1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
31#include "xfs_alloc_btree.h"
32#include "xfs_ialloc_btree.h"
33#include "xfs_dir2_sf.h"
34#include "xfs_attr_sf.h"
35#include "xfs_dinode.h"
36#include "xfs_inode.h"
37#include "xfs_buf_item.h"
38#include "xfs_trans_priv.h"
39#include "xfs_error.h"
40#include "xfs_rw.h"
41
42
43STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *,
44		xfs_daddr_t, int);
45STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *,
46		xfs_daddr_t, int);
47
48
49/*
50 * Get and lock the buffer for the caller if it is not already
51 * locked within the given transaction.  If it is already locked
52 * within the transaction, just increment its lock recursion count
53 * and return a pointer to it.
54 *
55 * Use the fast path function xfs_trans_buf_item_match() or the buffer
56 * cache routine incore_match() to find the buffer
57 * if it is already owned by this transaction.
58 *
59 * If we don't already own the buffer, use get_buf() to get it.
60 * If it doesn't yet have an associated xfs_buf_log_item structure,
61 * then allocate one and add the item to this transaction.
62 *
63 * If the transaction pointer is NULL, make this just a normal
64 * get_buf() call.
65 */
66xfs_buf_t *
67xfs_trans_get_buf(xfs_trans_t	*tp,
68		  xfs_buftarg_t	*target_dev,
69		  xfs_daddr_t	blkno,
70		  int		len,
71		  uint		flags)
72{
73	xfs_buf_t		*bp;
74	xfs_buf_log_item_t	*bip;
75
76	if (flags == 0)
77		flags = XFS_BUF_LOCK | XFS_BUF_MAPPED;
78
79	/*
80	 * Default to a normal get_buf() call if the tp is NULL.
81	 */
82	if (tp == NULL) {
83		bp = xfs_buf_get_flags(target_dev, blkno, len,
84							flags | BUF_BUSY);
85		return(bp);
86	}
87
88	/*
89	 * If we find the buffer in the cache with this transaction
90	 * pointer in its b_fsprivate2 field, then we know we already
91	 * have it locked.  In this case we just increment the lock
92	 * recursion count and return the buffer to the caller.
93	 */
94	if (tp->t_items.lic_next == NULL) {
95		bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
96	} else {
97		bp  = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len);
98	}
99	if (bp != NULL) {
100		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
101		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
102			xfs_buftrace("TRANS GET RECUR SHUT", bp);
103			XFS_BUF_SUPER_STALE(bp);
104		}
105		/*
106		 * If the buffer is stale then it was binval'ed
107		 * since last read.  This doesn't matter since the
108		 * caller isn't allowed to use the data anyway.
109		 */
110		else if (XFS_BUF_ISSTALE(bp)) {
111			xfs_buftrace("TRANS GET RECUR STALE", bp);
112			ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
113		}
114		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
115		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
116		ASSERT(bip != NULL);
117		ASSERT(atomic_read(&bip->bli_refcount) > 0);
118		bip->bli_recur++;
119		xfs_buftrace("TRANS GET RECUR", bp);
120		xfs_buf_item_trace("GET RECUR", bip);
121		return (bp);
122	}
123
124	/*
125	 * We always specify the BUF_BUSY flag within a transaction so
126	 * that get_buf does not try to push out a delayed write buffer
127	 * which might cause another transaction to take place (if the
128	 * buffer was delayed alloc).  Such recursive transactions can
129	 * easily deadlock with our current transaction as well as cause
130	 * us to run out of stack space.
131	 */
132	bp = xfs_buf_get_flags(target_dev, blkno, len, flags | BUF_BUSY);
133	if (bp == NULL) {
134		return NULL;
135	}
136
137	ASSERT(!XFS_BUF_GETERROR(bp));
138
139	/*
140	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
141	 * it doesn't have one yet, then allocate one and initialize it.
142	 * The checks to see if one is there are in xfs_buf_item_init().
143	 */
144	xfs_buf_item_init(bp, tp->t_mountp);
145
146	/*
147	 * Set the recursion count for the buffer within this transaction
148	 * to 0.
149	 */
150	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
151	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
152	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
153	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
154	bip->bli_recur = 0;
155
156	/*
157	 * Take a reference for this transaction on the buf item.
158	 */
159	atomic_inc(&bip->bli_refcount);
160
161	/*
162	 * Get a log_item_desc to point at the new item.
163	 */
164	(void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
165
166	/*
167	 * Initialize b_fsprivate2 so we can find it with incore_match()
168	 * above.
