1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
25#include "xfs_buf_item.h"
26#include "xfs_sb.h"
27#include "xfs_ag.h"
28#include "xfs_dir2.h"
29#include "xfs_dmapi.h"
30#include "xfs_mount.h"
31#include "xfs_trans_priv.h"
32#include "xfs_bmap_btree.h"
33#include "xfs_alloc_btree.h"
34#include "xfs_ialloc_btree.h"
35#include "xfs_dir2_sf.h"
36#include "xfs_attr_sf.h"
37#include "xfs_dinode.h"
38#include "xfs_inode.h"
39#include "xfs_inode_item.h"
40#include "xfs_btree.h"
41#include "xfs_ialloc.h"
42#include "xfs_rw.h"
43
44
45kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
46
47/*
48 * This returns the number of iovecs needed to log the given inode item.
49 *
50 * We need one iovec for the inode log format structure, one for the
51 * inode core, and possibly one for the inode data/extents/b-tree root
52 * and one for the inode attribute data/extents/b-tree root.
53 */
54STATIC uint
55xfs_inode_item_size(
56	xfs_inode_log_item_t	*iip)
57{
58	uint		nvecs;
59	xfs_inode_t	*ip;
60
61	ip = iip->ili_inode;
62	nvecs = 2;
63
64	/*
65	 * Only log the data/extents/b-tree root if there is something
66	 * left to log.
67	 */
68	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
69
70	switch (ip->i_d.di_format) {
71	case XFS_DINODE_FMT_EXTENTS:
72		iip->ili_format.ilf_fields &=
73			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
74			  XFS_ILOG_DEV | XFS_ILOG_UUID);
75		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
76		    (ip->i_d.di_nextents > 0) &&
77		    (ip->i_df.if_bytes > 0)) {
78			ASSERT(ip->i_df.if_u1.if_extents != NULL);
79			nvecs++;
80		} else {
81			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
82		}
83		break;
84
85	case XFS_DINODE_FMT_BTREE:
86		ASSERT(ip->i_df.if_ext_max ==
87		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
88		iip->ili_format.ilf_fields &=
89			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
90			  XFS_ILOG_DEV | XFS_ILOG_UUID);
91		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
92		    (ip->i_df.if_broot_bytes > 0)) {
93			ASSERT(ip->i_df.if_broot != NULL);
94			nvecs++;
95		} else {
96			ASSERT(!(iip->ili_format.ilf_fields &
97				 XFS_ILOG_DBROOT));
98#ifdef XFS_TRANS_DEBUG
99			if (iip->ili_root_size > 0) {
100				ASSERT(iip->ili_root_size ==
101				       ip->i_df.if_broot_bytes);
102				ASSERT(memcmp(iip->ili_orig_root,
103					    ip->i_df.if_broot,
104					    iip->ili_root_size) == 0);
105			} else {
106				ASSERT(ip->i_df.if_broot_bytes == 0);
107			}
108#endif
109			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
110		}
111		break;
112
113	case XFS_DINODE_FMT_LOCAL:
114		iip->ili_format.ilf_fields &=
115			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
116			  XFS_ILOG_DEV | XFS_ILOG_UUID);
117		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
118		    (ip->i_df.if_bytes > 0)) {
119			ASSERT(ip->i_df.if_u1.if_data != NULL);
120			ASSERT(ip->i_d.di_size > 0);
121			nvecs++;
122		} else {
123			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
124		}
125		break;
126
127	case XFS_DINODE_FMT_DEV:
128		iip->ili_format.ilf_fields &=
129			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
130			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
131		break;
132
133	case XFS_DINODE_FMT_UUID:
134		iip->ili_format.ilf_fields &=
135			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
136			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
137		break;
138
139	default:
140		ASSERT(0);
141		break;
142	}
143
144	/*
145	 * If there are no attributes associated with this file,
146	 * then there cannot be anything more to log.
147	 * Clear all attribute-related log flags.
148	 */
149	if (!XFS_IFORK_Q(ip)) {
150		iip->ili_format.ilf_fields &=
151			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
152		return nvecs;
153	}
154
155	/*
156	 * Log any necessary attribute data.
