){
874        s->samples=0;
875        av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
876        return -1;
877    }
878
879    for (i = 0; i < blockstodecode; i++) {
880        *samples++ = s->decoded0[i];
881        if(s->channels == 2)
882            *samples++ = s->decoded1[i];
883    }
884
885    s->samples -= blockstodecode;
886
887    *data_size = blockstodecode * 2 * s->channels;
888    bytes_used = s->samples ? s->ptr - s->last_ptr : buf_size;
889    s->last_ptr = s->ptr;
890    return bytes_used;
891}
892
893AVCodec ape_decoder = {
894    "ape",
895    CODEC_TYPE_AUDIO,
896    CODEC_ID_APE,
897    sizeof(APEContext),
898    ape_decode_init,
899    NULL,
900    ape_decode_close,
901    ape_decode_frame,
902    .long_name = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
903};
904