169	 */
170	XFS_BUF_SET_FSPRIVATE2(bp, tp);
171
172	xfs_buftrace("TRANS GET", bp);
173	xfs_buf_item_trace("GET", bip);
174	return (bp);
175}
176
177/*
178 * Get and lock the superblock buffer of this file system for the
179 * given transaction.
180 *
181 * We don't need to use incore_match() here, because the superblock
182 * buffer is a private buffer which we keep a pointer to in the
183 * mount structure.
184 */
185xfs_buf_t *
186xfs_trans_getsb(xfs_trans_t	*tp,
187		struct xfs_mount *mp,
188		int		flags)
189{
190	xfs_buf_t		*bp;
191	xfs_buf_log_item_t	*bip;
192
193	/*
194	 * Default to just trying to lock the superblock buffer
195	 * if tp is NULL.
196	 */
197	if (tp == NULL) {
198		return (xfs_getsb(mp, flags));
199	}
200
201	/*
202	 * If the superblock buffer already has this transaction
203	 * pointer in its b_fsprivate2 field, then we know we already
204	 * have it locked.  In this case we just increment the lock
205	 * recursion count and return the buffer to the caller.
206	 */
207	bp = mp->m_sb_bp;
208	if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) {
209		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
210		ASSERT(bip != NULL);
211		ASSERT(atomic_read(&bip->bli_refcount) > 0);
212		bip->bli_recur++;
213		xfs_buf_item_trace("GETSB RECUR", bip);
214		return (bp);
215	}
216
217	bp = xfs_getsb(mp, flags);
218	if (bp == NULL) {
219		return NULL;
220	}
221
222	/*
223	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
224	 * it doesn't have one yet, then allocate one and initialize it.
225	 * The checks to see if one is there are in xfs_buf_item_init().
226	 */
227	xfs_buf_item_init(bp, mp);
228
229	/*
230	 * Set the recursion count for the buffer within this transaction
231	 * to 0.
232	 */
233	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
234	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
235	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
236	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
237	bip->bli_recur = 0;
238
239	/*
240	 * Take a reference for this transaction on the buf item.
241	 */
242	atomic_inc(&bip->bli_refcount);
243
244	/*
245	 * Get a log_item_desc to point at the new item.
246	 */
247	(void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
248
249	/*
250	 * Initialize b_fsprivate2 so we can find it with incore_match()
251	 * above.
252	 */
253	XFS_BUF_SET_FSPRIVATE2(bp, tp);
254
255	xfs_buf_item_trace("GETSB", bip);
256	return (bp);
257}
258
259#ifdef DEBUG
260xfs_buftarg_t *xfs_error_target;
261int	xfs_do_error;
262int	xfs_req_num;
263int	xfs_error_mod = 33;
264#endif
265
266/*
267 * Get and lock the buffer for the caller if it is not already
268 * locked within the given transaction.  If it has not yet been
269 * read in, read it from disk. If it is already locked
270 * within the transaction and already read in, just increment its
271 * lock recursion count and return a pointer to it.
272 *
273 * Use the fast path function xfs_trans_buf_item_match() or the buffer
274 * cache routine incore_match() to find the buffer
275 * if it is already owned by this transaction.
276 *
277 * If we don't already own the buffer, use read_buf() to get it.
278 * If it doesn't yet have an associated xfs_buf_log_item structure,
279 * then allocate one and add the item to this transaction.
280 *
281 * If the transaction pointer is NULL, make this just a normal
282 * read_buf() call.
283 */
284int
285xfs_trans_read_buf(
286	xfs_mount_t	*mp,
287	xfs_trans_t	*tp,
288	xfs_buftarg_t	*target,
289	xfs_daddr_t	blkno,
290	int		len,
291	uint		flags,
292	xfs_buf_t	**bpp)
293{
294	xfs_buf_t		*bp;
295	xfs_buf_log_item_t	*bip;
296	int			error;
297
298	if (flags == 0)
299		flags = XFS_BUF_LOCK | XFS_BUF_MAPPED;
300
301	/*
302	 * Default to a normal get_buf() call if the tp is NULL.