157	 */
158	switch (ip->i_d.di_aformat) {
159	case XFS_DINODE_FMT_EXTENTS:
160		iip->ili_format.ilf_fields &=
161			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
162		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
163		    (ip->i_d.di_anextents > 0) &&
164		    (ip->i_afp->if_bytes > 0)) {
165			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
166			nvecs++;
167		} else {
168			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
169		}
170		break;
171
172	case XFS_DINODE_FMT_BTREE:
173		iip->ili_format.ilf_fields &=
174			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
175		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
176		    (ip->i_afp->if_broot_bytes > 0)) {
177			ASSERT(ip->i_afp->if_broot != NULL);
178			nvecs++;
179		} else {
180			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
181		}
182		break;
183
184	case XFS_DINODE_FMT_LOCAL:
185		iip->ili_format.ilf_fields &=
186			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
187		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
188		    (ip->i_afp->if_bytes > 0)) {
189			ASSERT(ip->i_afp->if_u1.if_data != NULL);
190			nvecs++;
191		} else {
192			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
193		}
194		break;
195
196	default:
197		ASSERT(0);
198		break;
199	}
200
201	return nvecs;
202}
203
204/*
205 * This is called to fill in the vector of log iovecs for the
206 * given inode log item.  It fills the first item with an inode
207 * log format structure, the second with the on-disk inode structure,
208 * and a possible third and/or fourth with the inode data/extents/b-tree
209 * root and inode attributes data/extents/b-tree root.
210 */
211STATIC void
212xfs_inode_item_format(
213	xfs_inode_log_item_t	*iip,
214	xfs_log_iovec_t		*log_vector)
215{
216	uint			nvecs;
217	xfs_log_iovec_t		*vecp;
218	xfs_inode_t		*ip;
219	size_t			data_bytes;
220	xfs_bmbt_rec_t		*ext_buffer;
221	int			nrecs;
222	xfs_mount_t		*mp;
223
224	ip = iip->ili_inode;
225	vecp = log_vector;
226
227	vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
228	vecp->i_len  = sizeof(xfs_inode_log_format_t);
229	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
230	vecp++;
231	nvecs	     = 1;
232
233	/*
234	 * Clear i_update_core if the timestamps (or any other
235	 * non-transactional modification) need flushing/logging
236	 * and we're about to log them with the rest of the core.
237	 *
238	 * This is the same logic as xfs_iflush() but this code can't
239	 * run at the same time as xfs_iflush because we're in commit
240	 * processing here and so we have the inode lock held in
241	 * exclusive mode.  Although it doesn't really matter
242	 * for the timestamps if both routines were to grab the
243	 * timestamps or not.  That would be ok.
244	 *
245	 * We clear i_update_core before copying out the data.
246	 * This is for coordination with our timestamp updates
247	 * that don't hold the inode lock. They will always
248	 * update the timestamps BEFORE setting i_update_core,
249	 * so if we clear i_update_core after they set it we
250	 * are guaranteed to see their updates to the timestamps
251	 * either here.  Likewise, if they set it after we clear it
252	 * here, we'll see it either on the next commit of this
253	 * inode or the next time the inode gets flushed via
254	 * xfs_iflush().  This depends on strongly ordered memory
255	 * semantics, but we have that.  We use the SYNCHRONIZE
256	 * macro to make sure that the compiler does not reorder
257	 * the i_update_core access below the data copy below.
258	 */
259	if (ip->i_update_core)  {
260		ip->i_update_core = 0;
261		SYNCHRONIZE();
262	}
263
264	/*
265	 * We don't have to worry about re-ordering here because
266	 * the update_size field is protected by the inode lock
267	 * and we have that held in exclusive mode.
268	 */
269	if (ip->i_update_size)
270		ip->i_update_size = 0;
271
272	/*
273	 * Make sure to get the latest atime from the Linux inode.
274	 */
275	xfs_synchronize_atime(ip);
276
277	vecp->i_addr = (xfs_caddr_t)&ip->i_d;
278	vecp->i_len  = sizeof(xfs_dinode_core_t);
279	XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
280	vecp++;
281	nvecs++;
282	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
283
284	/*
285	 * If this is really an old format inode, then we need to
286	 * log it as such.  This means that we have to copy the link
287	 * count from the new field to the old.  We don't have to worry
288	 * about the new fields, because nothing trusts them as long as
289	 * the old inode version number is there.  If the superblock already
290	 * has a new version number, then we don't bother converting back.
291	 */
292	mp = ip->i_mount;
293	ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
294	       XFS_SB_VERSION_HASNLINK(&mp->m_sb));
295	if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
296		if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
297			/*
298			 * Convert it back.
299			 */
300			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
301			ip->i_d.di_onlink = ip->i_d.di_nlink;
302		} else {
303			/*
304			 * The superblock version has already been bumped,
305			 * so just make the conversion to the new inode
306			 * format permanent.
