1#ifdef __KERNEL__
2#ifndef _ASM_POWERPC_IRQ_H
3#define _ASM_POWERPC_IRQ_H
4
5/*
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12#include <linux/threads.h>
13#include <linux/list.h>
14#include <linux/radix-tree.h>
15
16#include <asm/types.h>
17#include <asm/atomic.h>
18
19
20#define get_irq_desc(irq) (&irq_desc[(irq)])
21
22/* Define a way to iterate across irqs. */
23#define for_each_irq(i) \
24	for ((i) = 0; (i) < NR_IRQS; ++(i))
25
26extern atomic_t ppc_n_lost_interrupts;
27
28#ifdef CONFIG_PPC_MERGE
29
30/* This number is used when no interrupt has been assigned */
31#define NO_IRQ			(0)
32
33/* This is a special irq number to return from get_irq() to tell that
34 * no interrupt happened _and_ ignore it (don't count it as bad). Some
35 * platforms like iSeries rely on that.
36 */
37#define NO_IRQ_IGNORE		((unsigned int)-1)
38
39/* Total number of virq in the platform (make it a CONFIG_* option ? */
40#define NR_IRQS		512
41
42/* Number of irqs reserved for the legacy controller */
43#define NUM_ISA_INTERRUPTS	16
44
45/* This type is the placeholder for a hardware interrupt number. It has to
46 * be big enough to enclose whatever representation is used by a given
47 * platform.
48 */
49typedef unsigned long irq_hw_number_t;
50
51/* Interrupt controller "host" data structure. This could be defined as a
52 * irq domain controller. That is, it handles the mapping between hardware
53 * and virtual interrupt numbers for a given interrupt domain. The host
54 * structure is generally created by the PIC code for a given PIC instance
55 * (though a host can cover more than one PIC if they have a flat number
56 * model). It's the host callbacks that are responsible for setting the
57 * irq_chip on a given irq_desc after it's been mapped.
58 *
59 * The host code and data structures are fairly agnostic to the fact that
60 * we use an open firmware device-tree. We do have references to struct
61 * device_node in two places: in irq_find_host() to find the host matching
62 * a given interrupt controller node, and of course as an argument to its
63 * counterpart host->ops->match() callback. However, those are treated as
64 * generic pointers by the core and the fact that it's actually a device-node
65 * pointer is purely a convention between callers and implementation. This
66 * code could thus be used on other architectures by replacing those two
67 * by some sort of arch-specific void * "token" used to identify interrupt
68 * controllers.
69 */
70struct irq_host;
71struct radix_tree_root;
72
73/* Functions below are provided by the host and called whenever a new mapping
74 * is created or an old mapping is disposed. The host can then proceed to
75 * whatever internal data structures management is required. It also needs
76 * to setup the irq_desc when returning from map().
77 */
78struct irq_host_ops {
79	/* Match an interrupt controller device node to a host, returns
80	 * 1 on a match
81	 */
82	int (*match)(struct irq_host *h, struct device_node *node);
83
84	/* Create or update a mapping between a virtual irq number and a hw
85	 * irq number. This is called only once for a given mapping.
86	 */
87	int (*map)(struct irq_host *h, unsigned int virq, irq_hw_number_t hw);
88
89	/* Dispose of such a mapping */
90	void (*unmap)(struct irq_host *h, unsigned int virq);
91
92	/* Update of such a mapping  */
93	void (*remap)(struct irq_host *h, unsigned int virq, irq_hw_number_t hw);
94
95	/* Translate device-tree interrupt specifier from raw format coming
96	 * from the firmware to a irq_hw_number_t (interrupt line number) and
97	 * type (sense) that can be passed to set_irq_type(). In the absence
98	 * of this callback, irq_create_of_mapping() and irq_of_parse_and_map()
99	 * will return the hw number in the first cell and IRQ_TYPE_NONE for
100	 * the type (which amount to keeping whatever default value the
101	 * interrupt controller has for that line)
102	 */
103	int (*xlate)(struct irq_host *h, struct device_node *ctrler,
104		     u32 *intspec, unsigned int intsize,
105		     irq_hw_number_t *out_hwirq, unsigned int *out_type);
106};
107
108struct irq_host {
109	struct list_head	link;
110
111	/* type of reverse mapping technique */
112	unsigned int		revmap_type;
113#define IRQ_HOST_MAP_LEGACY     0 /* legacy 8259, gets irqs 1..15 */
114#define IRQ_HOST_MAP_NOMAP	1 /* no fast reverse mapping */
115#define IRQ_HOST_MAP_LINEAR	2 /* linear map of interrupts */
116#define IRQ_HOST_MAP_TREE	3 /* radix tree */
117	union {
118		struct {
119			unsigned int size;
120			unsigned int *revmap;
121		} linear;
122		struct radix_tree_root tree;
123	} revmap_data;
124	struct irq_host_ops	*ops;
125	void			*host_data;
126	irq_hw_number_t		inval_irq;
127};
128
129/* The main irq map itself is an array of NR_IRQ entries containing the
130 * associate host and irq number. An entry with a host of NULL is free.
131 * An entry can be allocated if it's free, the allocator always then sets
132 * hwirq first to the host's invalid irq number and then fills ops.