303	 */
304	if (tp == NULL) {
305		bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY);
306		if (!bp)
307			return XFS_ERROR(ENOMEM);
308
309		if ((bp != NULL) && (XFS_BUF_GETERROR(bp) != 0)) {
310			xfs_ioerror_alert("xfs_trans_read_buf", mp,
311					  bp, blkno);
312			error = XFS_BUF_GETERROR(bp);
313			xfs_buf_relse(bp);
314			return error;
315		}
316#ifdef DEBUG
317		if (xfs_do_error && (bp != NULL)) {
318			if (xfs_error_target == target) {
319				if (((xfs_req_num++) % xfs_error_mod) == 0) {
320					xfs_buf_relse(bp);
321					cmn_err(CE_DEBUG, "Returning error!\n");
322					return XFS_ERROR(EIO);
323				}
324			}
325		}
326#endif
327		if (XFS_FORCED_SHUTDOWN(mp))
328			goto shutdown_abort;
329		*bpp = bp;
330		return 0;
331	}
332
333	/*
334	 * If we find the buffer in the cache with this transaction
335	 * pointer in its b_fsprivate2 field, then we know we already
336	 * have it locked.  If it is already read in we just increment
337	 * the lock recursion count and return the buffer to the caller.
338	 * If the buffer is not yet read in, then we read it in, increment
339	 * the lock recursion count, and return it to the caller.
340	 */
341	if (tp->t_items.lic_next == NULL) {
342		bp = xfs_trans_buf_item_match(tp, target, blkno, len);
343	} else {
344		bp = xfs_trans_buf_item_match_all(tp, target, blkno, len);
345	}
346	if (bp != NULL) {
347		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
348		ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
349		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
350		ASSERT((XFS_BUF_ISERROR(bp)) == 0);
351		if (!(XFS_BUF_ISDONE(bp))) {
352			xfs_buftrace("READ_BUF_INCORE !DONE", bp);
353			ASSERT(!XFS_BUF_ISASYNC(bp));
354			XFS_BUF_READ(bp);
355			xfsbdstrat(tp->t_mountp, bp);
356			xfs_iowait(bp);
357			if (XFS_BUF_GETERROR(bp) != 0) {
358				xfs_ioerror_alert("xfs_trans_read_buf", mp,
359						  bp, blkno);
360				error = XFS_BUF_GETERROR(bp);
361				xfs_buf_relse(bp);
362				/*
363				 * We can gracefully recover from most
364				 * read errors. Ones we can't are those
365				 * that happen after the transaction's
366				 * already dirty.
367				 */
368				if (tp->t_flags & XFS_TRANS_DIRTY)
369					xfs_force_shutdown(tp->t_mountp,
370							SHUTDOWN_META_IO_ERROR);
371				return error;
372			}
373		}
374		/*
375		 * We never locked this buf ourselves, so we shouldn't
376		 * brelse it either. Just get out.
377		 */
378		if (XFS_FORCED_SHUTDOWN(mp)) {
379			xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp);
380			*bpp = NULL;
381			return XFS_ERROR(EIO);
382		}
383
384
385		bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
386		bip->bli_recur++;
387
388		ASSERT(atomic_read(&bip->bli_refcount) > 0);
389		xfs_buf_item_trace("READ RECUR", bip);
390		*bpp = bp;
391		return 0;
392	}
393
394	/*
395	 * We always specify the BUF_BUSY flag within a transaction so
396	 * that get_buf does not try to push out a delayed write buffer
397	 * which might cause another transaction to take place (if the
398	 * buffer was delayed alloc).  Such recursive transactions can
399	 * easily deadlock with our current transaction as well as cause
400	 * us to run out of stack space.
401	 */
402	bp = xfs_buf_read_flags(target, blkno, len, flags | BUF_BUSY);
403	if (bp == NULL) {
404		*bpp = NULL;
405		return 0;
406	}
407	if (XFS_BUF_GETERROR(bp) != 0) {
408	    XFS_BUF_SUPER_STALE(bp);
409		xfs_buftrace("READ ERROR", bp);
410		error = XFS_BUF_GETERROR(bp);
411
412		xfs_ioerror_alert("xfs_trans_read_buf", mp,
413				  bp, blkno);
414		if (tp->t_flags & XFS_TRANS_DIRTY)
415			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
416		xfs_buf_relse(bp);
417		return error;
418	}
419#ifdef DEBUG
420	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
421		if (xfs_error_target == target) {
422			if (((xfs_req_num++) % xfs_error_mod) == 0) {
423				xfs_force_shutdown(tp->t_mountp,
424						   SHUTDOWN_META_IO_ERROR);
425				xfs_buf_relse(bp);
426				cmn_err(CE_DEBUG, "Returning trans error!\n");
427				return XFS_ERROR(EIO);
428			}
429		}
430	}
431#endif
432	if (XFS_FORCED_SHUTDOWN(mp))
433		goto shutdown_abort;
434
435	/*
436	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
437	 * it doesn't have one yet, then allocate one and initialize it.