307			 */
308			ip->i_d.di_version = XFS_DINODE_VERSION_2;
309			ip->i_d.di_onlink = 0;
310			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
311		}
312	}
313
314	switch (ip->i_d.di_format) {
315	case XFS_DINODE_FMT_EXTENTS:
316		ASSERT(!(iip->ili_format.ilf_fields &
317			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
318			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
319		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
320			ASSERT(ip->i_df.if_bytes > 0);
321			ASSERT(ip->i_df.if_u1.if_extents != NULL);
322			ASSERT(ip->i_d.di_nextents > 0);
323			ASSERT(iip->ili_extents_buf == NULL);
324			nrecs = ip->i_df.if_bytes /
325				(uint)sizeof(xfs_bmbt_rec_t);
326			ASSERT(nrecs > 0);
327#ifdef XFS_NATIVE_HOST
328			if (nrecs == ip->i_d.di_nextents) {
329				/*
330				 * There are no delayed allocation
331				 * extents, so just point to the
332				 * real extents array.
333				 */
334				vecp->i_addr =
335					(char *)(ip->i_df.if_u1.if_extents);
336				vecp->i_len = ip->i_df.if_bytes;
337				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
338			} else
339#endif
340			{
341				/*
342				 * There are delayed allocation extents
343				 * in the inode, or we need to convert
344				 * the extents to on disk format.
345				 * Use xfs_iextents_copy()
346				 * to copy only the real extents into
347				 * a separate buffer.  We'll free the
348				 * buffer in the unlock routine.
349				 */
350				ext_buffer = kmem_alloc(ip->i_df.if_bytes,
351					KM_SLEEP);
352				iip->ili_extents_buf = ext_buffer;
353				vecp->i_addr = (xfs_caddr_t)ext_buffer;
354				vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
355						XFS_DATA_FORK);
356				XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
357			}
358			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
359			iip->ili_format.ilf_dsize = vecp->i_len;
360			vecp++;
361			nvecs++;
362		}
363		break;
364
365	case XFS_DINODE_FMT_BTREE:
366		ASSERT(!(iip->ili_format.ilf_fields &
367			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
368			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
369		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
370			ASSERT(ip->i_df.if_broot_bytes > 0);
371			ASSERT(ip->i_df.if_broot != NULL);
372			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
373			vecp->i_len = ip->i_df.if_broot_bytes;
374			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
375			vecp++;
376			nvecs++;
377			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
378		}
379		break;
380
381	case XFS_DINODE_FMT_LOCAL:
382		ASSERT(!(iip->ili_format.ilf_fields &
383			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
384			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
385		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
386			ASSERT(ip->i_df.if_bytes > 0);
387			ASSERT(ip->i_df.if_u1.if_data != NULL);
388			ASSERT(ip->i_d.di_size > 0);
389
390			vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
391			/*
392			 * Round i_bytes up to a word boundary.
393			 * The underlying memory is guaranteed to
394			 * to be there by xfs_idata_realloc().
395			 */
396			data_bytes = roundup(ip->i_df.if_bytes, 4);
397			ASSERT((ip->i_df.if_real_bytes == 0) ||
398			       (ip->i_df.if_real_bytes == data_bytes));
399			vecp->i_len = (int)data_bytes;
400			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
401			vecp++;
402			nvecs++;
403			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
404		}
405		break;
406
407	case XFS_DINODE_FMT_DEV:
408		ASSERT(!(iip->ili_format.ilf_fields &
409			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
410			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
411		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
412			iip->ili_format.ilf_u.ilfu_rdev =
413				ip->i_df.if_u2.if_rdev;
414		}
415		break;
416
417	case XFS_DINODE_FMT_UUID:
418		ASSERT(!(iip->ili_format.ilf_fields &
419			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
420			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
421		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
422			iip->ili_format.ilf_u.ilfu_uuid =
423				ip->i_df.if_u2.if_uuid;
424		}
425		break;
426
427	default:
428		ASSERT(0);
429		break;
430	}
431
432	/*
433	 * If there are no attributes associated with the file,
434	 * then we're done.
435	 * Assert that no attribute-related log flags are set.