133 */
134struct irq_map_entry {
135	irq_hw_number_t	hwirq;
136	struct irq_host	*host;
137};
138
139extern struct irq_map_entry irq_map[NR_IRQS];
140
141extern irq_hw_number_t virq_to_hw(unsigned int virq);
142
143/**
144 * irq_alloc_host - Allocate a new irq_host data structure
145 * @node: device-tree node of the interrupt controller
146 * @revmap_type: type of reverse mapping to use
147 * @revmap_arg: for IRQ_HOST_MAP_LINEAR linear only: size of the map
148 * @ops: map/unmap host callbacks
149 * @inval_irq: provide a hw number in that host space that is always invalid
150 *
151 * Allocates and initialize and irq_host structure. Note that in the case of
152 * IRQ_HOST_MAP_LEGACY, the map() callback will be called before this returns
153 * for all legacy interrupts except 0 (which is always the invalid irq for
154 * a legacy controller). For a IRQ_HOST_MAP_LINEAR, the map is allocated by
155 * this call as well. For a IRQ_HOST_MAP_TREE, the radix tree will be allocated
156 * later during boot automatically (the reverse mapping will use the slow path
157 * until that happens).
158 */
159extern struct irq_host *irq_alloc_host(unsigned int revmap_type,
160				       unsigned int revmap_arg,
161				       struct irq_host_ops *ops,
162				       irq_hw_number_t inval_irq);
163
164
165/**
166 * irq_find_host - Locates a host for a given device node
167 * @node: device-tree node of the interrupt controller
168 */
169extern struct irq_host *irq_find_host(struct device_node *node);
170
171
172/**
173 * irq_set_default_host - Set a "default" host
174 * @host: default host pointer
175 *
176 * For convenience, it's possible to set a "default" host that will be used
177 * whenever NULL is passed to irq_create_mapping(). It makes life easier for
178 * platforms that want to manipulate a few hard coded interrupt numbers that
179 * aren't properly represented in the device-tree.
180 */
181extern void irq_set_default_host(struct irq_host *host);
182
183
184/**
185 * irq_set_virq_count - Set the maximum number of virt irqs
186 * @count: number of linux virtual irqs, capped with NR_IRQS
187 *
188 * This is mainly for use by platforms like iSeries who want to program
189 * the virtual irq number in the controller to avoid the reverse mapping
190 */
191extern void irq_set_virq_count(unsigned int count);
192
193
194/**
195 * irq_create_mapping - Map a hardware interrupt into linux virq space
196 * @host: host owning this hardware interrupt or NULL for default host
197 * @hwirq: hardware irq number in that host space
198 *
199 * Only one mapping per hardware interrupt is permitted. Returns a linux
200 * virq number.
201 * If the sense/trigger is to be specified, set_irq_type() should be called
202 * on the number returned from that call.
203 */
204extern unsigned int irq_create_mapping(struct irq_host *host,
205				       irq_hw_number_t hwirq);
206
207
208/**
209 * irq_dispose_mapping - Unmap an interrupt
210 * @virq: linux virq number of the interrupt to unmap
211 */
212extern void irq_dispose_mapping(unsigned int virq);
213
214/**
215 * irq_find_mapping - Find a linux virq from an hw irq number.
216 * @host: host owning this hardware interrupt
217 * @hwirq: hardware irq number in that host space
218 *
219 * This is a slow path, for use by generic code. It's expected that an
220 * irq controller implementation directly calls the appropriate low level
221 * mapping function.
222 */
223extern unsigned int irq_find_mapping(struct irq_host *host,
224				     irq_hw_number_t hwirq);
225
226
227/**
228 * irq_radix_revmap - Find a linux virq from a hw irq number.
229 * @host: host owning this hardware interrupt
230 * @hwirq: hardware irq number in that host space
231 *
232 * This is a fast path, for use by irq controller code that uses radix tree
233 * revmaps
234 */
235extern unsigned int irq_radix_revmap(struct irq_host *host,
236				     irq_hw_number_t hwirq);
237
238/**
239 * irq_linear_revmap - Find a linux virq from a hw irq number.
240 * @host: host owning this hardware interrupt
241 * @hwirq: hardware irq number in that host space
242 *
243 * This is a fast path, for use by irq controller code that uses linear
244 * revmaps. It does fallback to the slow path if the revmap doesn't exist
245 * yet and will create the revmap entry with appropriate locking
246 */
247
248extern unsigned int irq_linear_revmap(struct irq_host *host,
249				      irq_hw_number_t hwirq);
250
251
252
253/**
254 * irq_alloc_virt - Allocate virtual irq numbers
255 * @host: host owning these new virtual irqs
256 * @count: number of consecutive numbers to allocate
257 * @hint: pass a hint number, the allocator will try to use a 1:1 mapping
258 *
259 * This is a low level function that is used internally by irq_create_mapping()
260 * and that can be used by some irq controllers implementations for things
261 * like allocating ranges of numbers for MSIs. The revmaps are left untouched.
262 */
263extern unsigned int irq_alloc_virt(struct irq_host *host,
264				   unsigned int count,
265				   unsigned int hint);
266
267/**
268 * irq_free_virt - Free virtual irq numbers
269 * @virq: virtual irq number of the first interrupt to free
270 * @count: number of interrupts to free
271 *
272 * This function is the opposite of irq_alloc_virt. It will not clear reverse
273 * maps, this should be done previously by unmap'ing the interrupt. In fact,
274 * all interrupts covered by the range being freed should have been unmapped
275 * prior to calling this.
276 */
277extern void irq_free_virt(unsigned int virq, unsigned int count);
278
279
280/* -- OF helpers -- */
281
282/* irq_create_of_mapping - Map a hardware interrupt into linux virq space
283 * @controller: Device node of the interrupt controller
284 * @inspec: Interrupt specifier from the device-tree
285 * @intsize: Size of the interrupt specifier from the device-tree
286 *
287 * This function is identical to irq_create_mapping except that it takes
288 * as input informations straight from the device-tree (typically the results
289 * of the of_irq_map_*() functions.