438	 * The checks to see if one is there are in xfs_buf_item_init().
439	 */
440	xfs_buf_item_init(bp, tp->t_mountp);
441
442	/*
443	 * Set the recursion count for the buffer within this transaction
444	 * to 0.
445	 */
446	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
447	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
448	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
449	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
450	bip->bli_recur = 0;
451
452	/*
453	 * Take a reference for this transaction on the buf item.
454	 */
455	atomic_inc(&bip->bli_refcount);
456
457	/*
458	 * Get a log_item_desc to point at the new item.
459	 */
460	(void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip);
461
462	/*
463	 * Initialize b_fsprivate2 so we can find it with incore_match()
464	 * above.
465	 */
466	XFS_BUF_SET_FSPRIVATE2(bp, tp);
467
468	xfs_buftrace("TRANS READ", bp);
469	xfs_buf_item_trace("READ", bip);
470	*bpp = bp;
471	return 0;
472
473shutdown_abort:
474	/*
475	 * the theory here is that buffer is good but we're
476	 * bailing out because the filesystem is being forcibly
477	 * shut down.  So we should leave the b_flags alone since
478	 * the buffer's not staled and just get out.
479	 */
480#if defined(DEBUG)
481	if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
482		cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp);
483#endif
484	ASSERT((XFS_BUF_BFLAGS(bp) & (XFS_B_STALE|XFS_B_DELWRI)) !=
485						(XFS_B_STALE|XFS_B_DELWRI));
486
487	xfs_buftrace("READ_BUF XFSSHUTDN", bp);
488	xfs_buf_relse(bp);
489	*bpp = NULL;
490	return XFS_ERROR(EIO);
491}
492
493
494/*
495 * Release the buffer bp which was previously acquired with one of the
496 * xfs_trans_... buffer allocation routines if the buffer has not
497 * been modified within this transaction.  If the buffer is modified
498 * within this transaction, do decrement the recursion count but do
499 * not release the buffer even if the count goes to 0.  If the buffer is not
500 * modified within the transaction, decrement the recursion count and
501 * release the buffer if the recursion count goes to 0.
502 *
503 * If the buffer is to be released and it was not modified before
504 * this transaction began, then free the buf_log_item associated with it.
505 *
506 * If the transaction pointer is NULL, make this just a normal
507 * brelse() call.
508 */
509void
510xfs_trans_brelse(xfs_trans_t	*tp,
511		 xfs_buf_t	*bp)
512{
513	xfs_buf_log_item_t	*bip;
514	xfs_log_item_t		*lip;
515	xfs_log_item_desc_t	*lidp;
516
517	/*
518	 * Default to a normal brelse() call if the tp is NULL.
519	 */
520	if (tp == NULL) {
521		ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
522		/*
523		 * If there's a buf log item attached to the buffer,
524		 * then let the AIL know that the buffer is being
525		 * unlocked.
526		 */
527		if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
528			lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
529			if (lip->li_type == XFS_LI_BUF) {
530				bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
531				xfs_trans_unlocked_item(
532						bip->bli_item.li_mountp,
533						lip);
534			}
535		}
536		xfs_buf_relse(bp);
537		return;
538	}
539
540	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
541	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
542	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
543	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
544	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
545	ASSERT(atomic_read(&bip->bli_refcount) > 0);
546
547	/*
548	 * Find the item descriptor pointing to this buffer's
549	 * log item.  It must be there.
550	 */
551	lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
552	ASSERT(lidp != NULL);
553
554	/*
555	 * If the release is just for a recursive lock,
556	 * then decrement the count and return.
557	 */
558	if (bip->bli_recur > 0) {
559		bip->bli_recur--;
560		xfs_buf_item_trace("RELSE RECUR", bip);
561		return;
562	}
563
564	/*
565	 * If the buffer is dirty within this transaction, we can't
566	 * release it until we commit.
567	 */
568	if (lidp->lid_flags & XFS_LID_DIRTY) {
569		xfs_buf_item_trace("RELSE DIRTY", bip);
570		return;
571	}
572
573	/*
574	 * If the buffer has been invalidated, then we can't release
575	 * it until the transaction commits to disk unless it is re-dirtied
576	 * as part of this transaction.  This prevents us from pulling
577	 * the item from the AIL before we should.