436	 */
437	if (!XFS_IFORK_Q(ip)) {
438		ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
439		iip->ili_format.ilf_size = nvecs;
440		ASSERT(!(iip->ili_format.ilf_fields &
441			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
442		return;
443	}
444
445	switch (ip->i_d.di_aformat) {
446	case XFS_DINODE_FMT_EXTENTS:
447		ASSERT(!(iip->ili_format.ilf_fields &
448			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
449		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
450			ASSERT(ip->i_afp->if_bytes > 0);
451			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
452			ASSERT(ip->i_d.di_anextents > 0);
453#ifdef DEBUG
454			nrecs = ip->i_afp->if_bytes /
455				(uint)sizeof(xfs_bmbt_rec_t);
456#endif
457			ASSERT(nrecs > 0);
458			ASSERT(nrecs == ip->i_d.di_anextents);
459#ifdef XFS_NATIVE_HOST
460			/*
461			 * There are not delayed allocation extents
462			 * for attributes, so just point at the array.
463			 */
464			vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
465			vecp->i_len = ip->i_afp->if_bytes;
466#else
467			ASSERT(iip->ili_aextents_buf == NULL);
468			/*
469			 * Need to endian flip before logging
470			 */
471			ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
472				KM_SLEEP);
473			iip->ili_aextents_buf = ext_buffer;
474			vecp->i_addr = (xfs_caddr_t)ext_buffer;
475			vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
476					XFS_ATTR_FORK);
477#endif
478			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
479			iip->ili_format.ilf_asize = vecp->i_len;
480			vecp++;
481			nvecs++;
482		}
483		break;
484
485	case XFS_DINODE_FMT_BTREE:
486		ASSERT(!(iip->ili_format.ilf_fields &
487			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
488		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
489			ASSERT(ip->i_afp->if_broot_bytes > 0);
490			ASSERT(ip->i_afp->if_broot != NULL);
491			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
492			vecp->i_len = ip->i_afp->if_broot_bytes;
493			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
494			vecp++;
495			nvecs++;
496			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
497		}
498		break;
499
500	case XFS_DINODE_FMT_LOCAL:
501		ASSERT(!(iip->ili_format.ilf_fields &
502			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
503		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
504			ASSERT(ip->i_afp->if_bytes > 0);
505			ASSERT(ip->i_afp->if_u1.if_data != NULL);
506
507			vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
508			/*
509			 * Round i_bytes up to a word boundary.
510			 * The underlying memory is guaranteed to
511			 * to be there by xfs_idata_realloc().
512			 */
513			data_bytes = roundup(ip->i_afp->if_bytes, 4);
514			ASSERT((ip->i_afp->if_real_bytes == 0) ||
515			       (ip->i_afp->if_real_bytes == data_bytes));
516			vecp->i_len = (int)data_bytes;
517			XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
518			vecp++;
519			nvecs++;
520			iip->ili_format.ilf_asize = (unsigned)data_bytes;
521		}
522		break;
523
524	default:
525		ASSERT(0);
526		break;
527	}
528
529	ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
530	iip->ili_format.ilf_size = nvecs;
531}
532
533
534/*
535 * This is called to pin the inode associated with the inode log
536 * item in memory so it cannot be written out.  Do this by calling
537 * xfs_ipin() to bump the pin count in the inode while holding the
538 * inode pin lock.
539 */
540STATIC void
541xfs_inode_item_pin(
542	xfs_inode_log_item_t	*iip)
543{
544	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
545	xfs_ipin(iip->ili_inode);
546}
547
548
549/*
550 * This is called to unpin the inode associated with the inode log
551 * item which was previously pinned with a call to xfs_inode_item_pin().
552 * Just call xfs_iunpin() on the inode to do this.
553 */
554/* ARGSUSED */
555STATIC void
556xfs_inode_item_unpin(
557	xfs_inode_log_item_t	*iip,
558	int			stale)
559{
560	xfs_iunpin(iip->ili_inode);
561}
562
563/* ARGSUSED */
564STATIC void
565xfs_inode_item_unpin_remove(
566	xfs_inode_log_item_t	*iip,
567	xfs_trans_t		*tp)
568{
569	xfs_iunpin(iip->ili_inode);
570}
571
572/*
573 * This is called to attempt to lock the inode associated with this
574 * inode log item, in preparation for the push routine which does the actual
575 * iflush.  Don't sleep on the inode lock or the flush lock.
576 *
577 * If the flush lock is already held, indicating that the inode has
578 * been or is in the process of being flushed, then (ideally) we'd like to
579 * see if the inode's buffer is still incore, and if so give it a nudge.
580 * We delay doing so until the pushbuf routine, though, to avoid holding
581 * the AIL lock across a call to the blackhole which is the buffer cache.