290 */
291extern unsigned int irq_create_of_mapping(struct device_node *controller,
292					  u32 *intspec, unsigned int intsize);
293
294
295/* irq_of_parse_and_map - Parse nad Map an interrupt into linux virq space
296 * @device: Device node of the device whose interrupt is to be mapped
297 * @index: Index of the interrupt to map
298 *
299 * This function is a wrapper that chains of_irq_map_one() and
300 * irq_create_of_mapping() to make things easier to callers
301 */
302extern unsigned int irq_of_parse_and_map(struct device_node *dev, int index);
303
304/* -- End OF helpers -- */
305
306/**
307 * irq_early_init - Init irq remapping subsystem
308 */
309extern void irq_early_init(void);
310
311static __inline__ int irq_canonicalize(int irq)
312{
313	return irq;
314}
315
316
317#else /* CONFIG_PPC_MERGE */
318
319/* This number is used when no interrupt has been assigned */
320#define NO_IRQ			(-1)
321#define NO_IRQ_IGNORE		(-2)
322
323
324/*
325 * These constants are used for passing information about interrupt
326 * signal polarity and level/edge sensing to the low-level PIC chip
327 * drivers.
328 */
329#define IRQ_SENSE_MASK		0x1
330#define IRQ_SENSE_LEVEL		0x1	/* interrupt on active level */
331#define IRQ_SENSE_EDGE		0x0	/* interrupt triggered by edge */
332
333#define IRQ_POLARITY_MASK	0x2
334#define IRQ_POLARITY_POSITIVE	0x2	/* high level or low->high edge */
335#define IRQ_POLARITY_NEGATIVE	0x0	/* low level or high->low edge */
336
337
338#if defined(CONFIG_40x)
339#include <asm/ibm4xx.h>
340
341#ifndef NR_BOARD_IRQS
342#define NR_BOARD_IRQS 0
343#endif
344
345#ifndef UIC_WIDTH     /* Number of interrupts per device */
346#define UIC_WIDTH 32
347#endif
348
349#ifndef NR_UICS     /* number  of UIC devices */
350#define NR_UICS 1
351#endif
352
353#if defined(CONFIG_403)
354/*
355 * The PowerPC 403 cores' Asynchronous Interrupt Controller (AIC) has
356 * 32 possible interrupts, a majority of which are not implemented on
357 * all cores. There are six configurable, external interrupt pins and
358 * there are eight internal interrupts for the on-chip serial port
359 * (SPU), DMA controller, and JTAG controller.
360 *
361 */
362
363#define	NR_AIC_IRQS 32
364#define	NR_IRQS	 (NR_AIC_IRQS + NR_BOARD_IRQS)
365
366#elif !defined(CONFIG_403)
367
368/*
369 *  The PowerPC 405 cores' Universal Interrupt Controller (UIC) has 32
370 * possible interrupts as well. There are seven, configurable external
371 * interrupt pins and there are 17 internal interrupts for the on-chip
372 * serial port, DMA controller, on-chip Ethernet controller, PCI, etc.
373 *
374 */
375
376
377#define NR_UIC_IRQS UIC_WIDTH
378#define NR_IRQS		((NR_UIC_IRQS * NR_UICS) + NR_BOARD_IRQS)
379#endif
380
381#elif defined(CONFIG_44x)
382#include <asm/ibm44x.h>
383
384#define	NR_UIC_IRQS	32
385#define	NR_IRQS		((NR_UIC_IRQS * NR_UICS) + NR_BOARD_IRQS)
386
387#elif defined(CONFIG_8xx)
388
389/* Now include the board configuration specific associations.
390*/
391#include <asm/mpc8xx.h>
392
393/* The MPC8xx cores have 16 possible interrupts.  There are eight
394 * possible level sensitive interrupts assigned and generated internally
395 * from such devices as CPM, PCMCIA, RTC, PIT, TimeBase and Decrementer.
396 * There are eight external interrupts (IRQs) that can be configured
397 * as either level or edge sensitive.
398 *
399 * On some implementations, there is also the possibility of an 8259
400 * through the PCI and PCI-ISA bridges.
401 *
402 * We are "flattening" the interrupt vectors of the cascaded CPM
403 * and 8259 interrupt controllers so that we can uniquely identify
404 * any interrupt source with a single integer.
405 */
406#define NR_SIU_INTS	16
407#define NR_CPM_INTS	32
408#ifndef NR_8259_INTS
409#define NR_8259_INTS 0
410#endif
411
412#define SIU_IRQ_OFFSET		0
413#define CPM_IRQ_OFFSET		(SIU_IRQ_OFFSET + NR_SIU_INTS)
414#define I8259_IRQ_OFFSET	(CPM_IRQ_OFFSET + NR_CPM_INTS)
415
416#define NR_IRQS	(NR_SIU_INTS + NR_CPM_INTS + NR_8259_INTS)
417
418/* These values must be zero-based and map 1:1 with the SIU configuration.
419 * They are used throughout the 8xx I/O subsystem to generate
420 * interrupt masks, flags, and other control patterns.  This is why the
421 * current kernel assumption of the 8259 as the base controller is such
422 * a pain in the butt.
