1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 *   PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
18/*
19 * Segment table
20 */
21
22#define STE_ESID_V	0x80
23#define STE_ESID_KS	0x20
24#define STE_ESID_KP	0x10
25#define STE_ESID_N	0x08
26
27#define STE_VSID_SHIFT	12
28
29/* Location of cpu0's segment table */
30#define STAB0_PAGE	0x6
31#define STAB0_OFFSET	(STAB0_PAGE << 12)
32#define STAB0_PHYS_ADDR	(STAB0_OFFSET + PHYSICAL_START)
33
34#ifndef __ASSEMBLY__
35extern char initial_stab[];
36#endif /* ! __ASSEMBLY */
37
38/*
39 * SLB
40 */
41
42#define SLB_NUM_BOLTED		3
43#define SLB_CACHE_ENTRIES	8
44
45/* Bits in the SLB ESID word */
46#define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
47
48/* Bits in the SLB VSID word */
49#define SLB_VSID_SHIFT		12
50#define SLB_VSID_B		ASM_CONST(0xc000000000000000)
51#define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
52#define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
53#define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
54#define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
55#define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
56#define SLB_VSID_L		ASM_CONST(0x0000000000000100)
57#define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
58#define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
59#define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
60#define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
61#define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
62#define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
63#define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
64
65#define SLB_VSID_KERNEL		(SLB_VSID_KP)
66#define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
67
68#define SLBIE_C			(0x08000000)
69
70/*
71 * Hash table
72 */
73
74#define HPTES_PER_GROUP 8
75
76#define HPTE_V_SSIZE_SHIFT	62
77#define HPTE_V_AVPN_SHIFT	7
78#define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
79#define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
80#define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & HPTE_V_AVPN))
81#define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
82#define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
83#define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
84#define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
85#define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
86
87#define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
88#define HPTE_R_TS		ASM_CONST(0x4000000000000000)
89#define HPTE_R_RPN_SHIFT	12
90#define HPTE_R_RPN		ASM_CONST(0x3ffffffffffff000)
91#define HPTE_R_FLAGS		ASM_CONST(0x00000000000003ff)
92#define HPTE_R_PP		ASM_CONST(0x0000000000000003)
93#define HPTE_R_N		ASM_CONST(0x0000000000000004)
94#define HPTE_R_C		ASM_CONST(0x0000000000000080)
95#define HPTE_R_R		ASM_CONST(0x0000000000000100)
96
97/* Values for PP (assumes Ks=0, Kp=1) */
98/* pp0 will always be 0 for linux     */
99#define PP_RWXX	0	/* Supervisor read/write, User none */
100#define PP_RWRX 1	/* Supervisor read/write, User read */
101#define PP_RWRW 2	/* Supervisor read/write, User read/write */
102#define PP_RXRX 3	/* Supervisor read,       User read */
103
104#ifndef __ASSEMBLY__
105
106typedef struct {
107	unsigned long v;
108	unsigned long r;
109} hpte_t;
110
111extern hpte_t *htab_address;
112extern unsigned long htab_size_bytes;
113extern unsigned long htab_hash_mask;
114
115/*
116 * Page size definition
117 *
118 *    shift : is the "PAGE_SHIFT" value for that page size
119 *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
120 *            directly to a slbmte "vsid" value
121 *    penc  : is the HPTE encoding mask for the "LP" field:
122 *
123 */
124struct mmu_psize_def
125{
126	unsigned int	shift;	/* number of bits */
127	unsigned int	penc;	/* HPTE encoding */
128	unsigned int	tlbiel;	/* tlbiel supported for that page size */
129	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
130	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
131};
132
133#endif /* __ASSEMBLY__ */
134
135/*
136 * The kernel use the constants below to index in the page sizes array.
137 * The use of fixed constants for this purpose is better for performances
138 * of the low level hash refill handlers.
139 *
140 * A non supported page size has a "shift" field set to 0
141 *
142 * Any new page size being implemented can get a new entry in here. Whether
143 * the kernel will use it or not is a different matter though. The actual page
144 * size used by hugetlbfs is not defined here and may be made variable
145 */
146
147#define MMU_PAGE_4K		0	/* 4K */
148#define MMU_PAGE_64K		1	/* 64K */
149#define MMU_PAGE_64K_AP		2	/* 64K Admixed (in a 4K segment) */
150#define MMU_PAGE_1M		3	/* 1M */
151#define MMU_PAGE_16M		4	/* 16M */
152#define MMU_PAGE_16G		5	/* 16G */
153#define MMU_PAGE_COUNT		6
154
155/*
156 * Segment sizes.