582 * Also we don't want to sleep in any device strategy routines, which can happen
583 * if we do the subsequent bawrite in here.
584 */
585STATIC uint
586xfs_inode_item_trylock(
587	xfs_inode_log_item_t	*iip)
588{
589	register xfs_inode_t	*ip;
590
591	ip = iip->ili_inode;
592
593	if (xfs_ipincount(ip) > 0) {
594		return XFS_ITEM_PINNED;
595	}
596
597	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
598		return XFS_ITEM_LOCKED;
599	}
600
601	if (!xfs_iflock_nowait(ip)) {
602		/*
603		 * If someone else isn't already trying to push the inode
604		 * buffer, we get to do it.
605		 */
606		if (iip->ili_pushbuf_flag == 0) {
607			iip->ili_pushbuf_flag = 1;
608#ifdef DEBUG
609			iip->ili_push_owner = current_pid();
610#endif
611			/*
612			 * Inode is left locked in shared mode.
613			 * Pushbuf routine gets to unlock it.
614			 */
615			return XFS_ITEM_PUSHBUF;
616		} else {
617			/*
618			 * We hold the AIL_LOCK, so we must specify the
619			 * NONOTIFY flag so that we won't double trip.
620			 */
621			xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
622			return XFS_ITEM_FLUSHING;
623		}
624		/* NOTREACHED */
625	}
626
627	/* Stale items should force out the iclog */
628	if (ip->i_flags & XFS_ISTALE) {
629		xfs_ifunlock(ip);
630		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
631		return XFS_ITEM_PINNED;
632	}
633
634#ifdef DEBUG
635	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
636		ASSERT(iip->ili_format.ilf_fields != 0);
637		ASSERT(iip->ili_logged == 0);
638		ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
639	}
640#endif
641	return XFS_ITEM_SUCCESS;
642}
643
644/*
645 * Unlock the inode associated with the inode log item.
646 * Clear the fields of the inode and inode log item that
647 * are specific to the current transaction.  If the
648 * hold flags is set, do not unlock the inode.
649 */
650STATIC void
651xfs_inode_item_unlock(
652	xfs_inode_log_item_t	*iip)
653{
654	uint		hold;
655	uint		iolocked;
656	uint		lock_flags;
657	xfs_inode_t	*ip;
658
659	ASSERT(iip != NULL);
660	ASSERT(iip->ili_inode->i_itemp != NULL);
661	ASSERT(ismrlocked(&(iip->ili_inode->i_lock), MR_UPDATE));
662	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
663		  XFS_ILI_IOLOCKED_EXCL)) ||
664	       ismrlocked(&(iip->ili_inode->i_iolock), MR_UPDATE));
665	ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
666		  XFS_ILI_IOLOCKED_SHARED)) ||
667	       ismrlocked(&(iip->ili_inode->i_iolock), MR_ACCESS));
668	/*
669	 * Clear the transaction pointer in the inode.
670	 */
671	ip = iip->ili_inode;
672	ip->i_transp = NULL;
673
674	/*
675	 * If the inode needed a separate buffer with which to log
676	 * its extents, then free it now.
677	 */
678	if (iip->ili_extents_buf != NULL) {
679		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
680		ASSERT(ip->i_d.di_nextents > 0);
681		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
682		ASSERT(ip->i_df.if_bytes > 0);
683		kmem_free(iip->ili_extents_buf, ip->i_df.if_bytes);
684		iip->ili_extents_buf = NULL;
685	}
686	if (iip->ili_aextents_buf != NULL) {
687		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
688		ASSERT(ip->i_d.di_anextents > 0);
689		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
690		ASSERT(ip->i_afp->if_bytes > 0);
691		kmem_free(iip->ili_aextents_buf, ip->i_afp->if_bytes);
692		iip->ili_aextents_buf = NULL;
693	}
694
695	/*
696	 * Figure out if we should unlock the inode or not.
697	 */
698	hold = iip->ili_flags & XFS_ILI_HOLD;
699
700	/*
701	 * Before clearing out the flags, remember whether we
702	 * are holding the inode's IO lock.
703	 */
704	iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
705
706	/*
707	 * Clear out the fields of the inode log item particular
708	 * to the current transaction.
709	 */
710	iip->ili_ilock_recur = 0;
711	iip->ili_iolock_recur = 0;
712	iip->ili_flags = 0;
713
714	/*
715	 * Unlock the inode if XFS_ILI_HOLD was not set.