423 */
424#define	SIU_IRQ0	(0)	/* Highest priority */
425#define	SIU_LEVEL0	(1)
426#define	SIU_IRQ1	(2)
427#define	SIU_LEVEL1	(3)
428#define	SIU_IRQ2	(4)
429#define	SIU_LEVEL2	(5)
430#define	SIU_IRQ3	(6)
431#define	SIU_LEVEL3	(7)
432#define	SIU_IRQ4	(8)
433#define	SIU_LEVEL4	(9)
434#define	SIU_IRQ5	(10)
435#define	SIU_LEVEL5	(11)
436#define	SIU_IRQ6	(12)
437#define	SIU_LEVEL6	(13)
438#define	SIU_IRQ7	(14)
439#define	SIU_LEVEL7	(15)
440
441#define MPC8xx_INT_FEC1		SIU_LEVEL1
442#define MPC8xx_INT_FEC2		SIU_LEVEL3
443
444#define MPC8xx_INT_SCC1		(CPM_IRQ_OFFSET + CPMVEC_SCC1)
445#define MPC8xx_INT_SCC2		(CPM_IRQ_OFFSET + CPMVEC_SCC2)
446#define MPC8xx_INT_SCC3		(CPM_IRQ_OFFSET + CPMVEC_SCC3)
447#define MPC8xx_INT_SCC4		(CPM_IRQ_OFFSET + CPMVEC_SCC4)
448#define MPC8xx_INT_SMC1		(CPM_IRQ_OFFSET + CPMVEC_SMC1)
449#define MPC8xx_INT_SMC2		(CPM_IRQ_OFFSET + CPMVEC_SMC2)
450
451/* The internal interrupts we can configure as we see fit.
452 * My personal preference is CPM at level 2, which puts it above the
453 * MBX PCI/ISA/IDE interrupts.
454 */
455#ifndef PIT_INTERRUPT
456#define PIT_INTERRUPT		SIU_LEVEL0
457#endif
458#ifndef	CPM_INTERRUPT
459#define CPM_INTERRUPT		SIU_LEVEL2
460#endif
461#ifndef	PCMCIA_INTERRUPT
462#define PCMCIA_INTERRUPT	SIU_LEVEL6
463#endif
464#ifndef	DEC_INTERRUPT
465#define DEC_INTERRUPT		SIU_LEVEL7
466#endif
467
468/* Some internal interrupt registers use an 8-bit mask for the interrupt
469 * level instead of a number.
470 */
471#define	mk_int_int_mask(IL) (1 << (7 - (IL/2)))
472
473#elif defined(CONFIG_83xx)
474#include <asm/mpc83xx.h>
475
476#define	NR_IRQS	(NR_IPIC_INTS)
477
478#elif defined(CONFIG_85xx)
479/* Now include the board configuration specific associations.
480*/
481#include <asm/mpc85xx.h>
482
483/* The MPC8548 openpic has 48 internal interrupts and 12 external
484 * interrupts.
485 *
486 * We are "flattening" the interrupt vectors of the cascaded CPM
487 * so that we can uniquely identify any interrupt source with a
488 * single integer.
489 */
490#define NR_CPM_INTS	64
491#define NR_EPIC_INTS	60
492#ifndef NR_8259_INTS
493#define NR_8259_INTS	0
494#endif
495#define NUM_8259_INTERRUPTS NR_8259_INTS
496
497#ifndef CPM_IRQ_OFFSET
498#define CPM_IRQ_OFFSET	0
499#endif
500
501#define NR_IRQS	(NR_EPIC_INTS + NR_CPM_INTS + NR_8259_INTS)
502
503/* Internal IRQs on MPC85xx OpenPIC */
504
505#ifndef MPC85xx_OPENPIC_IRQ_OFFSET
506#ifdef CONFIG_CPM2
507#define MPC85xx_OPENPIC_IRQ_OFFSET	(CPM_IRQ_OFFSET + NR_CPM_INTS)
508#else
509#define MPC85xx_OPENPIC_IRQ_OFFSET	0
510#endif
511#endif
512
513/* Not all of these exist on all MPC85xx implementations */
514#define MPC85xx_IRQ_L2CACHE	( 0 + MPC85xx_OPENPIC_IRQ_OFFSET)
515#define MPC85xx_IRQ_ECM		( 1 + MPC85xx_OPENPIC_IRQ_OFFSET)
516#define MPC85xx_IRQ_DDR		( 2 + MPC85xx_OPENPIC_IRQ_OFFSET)
517#define MPC85xx_IRQ_LBIU	( 3 + MPC85xx_OPENPIC_IRQ_OFFSET)
518#define MPC85xx_IRQ_DMA0	( 4 + MPC85xx_OPENPIC_IRQ_OFFSET)
519#define MPC85xx_IRQ_DMA1	( 5 + MPC85xx_OPENPIC_IRQ_OFFSET)
520#define MPC85xx_IRQ_DMA2	( 6 + MPC85xx_OPENPIC_IRQ_OFFSET)
521#define MPC85xx_IRQ_DMA3	( 7 + MPC85xx_OPENPIC_IRQ_OFFSET)
522#define MPC85xx_IRQ_PCI1	( 8 + MPC85xx_OPENPIC_IRQ_OFFSET)
523#define MPC85xx_IRQ_PCI2	( 9 + MPC85xx_OPENPIC_IRQ_OFFSET)
524#define MPC85xx_IRQ_RIO_ERROR	( 9 + MPC85xx_OPENPIC_IRQ_OFFSET)
525#define MPC85xx_IRQ_RIO_BELL	(10 + MPC85xx_OPENPIC_IRQ_OFFSET)
526#define MPC85xx_IRQ_RIO_TX	(11 + MPC85xx_OPENPIC_IRQ_OFFSET)