578	 */
579	if (bip->bli_flags & XFS_BLI_STALE) {
580		xfs_buf_item_trace("RELSE STALE", bip);
581		return;
582	}
583
584	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
585	xfs_buf_item_trace("RELSE", bip);
586
587	/*
588	 * Free up the log item descriptor tracking the released item.
589	 */
590	xfs_trans_free_item(tp, lidp);
591
592	/*
593	 * Clear the hold flag in the buf log item if it is set.
594	 * We wouldn't want the next user of the buffer to
595	 * get confused.
596	 */
597	if (bip->bli_flags & XFS_BLI_HOLD) {
598		bip->bli_flags &= ~XFS_BLI_HOLD;
599	}
600
601	/*
602	 * Drop our reference to the buf log item.
603	 */
604	atomic_dec(&bip->bli_refcount);
605
606	/*
607	 * If the buf item is not tracking data in the log, then
608	 * we must free it before releasing the buffer back to the
609	 * free pool.  Before releasing the buffer to the free pool,
610	 * clear the transaction pointer in b_fsprivate2 to dissolve
611	 * its relation to this transaction.
612	 */
613	if (!xfs_buf_item_dirty(bip)) {
614/***
615		ASSERT(bp->b_pincount == 0);
616***/
617		ASSERT(atomic_read(&bip->bli_refcount) == 0);
618		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
619		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
620		xfs_buf_item_relse(bp);
621		bip = NULL;
622	}
623	XFS_BUF_SET_FSPRIVATE2(bp, NULL);
624
625	/*
626	 * If we've still got a buf log item on the buffer, then
627	 * tell the AIL that the buffer is being unlocked.
628	 */
629	if (bip != NULL) {
630		xfs_trans_unlocked_item(bip->bli_item.li_mountp,
631					(xfs_log_item_t*)bip);
632	}
633
634	xfs_buf_relse(bp);
635	return;
636}
637
638/*
639 * Add the locked buffer to the transaction.
640 * The buffer must be locked, and it cannot be associated with any
641 * transaction.
642 *
643 * If the buffer does not yet have a buf log item associated with it,
644 * then allocate one for it.  Then add the buf item to the transaction.
645 */
646void
647xfs_trans_bjoin(xfs_trans_t	*tp,
648		xfs_buf_t	*bp)
649{
650	xfs_buf_log_item_t	*bip;
651
652	ASSERT(XFS_BUF_ISBUSY(bp));
653	ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL);
654
655	/*
656	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
657	 * it doesn't have one yet, then allocate one and initialize it.
658	 * The checks to see if one is there are in xfs_buf_item_init().
659	 */
660	xfs_buf_item_init(bp, tp->t_mountp);
661	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
662	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
663	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
664	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
665
666	/*
667	 * Take a reference for this transaction on the buf item.
668	 */
669	atomic_inc(&bip->bli_refcount);
670
671	/*
672	 * Get a log_item_desc to point at the new item.
673	 */
674	(void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip);
675
676	/*
677	 * Initialize b_fsprivate2 so we can find it with incore_match()
678	 * in xfs_trans_get_buf() and friends above.
679	 */
680	XFS_BUF_SET_FSPRIVATE2(bp, tp);
681
682	xfs_buf_item_trace("BJOIN", bip);
683}
684
685/*
686 * Mark the buffer as not needing to be unlocked when the buf item's
687 * IOP_UNLOCK() routine is called.  The buffer must already be locked
688 * and associated with the given transaction.
689 */
690/* ARGSUSED */
691void
692xfs_trans_bhold(xfs_trans_t	*tp,
693		xfs_buf_t	*bp)
694{
695	xfs_buf_log_item_t	*bip;
696
697	ASSERT(XFS_BUF_ISBUSY(bp));
698	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
699	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
700
701	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
702	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
703	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
704	ASSERT(atomic_read(&bip->bli_refcount) > 0);
705	bip->bli_flags |= XFS_BLI_HOLD;
706	xfs_buf_item_trace("BHOLD", bip);
707}
708
709/*
710 * Cancel the previous buffer hold request made on this buffer
711 * for this transaction.
712 */
713void
714xfs_trans_bhold_release(xfs_trans_t	*tp,
715			xfs_buf_t	*bp)
716{
717	xfs_buf_log_item_t	*bip;
718
719	ASSERT(XFS_BUF_ISBUSY(bp));
720	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
721	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
722
723	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
724	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
725	ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL));
726	ASSERT(atomic_read(&bip->bli_refcount) > 0);
727	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
728	bip->bli_flags &= ~XFS_BLI_HOLD;
729	xfs_buf_item_trace("BHOLD RELEASE", bip);
730}
731
732/*
733 * This is called to mark bytes first through last inclusive of the given
734 * buffer as needing to be logged when the transaction is committed.