157 * These are the values used by hardware in the B field of
158 * SLB entries and the first dword of MMU hashtable entries.
159 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
160 */
161#define MMU_SEGSIZE_256M	0
162#define MMU_SEGSIZE_1T		1
163
164#ifndef __ASSEMBLY__
165
166/*
167 * The current system page sizes
168 */
169extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
170extern int mmu_linear_psize;
171extern int mmu_virtual_psize;
172extern int mmu_vmalloc_psize;
173extern int mmu_io_psize;
174
175/*
176 * If the processor supports 64k normal pages but not 64k cache
177 * inhibited pages, we have to be prepared to switch processes
178 * to use 4k pages when they create cache-inhibited mappings.
179 * If this is the case, mmu_ci_restrictions will be set to 1.
180 */
181extern int mmu_ci_restrictions;
182
183#ifdef CONFIG_HUGETLB_PAGE
184/*
185 * The page size index of the huge pages for use by hugetlbfs
186 */
187extern int mmu_huge_psize;
188
189#endif /* CONFIG_HUGETLB_PAGE */
190
191/*
192 * This function sets the AVPN and L fields of the HPTE  appropriately
193 * for the page size
194 */
195static inline unsigned long hpte_encode_v(unsigned long va, int psize)
196{
197	unsigned long v =
198	v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
199	v <<= HPTE_V_AVPN_SHIFT;
200	if (psize != MMU_PAGE_4K)
201		v |= HPTE_V_LARGE;
202	return v;
203}
204
205/*
206 * This function sets the ARPN, and LP fields of the HPTE appropriately
207 * for the page size. We assume the pa is already "clean" that is properly
208 * aligned for the requested page size
209 */
210static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
211{
212	unsigned long r;
213
214	/* A 4K page needs no special encoding */
215	if (psize == MMU_PAGE_4K)
216		return pa & HPTE_R_RPN;
217	else {
218		unsigned int penc = mmu_psize_defs[psize].penc;
219		unsigned int shift = mmu_psize_defs[psize].shift;
220		return (pa & ~((1ul << shift) - 1)) | (penc << 12);
221	}
222	return r;
223}
224
225/*
226 * This hashes a virtual address for a 256Mb segment only for now
227 */
228
229static inline unsigned long hpt_hash(unsigned long va, unsigned int shift)
230{
231	return ((va >> 28) & 0x7fffffffffUL) ^ ((va & 0x0fffffffUL) >> shift);
232}
233
234extern int __hash_page_4K(unsigned long ea, unsigned long access,
235			  unsigned long vsid, pte_t *ptep, unsigned long trap,
236			  unsigned int local);
237extern int __hash_page_64K(unsigned long ea, unsigned long access,
238			   unsigned long vsid, pte_t *ptep, unsigned long trap,
239			   unsigned int local);
240struct mm_struct;
241extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
242extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
243			  unsigned long ea, unsigned long vsid, int local,
244			  unsigned long trap);
245
246extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
247			     unsigned long pstart, unsigned long mode,
248			     int psize);
249
250extern void htab_initialize(void);
251extern void htab_initialize_secondary(void);
252extern void hpte_init_native(void);
253extern void hpte_init_lpar(void);
254extern void hpte_init_iSeries(void);
255extern void hpte_init_beat(void);
256
257extern void stabs_alloc(void);
258extern void slb_initialize(void);
259extern void slb_flush_and_rebolt(void);
260extern void stab_initialize(unsigned long stab);
261
262#endif /* __ASSEMBLY__ */
263
264/*
265 * VSID allocation
266 *
267 * We first generate a 36-bit "proto-VSID".  For kernel addresses this
268 * is equal to the ESID, for user addresses it is:
269 *	(context << 15) | (esid & 0x7fff)
270 *
271 * The two forms are distinguishable because the top bit is 0 for user
272 * addresses, whereas the top two bits are 1 for kernel addresses.
273 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
274 * now.
275 *
276 * The proto-VSIDs are then scrambled into real VSIDs with the
277 * multiplicative hash:
278 *
279 *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
280 *	where	VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
281 *		VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
282 *
283 * This scramble is only well defined for proto-VSIDs below
284 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
285 * reserved.  VSID_MULTIPLIER is prime, so in particular it is
286 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
287 * Because the modulus is 2^n-1 we can compute it efficiently without
288 * a divide or extra multiply (see below).