716	 */
717	if (!hold) {
718		lock_flags = XFS_ILOCK_EXCL;
719		if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
720			lock_flags |= XFS_IOLOCK_EXCL;
721		} else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
722			lock_flags |= XFS_IOLOCK_SHARED;
723		}
724		xfs_iput(iip->ili_inode, lock_flags);
725	}
726}
727
728/*
729 * This is called to find out where the oldest active copy of the
730 * inode log item in the on disk log resides now that the last log
731 * write of it completed at the given lsn.  Since we always re-log
732 * all dirty data in an inode, the latest copy in the on disk log
733 * is the only one that matters.  Therefore, simply return the
734 * given lsn.
735 */
736/*ARGSUSED*/
737STATIC xfs_lsn_t
738xfs_inode_item_committed(
739	xfs_inode_log_item_t	*iip,
740	xfs_lsn_t		lsn)
741{
742	return (lsn);
743}
744
745/*
746 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
747 * failed to get the inode flush lock but did get the inode locked SHARED.
748 * Here we're trying to see if the inode buffer is incore, and if so whether it's
749 * marked delayed write. If that's the case, we'll initiate a bawrite on that
750 * buffer to expedite the process.
751 *
752 * We aren't holding the AIL_LOCK (or the flush lock) when this gets called,
753 * so it is inherently race-y.
754 */
755STATIC void
756xfs_inode_item_pushbuf(
757	xfs_inode_log_item_t	*iip)
758{
759	xfs_inode_t	*ip;
760	xfs_mount_t	*mp;
761	xfs_buf_t	*bp;
762	uint		dopush;
763
764	ip = iip->ili_inode;
765
766	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
767
768	/*
769	 * The ili_pushbuf_flag keeps others from
770	 * trying to duplicate our effort.
771	 */
772	ASSERT(iip->ili_pushbuf_flag != 0);
773	ASSERT(iip->ili_push_owner == current_pid());
774
775	/*
776	 * If flushlock isn't locked anymore, chances are that the
777	 * inode flush completed and the inode was taken off the AIL.
778	 * So, just get out.
779	 */
780	if (!issemalocked(&(ip->i_flock)) ||
781	    ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
782		iip->ili_pushbuf_flag = 0;
783		xfs_iunlock(ip, XFS_ILOCK_SHARED);
784		return;
785	}
786
787	mp = ip->i_mount;
788	bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
789		    iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
790
791	if (bp != NULL) {
792		if (XFS_BUF_ISDELAYWRITE(bp)) {
793			/*
794			 * We were racing with iflush because we don't hold
795			 * the AIL_LOCK or the flush lock. However, at this point,
796			 * we have the buffer, and we know that it's dirty.
797			 * So, it's possible that iflush raced with us, and
798			 * this item is already taken off the AIL.
799			 * If not, we can flush it async.
800			 */
801			dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
802				  issemalocked(&(ip->i_flock)));
803			iip->ili_pushbuf_flag = 0;
804			xfs_iunlock(ip, XFS_ILOCK_SHARED);
805			xfs_buftrace("INODE ITEM PUSH", bp);
806			if (XFS_BUF_ISPINNED(bp)) {
807				xfs_log_force(mp, (xfs_lsn_t)0,
808					      XFS_LOG_FORCE);
809			}
810			if (dopush) {
811				xfs_bawrite(mp, bp);
812			} else {
813				xfs_buf_relse(bp);
814			}
815		} else {
816			iip->ili_pushbuf_flag = 0;
817			xfs_iunlock(ip, XFS_ILOCK_SHARED);
818			xfs_buf_relse(bp);
819		}
820		return;
821	}
822	/*
823	 * We have to be careful about resetting pushbuf flag too early (above).
824	 * Even though in theory we can do it as soon as we have the buflock,
825	 * we don't want others to be doing work needlessly. They'll come to
826	 * this function thinking that pushing the buffer is their
827	 * responsibility only to find that the buffer is still locked by
828	 * another doing the same thing
829	 */
830	iip->ili_pushbuf_flag = 0;
831	xfs_iunlock(ip, XFS_ILOCK_SHARED);
832	return;
833}
834
835
836/*
837 * This is called to asynchronously write the inode associated with this
838 * inode log item out to disk. The inode will already have been locked by
839 * a successful call to xfs_inode_item_trylock().