527#define MPC85xx_IRQ_RIO_RX	(12 + MPC85xx_OPENPIC_IRQ_OFFSET)
528#define MPC85xx_IRQ_TSEC1_TX	(13 + MPC85xx_OPENPIC_IRQ_OFFSET)
529#define MPC85xx_IRQ_TSEC1_RX	(14 + MPC85xx_OPENPIC_IRQ_OFFSET)
530#define MPC85xx_IRQ_TSEC3_TX	(15 + MPC85xx_OPENPIC_IRQ_OFFSET)
531#define MPC85xx_IRQ_TSEC3_RX	(16 + MPC85xx_OPENPIC_IRQ_OFFSET)
532#define MPC85xx_IRQ_TSEC3_ERROR	(17 + MPC85xx_OPENPIC_IRQ_OFFSET)
533#define MPC85xx_IRQ_TSEC1_ERROR	(18 + MPC85xx_OPENPIC_IRQ_OFFSET)
534#define MPC85xx_IRQ_TSEC2_TX	(19 + MPC85xx_OPENPIC_IRQ_OFFSET)
535#define MPC85xx_IRQ_TSEC2_RX	(20 + MPC85xx_OPENPIC_IRQ_OFFSET)
536#define MPC85xx_IRQ_TSEC4_TX	(21 + MPC85xx_OPENPIC_IRQ_OFFSET)
537#define MPC85xx_IRQ_TSEC4_RX	(22 + MPC85xx_OPENPIC_IRQ_OFFSET)
538#define MPC85xx_IRQ_TSEC4_ERROR	(23 + MPC85xx_OPENPIC_IRQ_OFFSET)
539#define MPC85xx_IRQ_TSEC2_ERROR	(24 + MPC85xx_OPENPIC_IRQ_OFFSET)
540#define MPC85xx_IRQ_FEC		(25 + MPC85xx_OPENPIC_IRQ_OFFSET)
541#define MPC85xx_IRQ_DUART	(26 + MPC85xx_OPENPIC_IRQ_OFFSET)
542#define MPC85xx_IRQ_IIC1	(27 + MPC85xx_OPENPIC_IRQ_OFFSET)
543#define MPC85xx_IRQ_PERFMON	(28 + MPC85xx_OPENPIC_IRQ_OFFSET)
544#define MPC85xx_IRQ_SEC2	(29 + MPC85xx_OPENPIC_IRQ_OFFSET)
545#define MPC85xx_IRQ_CPM		(30 + MPC85xx_OPENPIC_IRQ_OFFSET)
546
547/* The 12 external interrupt lines */
548#define MPC85xx_IRQ_EXT0        (48 + MPC85xx_OPENPIC_IRQ_OFFSET)
549#define MPC85xx_IRQ_EXT1        (49 + MPC85xx_OPENPIC_IRQ_OFFSET)
550#define MPC85xx_IRQ_EXT2        (50 + MPC85xx_OPENPIC_IRQ_OFFSET)
551#define MPC85xx_IRQ_EXT3        (51 + MPC85xx_OPENPIC_IRQ_OFFSET)
552#define MPC85xx_IRQ_EXT4        (52 + MPC85xx_OPENPIC_IRQ_OFFSET)
553#define MPC85xx_IRQ_EXT5        (53 + MPC85xx_OPENPIC_IRQ_OFFSET)
554#define MPC85xx_IRQ_EXT6        (54 + MPC85xx_OPENPIC_IRQ_OFFSET)
555#define MPC85xx_IRQ_EXT7        (55 + MPC85xx_OPENPIC_IRQ_OFFSET)
556#define MPC85xx_IRQ_EXT8        (56 + MPC85xx_OPENPIC_IRQ_OFFSET)
557#define MPC85xx_IRQ_EXT9        (57 + MPC85xx_OPENPIC_IRQ_OFFSET)
558#define MPC85xx_IRQ_EXT10       (58 + MPC85xx_OPENPIC_IRQ_OFFSET)
559#define MPC85xx_IRQ_EXT11       (59 + MPC85xx_OPENPIC_IRQ_OFFSET)
560
561/* CPM related interrupts */
562#define	SIU_INT_ERROR		((uint)0x00+CPM_IRQ_OFFSET)
563#define	SIU_INT_I2C		((uint)0x01+CPM_IRQ_OFFSET)
564#define	SIU_INT_SPI		((uint)0x02+CPM_IRQ_OFFSET)
565#define	SIU_INT_RISC		((uint)0x03+CPM_IRQ_OFFSET)
566#define	SIU_INT_SMC1		((uint)0x04+CPM_IRQ_OFFSET)
567#define	SIU_INT_SMC2		((uint)0x05+CPM_IRQ_OFFSET)
568#define	SIU_INT_USB		((uint)0x0b+CPM_IRQ_OFFSET)
569#define	SIU_INT_TIMER1		((uint)0x0c+CPM_IRQ_OFFSET)
570#define	SIU_INT_TIMER2		((uint)0x0d+CPM_IRQ_OFFSET)
571#define	SIU_INT_TIMER3		((uint)0x0e+CPM_IRQ_OFFSET)
572#define	SIU_INT_TIMER4		((uint)0x0f+CPM_IRQ_OFFSET)
573#define	SIU_INT_FCC1		((uint)0x20+CPM_IRQ_OFFSET)
574#define	SIU_INT_FCC2		((uint)0x21+CPM_IRQ_OFFSET)
575#define	SIU_INT_FCC3		((uint)0x22+CPM_IRQ_OFFSET)
576#define	SIU_INT_MCC1		((uint)0x24+CPM_IRQ_OFFSET)
577#define	SIU_INT_MCC2		((uint)0x25+CPM_IRQ_OFFSET)
578#define	SIU_INT_SCC1		((uint)0x28+CPM_IRQ_OFFSET)
579#define	SIU_INT_SCC2		((uint)0x29+CPM_IRQ_OFFSET)
580#define	SIU_INT_SCC3		((uint)0x2a+CPM_IRQ_OFFSET)
581#define	SIU_INT_SCC4		((uint)0x2b+CPM_IRQ_OFFSET)
582#define	SIU_INT_PC15		((uint)0x30+CPM_IRQ_OFFSET)
583#define	SIU_INT_PC14		((uint)0x31+CPM_IRQ_OFFSET)
584#define	SIU_INT_PC13		((uint)0x32+CPM_IRQ_OFFSET)
585#define	SIU_INT_PC12		((uint)0x33+CPM_IRQ_OFFSET)
