1#ifdef FREEBSD
2# include <machine/endian.h>
3#elif defined(LINUX)
4# include <endian.h>
5#elif defined(SOLARIS)
6# include <sys/isa_defs.h>
7#endif
8#if __BYTE_ORDER == __BIG_ENDIAN
9#define HIGHFIRST 1
10#endif
11
12/*
13 * This code implements the MD5 message-digest algorithm.
14 * The algorithm is due to Ron Rivest.  This code was
15 * written by Colin Plumb in 1993, no copyright is claimed.
16 * This code is in the public domain; do with it what you wish.
17 *
18 * Equivalent code is available from RSA Data Security, Inc.
19 * This code has been tested against that, and is equivalent,
20 * except that you don't need to include two pages of legalese
21 * with every copy.
22 *
23 * To compute the message digest of a chunk of bytes, declare an
24 * MD5Context structure, pass it to MD5Init, call MD5Update as
25 * needed on buffers full of bytes, and then call MD5Final, which
26 * will fill a supplied 16-byte array with the digest.
27 */
28#include <string.h>             /* for memcpy() */
29#include "md5.h"
30
31#ifndef HIGHFIRST
32#define byteReverse(buf, len)   /* Nothing */
33#else
34void byteReverse (unsigned char *buf, unsigned longs);
35
36#ifndef ASM_MD5
37/*
38 * Note: this code is harmless on little-endian machines.
39 */
40void byteReverse (unsigned char *buf, unsigned longs)
41{
42    uint32 t;
43    do
44    {
45        t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
46            ((unsigned) buf[1] << 8 | buf[0]);
47        *(uint32 *) buf = t;
48        buf += 4;
49    }
50    while (--longs);
51}
52#endif
53#endif
54
55/*
56 * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
57 * initialization constants.
58 */
59void MD5Init (struct MD5Context *ctx)
60{
61    ctx->buf[0] = 0x67452301;
62    ctx->buf[1] = 0xefcdab89;
63    ctx->buf[2] = 0x98badcfe;
64    ctx->buf[3] = 0x10325476;
65
66    ctx->bits[0] = 0;
67    ctx->bits[1] = 0;
68}
69
70/*
71 * Update context to reflect the concatenation of another buffer full
72 * of bytes.
73 */
74void MD5Update (struct MD5Context *ctx, unsigned char const *buf,
75                unsigned len)
76{
77    uint32 t;
78
79    /* Update bitcount */
80
81    t = ctx->bits[0];
82    if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
83        ctx->bits[1]++;         /* Carry from low to high */
84    ctx->bits[1] += len >> 29;
85
86    t = (t >> 3) & 0x3f;        /* Bytes already in shsInfo->data */
87
88    /* Handle any leading odd-sized chunks */
89
90    if (t)
91    {
92        unsigned char *p = (unsigned char *) ctx->in + t;
93
94        t = 64 - t;
95        if (len < t)
96        {
97            memcpy (p, buf, len);
98            return;
99        }
100        memcpy (p, buf, t);
101        byteReverse (ctx->in, 16);
102        MD5Transform (ctx->buf, (uint32 *) ctx->in);
103        buf += t;
104        len -= t;
105    }
106    /* Process data in 64-byte chunks */
107
108    while (len >= 64)
109    {
110        memcpy (ctx->in, buf, 64);
111        byteReverse (ctx->in, 16);
112        MD5Transform (ctx->buf, (uint32 *) ctx->in);
113        buf += 64;
114        len -= 64;
115    }
116
117    /* Handle any remaining bytes of data. */
118
119    memcpy (ctx->in, buf, len);
120}
121
122/*
123 * Final wrapup - pad to 64-byte boundary with the bit pattern
124 * 1 0* (64-bit count of bits processed, MSB-first)
125 */
126void MD5Final (unsigned char digest[16], struct MD5Context *ctx)
127{
128    unsigned count;
129    unsigned char *p;
130
131    /* Compute number of bytes mod 64 */
132    count = (ctx->bits[0] >> 3) & 0x3F;
133
134    /* Set the first char of padding to 0x80.  This is safe since there is
135       always at least one byte free */
136    p = ctx->in + count;
137    *p++ = 0x80;
138
139    /* Bytes of padding needed to make 64 bytes */
140    count = 64 - 1 - count;
141
142    /* Pad out to 56 mod 64 */
143    if (count < 8)
144    {
145        /* Two lots of padding:  Pad the first block to 64 bytes */
146        memset (p, 0, count);
147        byteReverse (ctx->in, 16);
148        MD5Transform (ctx->buf, (uint32 *) ctx->in);
149
150        /* Now fill the next block with 56 bytes */
151        memset (ctx->in, 0, 56);
152    }
153    else
154    {
155        /* Pad block to 56 bytes */
156        memset (p, 0, count - 8);
157    }
158    byteReverse (ctx->in, 14);
159
160    /* Append length in bits and transform */
161    ((uint32 *) ctx->in)[14] = ctx->bits[0];
162    ((uint32 *) ctx->in)[15] = ctx->bits[1];
163
164    MD5Transform (ctx->buf, (uint32 *) ctx->in);
165    byteReverse ((unsigned char *) ctx->buf, 4);
166    memcpy (digest, ctx->buf, 16);
167    memset (ctx, 0, sizeof (ctx));      /* In case it's sensitive */
168}
169
170#ifndef ASM_MD5
171
172/* The four core functions - F1 is optimized somewhat */
173
174/* #define F1(x, y, z) (x & y | ~x & z) */
175#define F1(x, y, z) (z ^ (x & (y ^ z)))
176#define F2(x, y, z) F1(z, x, y)
177#define F3(x, y, z) (x ^ y ^ z)
178#define F4(x, y, z) (y ^ (x | ~z))
179
180/* This is the central step in the MD5 algorithm. */
181#define MD5STEP(f, w, x, y, z, data, s) \
182	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
183
184/*
185 * The core of the MD5 algorithm, this alters an existing MD5 hash to
186 * reflect the addition of 16 longwords of new data.  MD5Update blocks
187 * the data and converts bytes into longwords for this routine.