840 */
841STATIC void
842xfs_inode_item_push(
843	xfs_inode_log_item_t	*iip)
844{
845	xfs_inode_t	*ip;
846
847	ip = iip->ili_inode;
848
849	ASSERT(ismrlocked(&(ip->i_lock), MR_ACCESS));
850	ASSERT(issemalocked(&(ip->i_flock)));
851	/*
852	 * Since we were able to lock the inode's flush lock and
853	 * we found it on the AIL, the inode must be dirty.  This
854	 * is because the inode is removed from the AIL while still
855	 * holding the flush lock in xfs_iflush_done().  Thus, if
856	 * we found it in the AIL and were able to obtain the flush
857	 * lock without sleeping, then there must not have been
858	 * anyone in the process of flushing the inode.
859	 */
860	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
861	       iip->ili_format.ilf_fields != 0);
862
863	/*
864	 * Write out the inode.  The completion routine ('iflush_done') will
865	 * pull it from the AIL, mark it clean, unlock the flush lock.
866	 */
867	(void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
868	xfs_iunlock(ip, XFS_ILOCK_SHARED);
869
870	return;
871}
872
873/* ARGSUSED */
874STATIC void
875xfs_inode_item_committing(
876	xfs_inode_log_item_t	*iip,
877	xfs_lsn_t		lsn)
878{
879	iip->ili_last_lsn = lsn;
880	return;
881}
882
883/*
884 * This is the ops vector shared by all buf log items.
885 */
886static struct xfs_item_ops xfs_inode_item_ops = {
887	.iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
888	.iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
889					xfs_inode_item_format,
890	.iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
891	.iop_unpin	= (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
892	.iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
893					xfs_inode_item_unpin_remove,
894	.iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
895	.iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
896	.iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
897					xfs_inode_item_committed,
898	.iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push,
899	.iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
900	.iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
901					xfs_inode_item_committing
902};
903
904
905/*
906 * Initialize the inode log item for a newly allocated (in-core) inode.
907 */
908void
909xfs_inode_item_init(
910	xfs_inode_t	*ip,
911	xfs_mount_t	*mp)
912{
913	xfs_inode_log_item_t	*iip;
914
915	ASSERT(ip->i_itemp == NULL);
916	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
917
918	iip->ili_item.li_type = XFS_LI_INODE;
919	iip->ili_item.li_ops = &xfs_inode_item_ops;
920	iip->ili_item.li_mountp = mp;
921	iip->ili_inode = ip;
922
923	/*
924	   We have zeroed memory. No need ...
925	   iip->ili_extents_buf = NULL;
926	   iip->ili_pushbuf_flag = 0;
927	 */
928
929	iip->ili_format.ilf_type = XFS_LI_INODE;
930	iip->ili_format.ilf_ino = ip->i_ino;
931	iip->ili_format.ilf_blkno = ip->i_blkno;
932	iip->ili_format.ilf_len = ip->i_len;
933	iip->ili_format.ilf_boffset = ip->i_boffset;
934}
935
936/*
937 * Free the inode log item and any memory hanging off of it.
938 */
939void
940xfs_inode_item_destroy(
941	xfs_inode_t	*ip)
942{
943#ifdef XFS_TRANS_DEBUG
944	if (ip->i_itemp->ili_root_size != 0) {
945		kmem_free(ip->i_itemp->ili_orig_root,
946			  ip->i_itemp->ili_root_size);
947	}
948#endif
949	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
950}
951
952
953/*
954 * This is the inode flushing I/O completion routine.  It is called
955 * from interrupt level when the buffer containing the inode is
956 * flushed to disk.  It is responsible for removing the inode item
957 * from the AIL if it has not been re-logged, and unlocking the inode's
958 * flush lock.
959 */
960/*ARGSUSED*/
961void
962xfs_iflush_done(
963	xfs_buf_t		*bp,
964	xfs_inode_log_item_t	*iip)
965{
966	xfs_inode_t	*ip;
967	SPLDECL(s);
968
969	ip = iip->ili_inode;
970
971	/*
972	 * We only want to pull the item from the AIL if it is
973	 * actually there and its location in the log has not
974	 * changed since we started the flush.  Thus, we only bother
975	 * if the ili_logged flag is set and the inode's lsn has not
976	 * changed.  First we check the lsn outside
977	 * the lock since it's cheaper, and then we recheck while
978	 * holding the lock before removing the inode from the AIL.
979	 */
980	if (iip->ili_logged &&
981	    (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
982		AIL_LOCK(ip->i_mount, s);
983		if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
984			/*
985			 * xfs_trans_delete_ail() drops the AIL lock.