586#define	SIU_INT_PC11		((uint)0x34+CPM_IRQ_OFFSET)
587#define	SIU_INT_PC10		((uint)0x35+CPM_IRQ_OFFSET)
588#define	SIU_INT_PC9		((uint)0x36+CPM_IRQ_OFFSET)
589#define	SIU_INT_PC8		((uint)0x37+CPM_IRQ_OFFSET)
590#define	SIU_INT_PC7		((uint)0x38+CPM_IRQ_OFFSET)
591#define	SIU_INT_PC6		((uint)0x39+CPM_IRQ_OFFSET)
592#define	SIU_INT_PC5		((uint)0x3a+CPM_IRQ_OFFSET)
593#define	SIU_INT_PC4		((uint)0x3b+CPM_IRQ_OFFSET)
594#define	SIU_INT_PC3		((uint)0x3c+CPM_IRQ_OFFSET)
595#define	SIU_INT_PC2		((uint)0x3d+CPM_IRQ_OFFSET)
596#define	SIU_INT_PC1		((uint)0x3e+CPM_IRQ_OFFSET)
597#define	SIU_INT_PC0		((uint)0x3f+CPM_IRQ_OFFSET)
598
599#elif defined(CONFIG_PPC_86xx)
600#include <asm/mpc86xx.h>
601
602#define NR_EPIC_INTS 48
603#ifndef NR_8259_INTS
604#define NR_8259_INTS 16 /*ULI 1575 can route 12 interrupts */
605#endif
606#define NUM_8259_INTERRUPTS NR_8259_INTS
607
608#ifndef I8259_OFFSET
609#define I8259_OFFSET 0
610#endif
611
612#define NR_IRQS 256
613
614/* Internal IRQs on MPC86xx OpenPIC */
615
616#ifndef MPC86xx_OPENPIC_IRQ_OFFSET
617#define MPC86xx_OPENPIC_IRQ_OFFSET NR_8259_INTS
618#endif
619
620/* The 48 internal sources */
621#define MPC86xx_IRQ_NULL        ( 0 + MPC86xx_OPENPIC_IRQ_OFFSET)
622#define MPC86xx_IRQ_MCM         ( 1 + MPC86xx_OPENPIC_IRQ_OFFSET)
623#define MPC86xx_IRQ_DDR         ( 2 + MPC86xx_OPENPIC_IRQ_OFFSET)
624#define MPC86xx_IRQ_LBC         ( 3 + MPC86xx_OPENPIC_IRQ_OFFSET)
625#define MPC86xx_IRQ_DMA0        ( 4 + MPC86xx_OPENPIC_IRQ_OFFSET)
626#define MPC86xx_IRQ_DMA1        ( 5 + MPC86xx_OPENPIC_IRQ_OFFSET)
627#define MPC86xx_IRQ_DMA2        ( 6 + MPC86xx_OPENPIC_IRQ_OFFSET)
628#define MPC86xx_IRQ_DMA3        ( 7 + MPC86xx_OPENPIC_IRQ_OFFSET)
629
630/* no 10,11 */
631#define MPC86xx_IRQ_UART2       (12 + MPC86xx_OPENPIC_IRQ_OFFSET)
632#define MPC86xx_IRQ_TSEC1_TX    (13 + MPC86xx_OPENPIC_IRQ_OFFSET)
633#define MPC86xx_IRQ_TSEC1_RX    (14 + MPC86xx_OPENPIC_IRQ_OFFSET)
634#define MPC86xx_IRQ_TSEC3_TX    (15 + MPC86xx_OPENPIC_IRQ_OFFSET)
635#define MPC86xx_IRQ_TSEC3_RX    (16 + MPC86xx_OPENPIC_IRQ_OFFSET)
636#define MPC86xx_IRQ_TSEC3_ERROR (17 + MPC86xx_OPENPIC_IRQ_OFFSET)
637#define MPC86xx_IRQ_TSEC1_ERROR (18 + MPC86xx_OPENPIC_IRQ_OFFSET)
638#define MPC86xx_IRQ_TSEC2_TX    (19 + MPC86xx_OPENPIC_IRQ_OFFSET)
639#define MPC86xx_IRQ_TSEC2_RX    (20 + MPC86xx_OPENPIC_IRQ_OFFSET)
640#define MPC86xx_IRQ_TSEC4_TX    (21 + MPC86xx_OPENPIC_IRQ_OFFSET)
641#define MPC86xx_IRQ_TSEC4_RX    (22 + MPC86xx_OPENPIC_IRQ_OFFSET)
642#define MPC86xx_IRQ_TSEC4_ERROR (23 + MPC86xx_OPENPIC_IRQ_OFFSET)
643#define MPC86xx_IRQ_TSEC2_ERROR (24 + MPC86xx_OPENPIC_IRQ_OFFSET)
644/* no 25 */
645#define MPC86xx_IRQ_UART1       (26 + MPC86xx_OPENPIC_IRQ_OFFSET)
646#define MPC86xx_IRQ_IIC         (27 + MPC86xx_OPENPIC_IRQ_OFFSET)
647#define MPC86xx_IRQ_PERFMON       (28 + MPC86xx_OPENPIC_IRQ_OFFSET)
648/* no 29,30,31 */
649#define MPC86xx_IRQ_SRIO_ERROR    (32 + MPC86xx_OPENPIC_IRQ_OFFSET)
650#define MPC86xx_IRQ_SRIO_OUT_BELL (33 + MPC86xx_OPENPIC_IRQ_OFFSET)
651#define MPC86xx_IRQ_SRIO_IN_BELL  (34 + MPC86xx_OPENPIC_IRQ_OFFSET)
652/* no 35,36 */
653#define MPC86xx_IRQ_SRIO_OUT_MSG1 (37 + MPC86xx_OPENPIC_IRQ_OFFSET)
654#define MPC86xx_IRQ_SRIO_IN_MSG1  (38 + MPC86xx_OPENPIC_IRQ_OFFSET)
655#define MPC86xx_IRQ_SRIO_OUT_MSG2 (39 + MPC86xx_OPENPIC_IRQ_OFFSET)
656#define MPC86xx_IRQ_SRIO_IN_MSG2  (40 + MPC86xx_OPENPIC_IRQ_OFFSET)
657
658/* The 12 external interrupt lines */