289 *
290 * This scheme has several advantages over older methods:
291 *
292 * 	- We have VSIDs allocated for every kernel address
293 * (i.e. everything above 0xC000000000000000), except the very top
294 * segment, which simplifies several things.
295 *
296 * 	- We allow for 15 significant bits of ESID and 20 bits of
297 * context for user addresses.  i.e. 8T (43 bits) of address space for
298 * up to 1M contexts (although the page table structure and context
299 * allocation will need changes to take advantage of this).
300 *
301 * 	- The scramble function gives robust scattering in the hash
302 * table (at least based on some initial results).  The previous
303 * method was more susceptible to pathological cases giving excessive
304 * hash collisions.
305 */
306/*
307 * WARNING - If you change these you must make sure the asm
308 * implementations in slb_allocate (slb_low.S), do_stab_bolted
309 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
310 *
311 * You'll also need to change the precomputed VSID values in head.S
312 * which are used by the iSeries firmware.
313 */
314
315#define VSID_MULTIPLIER	ASM_CONST(200730139)	/* 28-bit prime */
316#define VSID_BITS	36
317#define VSID_MODULUS	((1UL<<VSID_BITS)-1)
318
319#define CONTEXT_BITS	19
320#define USER_ESID_BITS	16
321
322#define USER_VSID_RANGE	(1UL << (USER_ESID_BITS + SID_SHIFT))
323
324/*
325 * This macro generates asm code to compute the VSID scramble
326 * function.  Used in slb_allocate() and do_stab_bolted.  The function
327 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
328 *
329 *	rt = register continaing the proto-VSID and into which the
330 *		VSID will be stored
331 *	rx = scratch register (clobbered)
332 *
333 * 	- rt and rx must be different registers
334 * 	- The answer will end up in the low 36 bits of rt.  The higher
335 * 	  bits may contain other garbage, so you may need to mask the
336 * 	  result.
337 */
338#define ASM_VSID_SCRAMBLE(rt, rx)	\
339	lis	rx,VSID_MULTIPLIER@h;					\
340	ori	rx,rx,VSID_MULTIPLIER@l;				\
341	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
342									\
343	srdi	rx,rt,VSID_BITS;					\
344	clrldi	rt,rt,(64-VSID_BITS);					\
345	add	rt,rt,rx;		/* add high and low bits */	\
346	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
347	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
348	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
349	 * the bit clear, r3 already has the answer we want, if it	\
350	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
351	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
352	addi	rx,rt,1;						\
353	srdi	rx,rx,VSID_BITS;	/* extract 2^36 bit */		\
354	add	rt,rt,rx
355
356
357#ifndef __ASSEMBLY__
358
359typedef unsigned long mm_context_id_t;
360
361typedef struct {
362	mm_context_id_t id;
363	u16 user_psize;		/* page size index */
364
365#ifdef CONFIG_PPC_MM_SLICES
366	u64 low_slices_psize;	/* SLB page size encodings */
367	u64 high_slices_psize;  /* 4 bits per slice for now */
368#else
369	u16 sllp;		/* SLB page size encoding */
370#endif
371	unsigned long vdso_base;
372} mm_context_t;
373
374
375static inline unsigned long vsid_scramble(unsigned long protovsid)
376{
377	unsigned long x;
378
379	x = protovsid * VSID_MULTIPLIER;
380	x = (x >> VSID_BITS) + (x & VSID_MODULUS);
381	return (x + ((x+1) >> VSID_BITS)) & VSID_MODULUS;
382}
383
384/* This is only valid for addresses >= KERNELBASE */
385static inline unsigned long get_kernel_vsid(unsigned long ea)
386{
387	return vsid_scramble(ea >> SID_SHIFT);
388}
389
390/* This is only valid for user addresses (which are below 2^41) */
391static inline unsigned long get_vsid(unsigned long context, unsigned long ea)
392{
393	return vsid_scramble((context << USER_ESID_BITS)
394			     | (ea >> SID_SHIFT));
395}
396
397#define VSID_SCRAMBLE(pvsid)	(((pvsid) * VSID_MULTIPLIER) % VSID_MODULUS)
398#define KERNEL_VSID(ea)		VSID_SCRAMBLE(GET_ESID(ea))
399
400/* Physical address used by some IO functions */
401typedef unsigned long phys_addr_t;
402
403#endif /* __ASSEMBLY__ */
404
405#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
406