735 * The buffer must already be associated with the given transaction.
736 *
737 * First and last are numbers relative to the beginning of this buffer,
738 * so the first byte in the buffer is numbered 0 regardless of the
739 * value of b_blkno.
740 */
741void
742xfs_trans_log_buf(xfs_trans_t	*tp,
743		  xfs_buf_t	*bp,
744		  uint		first,
745		  uint		last)
746{
747	xfs_buf_log_item_t	*bip;
748	xfs_log_item_desc_t	*lidp;
749
750	ASSERT(XFS_BUF_ISBUSY(bp));
751	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
752	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
753	ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
754	ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) ||
755	       (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks));
756
757	/*
758	 * Mark the buffer as needing to be written out eventually,
759	 * and set its iodone function to remove the buffer's buf log
760	 * item from the AIL and free it when the buffer is flushed
761	 * to disk.  See xfs_buf_attach_iodone() for more details
762	 * on li_cb and xfs_buf_iodone_callbacks().
763	 * If we end up aborting this transaction, we trap this buffer
764	 * inside the b_bdstrat callback so that this won't get written to
765	 * disk.
766	 */
767	XFS_BUF_DELAYWRITE(bp);
768	XFS_BUF_DONE(bp);
769
770	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
771	ASSERT(atomic_read(&bip->bli_refcount) > 0);
772	XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
773	bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone;
774
775	/*
776	 * If we invalidated the buffer within this transaction, then
777	 * cancel the invalidation now that we're dirtying the buffer
778	 * again.  There are no races with the code in xfs_buf_item_unpin(),
779	 * because we have a reference to the buffer this entire time.
780	 */
781	if (bip->bli_flags & XFS_BLI_STALE) {
782		xfs_buf_item_trace("BLOG UNSTALE", bip);
783		bip->bli_flags &= ~XFS_BLI_STALE;
784		ASSERT(XFS_BUF_ISSTALE(bp));
785		XFS_BUF_UNSTALE(bp);
786		bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL;
787	}
788
789	lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
790	ASSERT(lidp != NULL);
791
792	tp->t_flags |= XFS_TRANS_DIRTY;
793	lidp->lid_flags |= XFS_LID_DIRTY;
794	lidp->lid_flags &= ~XFS_LID_BUF_STALE;
795	bip->bli_flags |= XFS_BLI_LOGGED;
796	xfs_buf_item_log(bip, first, last);
797	xfs_buf_item_trace("BLOG", bip);
798}
799
800
801/*
802 * This called to invalidate a buffer that is being used within
803 * a transaction.  Typically this is because the blocks in the
804 * buffer are being freed, so we need to prevent it from being
805 * written out when we're done.  Allowing it to be written again
806 * might overwrite data in the free blocks if they are reallocated
807 * to a file.
808 *
809 * We prevent the buffer from being written out by clearing the
810 * B_DELWRI flag.  We can't always
811 * get rid of the buf log item at this point, though, because
812 * the buffer may still be pinned by another transaction.  If that
813 * is the case, then we'll wait until the buffer is committed to
814 * disk for the last time (we can tell by the ref count) and
815 * free it in xfs_buf_item_unpin().  Until it is cleaned up we
816 * will keep the buffer locked so that the buffer and buf log item
817 * are not reused.
818 */
819void
820xfs_trans_binval(
821	xfs_trans_t	*tp,
822	xfs_buf_t	*bp)
823{
824	xfs_log_item_desc_t	*lidp;
825	xfs_buf_log_item_t	*bip;
826
827	ASSERT(XFS_BUF_ISBUSY(bp));
828	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
829	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
830
831	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
832	lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip);
833	ASSERT(lidp != NULL);
834	ASSERT(atomic_read(&bip->bli_refcount) > 0);
835
836	if (bip->bli_flags & XFS_BLI_STALE) {
837		/*
838		 * If the buffer is already invalidated, then
839		 * just return.
840		 */
841		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
842		ASSERT(XFS_BUF_ISSTALE(bp));
843		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
844		ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF));
845		ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL);
846		ASSERT(lidp->lid_flags & XFS_LID_DIRTY);
847		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
848		xfs_buftrace("XFS_BINVAL RECUR", bp);
849		xfs_buf_item_trace("BINVAL RECUR", bip);
850		return;
851	}
852
853	/*
854	 * Clear the dirty bit in the buffer and set the STALE flag
855	 * in the buf log item.  The STALE flag will be used in
856	 * xfs_buf_item_unpin() to determine if it should clean up
857	 * when the last reference to the buf item is given up.