659#define MPC86xx_IRQ_EXT_BASE	48
660#define MPC86xx_IRQ_EXT0	(0 + MPC86xx_IRQ_EXT_BASE \
661		+ MPC86xx_OPENPIC_IRQ_OFFSET)
662#define MPC86xx_IRQ_EXT1	(1 + MPC86xx_IRQ_EXT_BASE \
663		+ MPC86xx_OPENPIC_IRQ_OFFSET)
664#define MPC86xx_IRQ_EXT2	(2 + MPC86xx_IRQ_EXT_BASE \
665		+ MPC86xx_OPENPIC_IRQ_OFFSET)
666#define MPC86xx_IRQ_EXT3	(3 + MPC86xx_IRQ_EXT_BASE \
667		+ MPC86xx_OPENPIC_IRQ_OFFSET)
668#define MPC86xx_IRQ_EXT4	(4 + MPC86xx_IRQ_EXT_BASE \
669		+ MPC86xx_OPENPIC_IRQ_OFFSET)
670#define MPC86xx_IRQ_EXT5	(5 + MPC86xx_IRQ_EXT_BASE \
671		+ MPC86xx_OPENPIC_IRQ_OFFSET)
672#define MPC86xx_IRQ_EXT6	(6 + MPC86xx_IRQ_EXT_BASE \
673		+ MPC86xx_OPENPIC_IRQ_OFFSET)
674#define MPC86xx_IRQ_EXT7	(7 + MPC86xx_IRQ_EXT_BASE \
675		+ MPC86xx_OPENPIC_IRQ_OFFSET)
676#define MPC86xx_IRQ_EXT8	(8 + MPC86xx_IRQ_EXT_BASE \
677		+ MPC86xx_OPENPIC_IRQ_OFFSET)
678#define MPC86xx_IRQ_EXT9	(9 + MPC86xx_IRQ_EXT_BASE \
679		+ MPC86xx_OPENPIC_IRQ_OFFSET)
680#define MPC86xx_IRQ_EXT10	(10 + MPC86xx_IRQ_EXT_BASE \
681		+ MPC86xx_OPENPIC_IRQ_OFFSET)
682#define MPC86xx_IRQ_EXT11	(11 + MPC86xx_IRQ_EXT_BASE \
683		+ MPC86xx_OPENPIC_IRQ_OFFSET)
684
685#else /* CONFIG_40x + CONFIG_8xx */
686/*
687 * this is the # irq's for all ppc arch's (pmac/chrp/prep)
688 * so it is the max of them all
689 */
690#define NR_IRQS			256
691#define __DO_IRQ_CANON	1
692
693#ifndef CONFIG_8260
694
695#define NUM_8259_INTERRUPTS	16
696
697#else /* CONFIG_8260 */
698
699/* The 8260 has an internal interrupt controller with a maximum of
700 * 64 IRQs.  We will use NR_IRQs from above since it is large enough.
701 * Don't be confused by the 8260 documentation where they list an
702 * "interrupt number" and "interrupt vector".  We are only interested
703 * in the interrupt vector.  There are "reserved" holes where the
704 * vector number increases, but the interrupt number in the table does not.
705 * (Document errata updates have fixed this...make sure you have up to
706 * date processor documentation -- Dan).
707 */
708
709#ifndef CPM_IRQ_OFFSET
710#define CPM_IRQ_OFFSET	0
711#endif
712
713#define NR_CPM_INTS	64
714
715#define	SIU_INT_ERROR		((uint)0x00 + CPM_IRQ_OFFSET)
716#define	SIU_INT_I2C		((uint)0x01 + CPM_IRQ_OFFSET)
717#define	SIU_INT_SPI		((uint)0x02 + CPM_IRQ_OFFSET)
718#define	SIU_INT_RISC		((uint)0x03 + CPM_IRQ_OFFSET)
719#define	SIU_INT_SMC1		((uint)0x04 + CPM_IRQ_OFFSET)
720#define	SIU_INT_SMC2		((uint)0x05 + CPM_IRQ_OFFSET)
721#define	SIU_INT_IDMA1		((uint)0x06 + CPM_IRQ_OFFSET)
722#define	SIU_INT_IDMA2		((uint)0x07 + CPM_IRQ_OFFSET)
723#define	SIU_INT_IDMA3		((uint)0x08 + CPM_IRQ_OFFSET)
724#define	SIU_INT_IDMA4		((uint)0x09 + CPM_IRQ_OFFSET)
725#define	SIU_INT_SDMA		((uint)0x0a + CPM_IRQ_OFFSET)
726#define	SIU_INT_USB		((uint)0x0b + CPM_IRQ_OFFSET)
727#define	SIU_INT_TIMER1		((uint)0x0c + CPM_IRQ_OFFSET)
728#define	SIU_INT_TIMER2		((uint)0x0d + CPM_IRQ_OFFSET)
729#define	SIU_INT_TIMER3		((uint)0x0e + CPM_IRQ_OFFSET)
730#define	SIU_INT_TIMER4		((uint)0x0f + CPM_IRQ_OFFSET)
731#define	SIU_INT_TMCNT		((uint)0x10 + CPM_IRQ_OFFSET)
732#define	SIU_INT_PIT		((uint)0x11 + CPM_IRQ_OFFSET)
733#define	SIU_INT_PCI		((uint)0x12 + CPM_IRQ_OFFSET)
734#define	SIU_INT_IRQ1		((uint)0x13 + CPM_IRQ_OFFSET)
735#define	SIU_INT_IRQ2		((uint)0x14 + CPM_IRQ_OFFSET)
736#define	SIU_INT_IRQ3		((uint)0x15 + CPM_IRQ_OFFSET)
737#define	SIU_INT_IRQ4		((uint)0x16 + CPM_IRQ_OFFSET)
738#define	SIU_INT_IRQ5		((uint)0x17 + CPM_IRQ_OFFSET)