986			 */
987			xfs_trans_delete_ail(ip->i_mount,
988					     (xfs_log_item_t*)iip, s);
989		} else {
990			AIL_UNLOCK(ip->i_mount, s);
991		}
992	}
993
994	iip->ili_logged = 0;
995
996	/*
997	 * Clear the ili_last_fields bits now that we know that the
998	 * data corresponding to them is safely on disk.
999	 */
1000	iip->ili_last_fields = 0;
1001
1002	/*
1003	 * Release the inode's flush lock since we're done with it.
1004	 */
1005	xfs_ifunlock(ip);
1006
1007	return;
1008}
1009
1010/*
1011 * This is the inode flushing abort routine.  It is called
1012 * from xfs_iflush when the filesystem is shutting down to clean
1013 * up the inode state.
1014 * It is responsible for removing the inode item
1015 * from the AIL if it has not been re-logged, and unlocking the inode's
1016 * flush lock.
1017 */
1018void
1019xfs_iflush_abort(
1020	xfs_inode_t		*ip)
1021{
1022	xfs_inode_log_item_t	*iip;
1023	xfs_mount_t		*mp;
1024	SPLDECL(s);
1025
1026	iip = ip->i_itemp;
1027	mp = ip->i_mount;
1028	if (iip) {
1029		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1030			AIL_LOCK(mp, s);
1031			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
1032				/*
1033				 * xfs_trans_delete_ail() drops the AIL lock.
1034				 */
1035				xfs_trans_delete_ail(mp, (xfs_log_item_t *)iip,
1036					s);
1037			} else
1038				AIL_UNLOCK(mp, s);
1039		}
1040		iip->ili_logged = 0;
1041		/*
1042		 * Clear the ili_last_fields bits now that we know that the
1043		 * data corresponding to them is safely on disk.
1044		 */
1045		iip->ili_last_fields = 0;
1046		/*
1047		 * Clear the inode logging fields so no more flushes are
1048		 * attempted.
1049		 */
1050		iip->ili_format.ilf_fields = 0;
1051	}
1052	/*
1053	 * Release the inode's flush lock since we're done with it.
1054	 */
1055	xfs_ifunlock(ip);
1056}
1057
1058void
1059xfs_istale_done(
1060	xfs_buf_t		*bp,
1061	xfs_inode_log_item_t	*iip)
1062{
1063	xfs_iflush_abort(iip->ili_inode);
1064}
1065
1066/*
1067 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1068 * (which can have different field alignments) to the native version
1069 */
1070int
1071xfs_inode_item_format_convert(
1072	xfs_log_iovec_t		*buf,
1073	xfs_inode_log_format_t	*in_f)
1074{
1075	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1076		xfs_inode_log_format_32_t *in_f32;
1077
1078		in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1079		in_f->ilf_type = in_f32->ilf_type;
1080		in_f->ilf_size = in_f32->ilf_size;
1081		in_f->ilf_fields = in_f32->ilf_fields;
1082		in_f->ilf_asize = in_f32->ilf_asize;
1083		in_f->ilf_dsize = in_f32->ilf_dsize;
1084		in_f->ilf_ino = in_f32->ilf_ino;
1085		/* copy biggest field of ilf_u */
1086		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1087		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1088		       sizeof(uuid_t));
1089		in_f->ilf_blkno = in_f32->ilf_blkno;
1090		in_f->ilf_len = in_f32->ilf_len;
1091		in_f->ilf_boffset = in_f32->ilf_boffset;
1092		return 0;
1093	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1094		xfs_inode_log_format_64_t *in_f64;
1095
1096		in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1097		in_f->ilf_type = in_f64->ilf_type;
1098		in_f->ilf_size = in_f64->ilf_size;
1099		in_f->ilf_fields = in_f64->ilf_fields;
1100		in_f->ilf_asize = in_f64->ilf_asize;
1101		in_f->ilf_dsize = in_f64->ilf_dsize;
1102		in_f->ilf_ino = in_f64->ilf_ino;
1103		/* copy biggest field of ilf_u */
1104		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1105		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1106		       sizeof(uuid_t));
1107		in_f->ilf_blkno = in_f64->ilf_blkno;
1108		in_f->ilf_len = in_f64->ilf_len;
1109		in_f->ilf_boffset = in_f64->ilf_boffset;
1110		return 0;
1111	}
1112	return EFSCORRUPTED;
1113}
1114