858	 * We set the XFS_BLI_CANCEL flag in the buf log format structure
859	 * and log the buf item.  This will be used at recovery time
860	 * to determine that copies of the buffer in the log before
861	 * this should not be replayed.
862	 * We mark the item descriptor and the transaction dirty so
863	 * that we'll hold the buffer until after the commit.
864	 *
865	 * Since we're invalidating the buffer, we also clear the state
866	 * about which parts of the buffer have been logged.  We also
867	 * clear the flag indicating that this is an inode buffer since
868	 * the data in the buffer will no longer be valid.
869	 *
870	 * We set the stale bit in the buffer as well since we're getting
871	 * rid of it.
872	 */
873	XFS_BUF_UNDELAYWRITE(bp);
874	XFS_BUF_STALE(bp);
875	bip->bli_flags |= XFS_BLI_STALE;
876	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY);
877	bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF;
878	bip->bli_format.blf_flags |= XFS_BLI_CANCEL;
879	memset((char *)(bip->bli_format.blf_data_map), 0,
880	      (bip->bli_format.blf_map_size * sizeof(uint)));
881	lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE;
882	tp->t_flags |= XFS_TRANS_DIRTY;
883	xfs_buftrace("XFS_BINVAL", bp);
884	xfs_buf_item_trace("BINVAL", bip);
885}
886
887/*
888 * This call is used to indicate that the buffer contains on-disk
889 * inodes which must be handled specially during recovery.  They
890 * require special handling because only the di_next_unlinked from
891 * the inodes in the buffer should be recovered.  The rest of the
892 * data in the buffer is logged via the inodes themselves.
893 *
894 * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log
895 * format structure so that we'll know what to do at recovery time.
896 */
897/* ARGSUSED */
898void
899xfs_trans_inode_buf(
900	xfs_trans_t	*tp,
901	xfs_buf_t	*bp)
902{
903	xfs_buf_log_item_t	*bip;
904
905	ASSERT(XFS_BUF_ISBUSY(bp));
906	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
907	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
908
909	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
910	ASSERT(atomic_read(&bip->bli_refcount) > 0);
911
912	bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF;
913}
914
915/*
916 * This call is used to indicate that the buffer is going to
917 * be staled and was an inode buffer. This means it gets
918 * special processing during unpin - where any inodes
919 * associated with the buffer should be removed from ail.
920 * There is also special processing during recovery,
921 * any replay of the inodes in the buffer needs to be
922 * prevented as the buffer may have been reused.
923 */
924void
925xfs_trans_stale_inode_buf(
926	xfs_trans_t	*tp,
927	xfs_buf_t	*bp)
928{
929	xfs_buf_log_item_t	*bip;
930
931	ASSERT(XFS_BUF_ISBUSY(bp));
932	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
933	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
934
935	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
936	ASSERT(atomic_read(&bip->bli_refcount) > 0);
937
938	bip->bli_flags |= XFS_BLI_STALE_INODE;
939	bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))
940		xfs_buf_iodone;
941}
942
943
944
945/*
946 * Mark the buffer as being one which contains newly allocated
947 * inodes.  We need to make sure that even if this buffer is
948 * relogged as an 'inode buf' we still recover all of the inode
949 * images in the face of a crash.  This works in coordination with
950 * xfs_buf_item_committed() to ensure that the buffer remains in the
951 * AIL at its original location even after it has been relogged.
952 */
953/* ARGSUSED */
954void
955xfs_trans_inode_alloc_buf(
956	xfs_trans_t	*tp,
957	xfs_buf_t	*bp)
958{
959	xfs_buf_log_item_t	*bip;
960
961	ASSERT(XFS_BUF_ISBUSY(bp));
962	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
963	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
964
965	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
966	ASSERT(atomic_read(&bip->bli_refcount) > 0);
967
968	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
969}
970
971
972/*
973 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
974 * dquots. However, unlike in inode buffer recovery, dquot buffers get
975 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
976 * The only thing that makes dquot buffers different from regular
977 * buffers is that we must not replay dquot bufs when recovering
978 * if a _corresponding_ quotaoff has happened. We also have to distinguish
979 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
980 * can be turned off independently.