739#define	SIU_INT_IRQ6		((uint)0x18 + CPM_IRQ_OFFSET)
740#define	SIU_INT_IRQ7		((uint)0x19 + CPM_IRQ_OFFSET)
741#define	SIU_INT_FCC1		((uint)0x20 + CPM_IRQ_OFFSET)
742#define	SIU_INT_FCC2		((uint)0x21 + CPM_IRQ_OFFSET)
743#define	SIU_INT_FCC3		((uint)0x22 + CPM_IRQ_OFFSET)
744#define	SIU_INT_MCC1		((uint)0x24 + CPM_IRQ_OFFSET)
745#define	SIU_INT_MCC2		((uint)0x25 + CPM_IRQ_OFFSET)
746#define	SIU_INT_SCC1		((uint)0x28 + CPM_IRQ_OFFSET)
747#define	SIU_INT_SCC2		((uint)0x29 + CPM_IRQ_OFFSET)
748#define	SIU_INT_SCC3		((uint)0x2a + CPM_IRQ_OFFSET)
749#define	SIU_INT_SCC4		((uint)0x2b + CPM_IRQ_OFFSET)
750#define	SIU_INT_PC15		((uint)0x30 + CPM_IRQ_OFFSET)
751#define	SIU_INT_PC14		((uint)0x31 + CPM_IRQ_OFFSET)
752#define	SIU_INT_PC13		((uint)0x32 + CPM_IRQ_OFFSET)
753#define	SIU_INT_PC12		((uint)0x33 + CPM_IRQ_OFFSET)
754#define	SIU_INT_PC11		((uint)0x34 + CPM_IRQ_OFFSET)
755#define	SIU_INT_PC10		((uint)0x35 + CPM_IRQ_OFFSET)
756#define	SIU_INT_PC9		((uint)0x36 + CPM_IRQ_OFFSET)
757#define	SIU_INT_PC8		((uint)0x37 + CPM_IRQ_OFFSET)
758#define	SIU_INT_PC7		((uint)0x38 + CPM_IRQ_OFFSET)
759#define	SIU_INT_PC6		((uint)0x39 + CPM_IRQ_OFFSET)
760#define	SIU_INT_PC5		((uint)0x3a + CPM_IRQ_OFFSET)
761#define	SIU_INT_PC4		((uint)0x3b + CPM_IRQ_OFFSET)
762#define	SIU_INT_PC3		((uint)0x3c + CPM_IRQ_OFFSET)
763#define	SIU_INT_PC2		((uint)0x3d + CPM_IRQ_OFFSET)
764#define	SIU_INT_PC1		((uint)0x3e + CPM_IRQ_OFFSET)
765#define	SIU_INT_PC0		((uint)0x3f + CPM_IRQ_OFFSET)
766
767#endif /* CONFIG_8260 */
768
769#endif /* Whatever way too big #ifdef */
770
771#define NR_MASK_WORDS	((NR_IRQS + 31) / 32)
772/* pedantic: these are long because they are used with set_bit --RR */
773extern unsigned long ppc_cached_irq_mask[NR_MASK_WORDS];
774
775/*
776 * Because many systems have two overlapping names spaces for
777 * interrupts (ISA and XICS for example), and the ISA interrupts
778 * have historically not been easy to renumber, we allow ISA
779 * interrupts to take values 0 - 15, and shift up the remaining
780 * interrupts by 0x10.
781 */
782#define NUM_ISA_INTERRUPTS	0x10
783extern int __irq_offset_value;
784
785static inline int irq_offset_up(int irq)
786{
787	return(irq + __irq_offset_value);
788}
789
790static inline int irq_offset_down(int irq)
791{
792	return(irq - __irq_offset_value);
793}
794
795static inline int irq_offset_value(void)
796{
797	return __irq_offset_value;
798}
799
800#ifdef __DO_IRQ_CANON
801extern int ppc_do_canonicalize_irqs;
802#else
803#define ppc_do_canonicalize_irqs	0
804#endif
805
806static __inline__ int irq_canonicalize(int irq)
807{
808	if (ppc_do_canonicalize_irqs && irq == 2)
809		irq = 9;
810	return irq;
811}
812#endif /* CONFIG_PPC_MERGE */
813
814extern int distribute_irqs;
815
816struct irqaction;
817struct pt_regs;
818
819#define __ARCH_HAS_DO_SOFTIRQ
820
821extern void __do_softirq(void);
822
823#ifdef CONFIG_IRQSTACKS
824/*
825 * Per-cpu stacks for handling hard and soft interrupts.
826 */
827extern struct thread_info *hardirq_ctx[NR_CPUS];
828extern struct thread_info *softirq_ctx[NR_CPUS];
829
830extern void irq_ctx_init(void);
831extern void call_do_softirq(struct thread_info *tp);
832extern int call_handle_irq(int irq, void *p1,
833			   struct thread_info *tp, void *func);
834#else
835#define irq_ctx_init()
836
837#endif /* CONFIG_IRQSTACKS */
838
839extern void do_IRQ(struct pt_regs *regs);
840
841#endif /* _ASM_IRQ_H */
842#endif /* __KERNEL__ */
843