188 */
189void MD5Transform (uint32 buf[4], uint32 const in[16])
190{
191    register uint32 a, b, c, d;
192
193    a = buf[0];
194    b = buf[1];
195    c = buf[2];
196    d = buf[3];
197
198    MD5STEP (F1, a, b, c, d, in[0] + 0xd76aa478, 7);
199    MD5STEP (F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
200    MD5STEP (F1, c, d, a, b, in[2] + 0x242070db, 17);
201    MD5STEP (F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
202    MD5STEP (F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
203    MD5STEP (F1, d, a, b, c, in[5] + 0x4787c62a, 12);
204    MD5STEP (F1, c, d, a, b, in[6] + 0xa8304613, 17);
205    MD5STEP (F1, b, c, d, a, in[7] + 0xfd469501, 22);
206    MD5STEP (F1, a, b, c, d, in[8] + 0x698098d8, 7);
207    MD5STEP (F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
208    MD5STEP (F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
209    MD5STEP (F1, b, c, d, a, in[11] + 0x895cd7be, 22);
210    MD5STEP (F1, a, b, c, d, in[12] + 0x6b901122, 7);
211    MD5STEP (F1, d, a, b, c, in[13] + 0xfd987193, 12);
212    MD5STEP (F1, c, d, a, b, in[14] + 0xa679438e, 17);
213    MD5STEP (F1, b, c, d, a, in[15] + 0x49b40821, 22);
214
215    MD5STEP (F2, a, b, c, d, in[1] + 0xf61e2562, 5);
216    MD5STEP (F2, d, a, b, c, in[6] + 0xc040b340, 9);
217    MD5STEP (F2, c, d, a, b, in[11] + 0x265e5a51, 14);
218    MD5STEP (F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
219    MD5STEP (F2, a, b, c, d, in[5] + 0xd62f105d, 5);
220    MD5STEP (F2, d, a, b, c, in[10] + 0x02441453, 9);
221    MD5STEP (F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
222    MD5STEP (F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
223    MD5STEP (F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
224    MD5STEP (F2, d, a, b, c, in[14] + 0xc33707d6, 9);
225    MD5STEP (F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
226    MD5STEP (F2, b, c, d, a, in[8] + 0x455a14ed, 20);
227    MD5STEP (F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
228    MD5STEP (F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
229    MD5STEP (F2, c, d, a, b, in[7] + 0x676f02d9, 14);
230    MD5STEP (F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
231
232    MD5STEP (F3, a, b, c, d, in[5] + 0xfffa3942, 4);
233    MD5STEP (F3, d, a, b, c, in[8] + 0x8771f681, 11);
234    MD5STEP (F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
235    MD5STEP (F3, b, c, d, a, in[14] + 0xfde5380c, 23);
236    MD5STEP (F3, a, b, c, d, in[1] + 0xa4beea44, 4);
237    MD5STEP (F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
238    MD5STEP (F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
239    MD5STEP (F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
240    MD5STEP (F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
241    MD5STEP (F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
242    MD5STEP (F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
243    MD5STEP (F3, b, c, d, a, in[6] + 0x04881d05, 23);
244    MD5STEP (F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
245    MD5STEP (F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
246    MD5STEP (F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
247    MD5STEP (F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
248
249    MD5STEP (F4, a, b, c, d, in[0] + 0xf4292244, 6);
250    MD5STEP (F4, d, a, b, c, in[7] + 0x432aff97, 10);
251    MD5STEP (F4, c, d, a, b, in[14] + 0xab9423a7, 15);
252    MD5STEP (F4, b, c, d, a, in[5] + 0xfc93a039, 21);
253    MD5STEP (F4, a, b, c, d, in[12] + 0x655b59c3, 6);
254    MD5STEP (F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
255    MD5STEP (F4, c, d, a, b, in[10] + 0xffeff47d, 15);
256    MD5STEP (F4, b, c, d, a, in[1] + 0x85845dd1, 21);
257    MD5STEP (F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
258    MD5STEP (F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
259    MD5STEP (F4, c, d, a, b, in[6] + 0xa3014314, 15);
260    MD5STEP (F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
261    MD5STEP (F4, a, b, c, d, in[4] + 0xf7537e82, 6);
262    MD5STEP (F4, d, a, b, c, in[11] + 0xbd3af235, 10);
263    MD5STEP (F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
264    MD5STEP (F4, b, c, d, a, in[9] + 0xeb86d391, 21);
265
266    buf[0] += a;
267    buf[1] += b;
268    buf[2] += c;
269    buf[3] += d;
270}
271
272#endif
273