981 */
982/* ARGSUSED */
983void
984xfs_trans_dquot_buf(
985	xfs_trans_t	*tp,
986	xfs_buf_t	*bp,
987	uint		type)
988{
989	xfs_buf_log_item_t	*bip;
990
991	ASSERT(XFS_BUF_ISBUSY(bp));
992	ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp);
993	ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
994	ASSERT(type == XFS_BLI_UDQUOT_BUF ||
995	       type == XFS_BLI_PDQUOT_BUF ||
996	       type == XFS_BLI_GDQUOT_BUF);
997
998	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *);
999	ASSERT(atomic_read(&bip->bli_refcount) > 0);
1000
1001	bip->bli_format.blf_flags |= type;
1002}
1003
1004/*
1005 * Check to see if a buffer matching the given parameters is already
1006 * a part of the given transaction.  Only check the first, embedded
1007 * chunk, since we don't want to spend all day scanning large transactions.
1008 */
1009STATIC xfs_buf_t *
1010xfs_trans_buf_item_match(
1011	xfs_trans_t	*tp,
1012	xfs_buftarg_t	*target,
1013	xfs_daddr_t	blkno,
1014	int		len)
1015{
1016	xfs_log_item_chunk_t	*licp;
1017	xfs_log_item_desc_t	*lidp;
1018	xfs_buf_log_item_t	*blip;
1019	xfs_buf_t		*bp;
1020	int			i;
1021
1022	bp = NULL;
1023	len = BBTOB(len);
1024	licp = &tp->t_items;
1025	if (!XFS_LIC_ARE_ALL_FREE(licp)) {
1026		for (i = 0; i < licp->lic_unused; i++) {
1027			/*
1028			 * Skip unoccupied slots.
1029			 */
1030			if (XFS_LIC_ISFREE(licp, i)) {
1031				continue;
1032			}
1033
1034			lidp = XFS_LIC_SLOT(licp, i);
1035			blip = (xfs_buf_log_item_t *)lidp->lid_item;
1036			if (blip->bli_item.li_type != XFS_LI_BUF) {
1037				continue;
1038			}
1039
1040			bp = blip->bli_buf;
1041			if ((XFS_BUF_TARGET(bp) == target) &&
1042			    (XFS_BUF_ADDR(bp) == blkno) &&
1043			    (XFS_BUF_COUNT(bp) == len)) {
1044				/*
1045				 * We found it.  Break out and
1046				 * return the pointer to the buffer.
1047				 */
1048				break;
1049			} else {
1050				bp = NULL;
1051			}
1052		}
1053	}
1054	return bp;
1055}
1056
1057/*
1058 * Check to see if a buffer matching the given parameters is already
1059 * a part of the given transaction.  Check all the chunks, we
1060 * want to be thorough.
1061 */
1062STATIC xfs_buf_t *
1063xfs_trans_buf_item_match_all(
1064	xfs_trans_t	*tp,
1065	xfs_buftarg_t	*target,
1066	xfs_daddr_t	blkno,
1067	int		len)
1068{
1069	xfs_log_item_chunk_t	*licp;
1070	xfs_log_item_desc_t	*lidp;
1071	xfs_buf_log_item_t	*blip;
1072	xfs_buf_t		*bp;
1073	int			i;
1074
1075	bp = NULL;
1076	len = BBTOB(len);
1077	for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) {
1078		if (XFS_LIC_ARE_ALL_FREE(licp)) {
1079			ASSERT(licp == &tp->t_items);
1080			ASSERT(licp->lic_next == NULL);
1081			return NULL;
1082		}
1083		for (i = 0; i < licp->lic_unused; i++) {
1084			/*
1085			 * Skip unoccupied slots.
1086			 */
1087			if (XFS_LIC_ISFREE(licp, i)) {
1088				continue;
1089			}
1090
1091			lidp = XFS_LIC_SLOT(licp, i);
1092			blip = (xfs_buf_log_item_t *)lidp->lid_item;
1093			if (blip->bli_item.li_type != XFS_LI_BUF) {
1094				continue;
1095			}
1096
1097			bp = blip->bli_buf;
1098			if ((XFS_BUF_TARGET(bp) == target) &&
1099			    (XFS_BUF_ADDR(bp) == blkno) &&
1100			    (XFS_BUF_COUNT(bp) == len)) {
1101				/*
1102				 * We found it.  Break out and
1103				 * return the pointer to the buffer.
1104				 */
1105				return bp;
1106			}
1107		}
1108	}
1109	return NULL;
1110}
1111