1/*
2 *  linux/fs/nfs/dir.c
3 *
4 *  Copyright (C) 1992  Rick Sladkey
5 *
6 *  nfs directory handling functions
7 *
8 * 10 Apr 1996	Added silly rename for unlink	--okir
9 * 28 Sep 1996	Improved directory cache --okir
10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
11 *              Re-implemented silly rename for unlink, newly implemented
12 *              silly rename for nfs_rename() following the suggestions
13 *              of Olaf Kirch (okir) found in this file.
14 *              Following Linus comments on my original hack, this version
15 *              depends only on the dcache stuff and doesn't touch the inode
16 *              layer (iput() and friends).
17 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/time.h>
21#include <linux/errno.h>
22#include <linux/stat.h>
23#include <linux/fcntl.h>
24#include <linux/string.h>
25#include <linux/kernel.h>
26#include <linux/slab.h>
27#include <linux/mm.h>
28#include <linux/sunrpc/clnt.h>
29#include <linux/nfs_fs.h>
30#include <linux/nfs_mount.h>
31#include <linux/pagemap.h>
32#include <linux/smp_lock.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/sched.h>
37
38#include "nfs4_fs.h"
39#include "delegation.h"
40#include "iostat.h"
41
42/* #define NFS_DEBUG_VERBOSE 1 */
43
44static int nfs_opendir(struct inode *, struct file *);
45static int nfs_readdir(struct file *, void *, filldir_t);
46static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
47static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
48static int nfs_mkdir(struct inode *, struct dentry *, int);
49static int nfs_rmdir(struct inode *, struct dentry *);
50static int nfs_unlink(struct inode *, struct dentry *);
51static int nfs_symlink(struct inode *, struct dentry *, const char *);
52static int nfs_link(struct dentry *, struct inode *, struct dentry *);
53static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
54static int nfs_rename(struct inode *, struct dentry *,
55		      struct inode *, struct dentry *);
56static int nfs_fsync_dir(struct file *, struct dentry *, int);
57static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58
59const struct file_operations nfs_dir_operations = {
60	.llseek		= nfs_llseek_dir,
61	.read		= generic_read_dir,
62	.readdir	= nfs_readdir,
63	.open		= nfs_opendir,
64	.release	= nfs_release,
65	.fsync		= nfs_fsync_dir,
66};
67
68const struct inode_operations nfs_dir_inode_operations = {
69	.create		= nfs_create,
70	.lookup		= nfs_lookup,
71	.link		= nfs_link,
72	.unlink		= nfs_unlink,
73	.symlink	= nfs_symlink,
74	.mkdir		= nfs_mkdir,
75	.rmdir		= nfs_rmdir,
76	.mknod		= nfs_mknod,
77	.rename		= nfs_rename,
78	.permission	= nfs_permission,
79	.getattr	= nfs_getattr,
80	.setattr	= nfs_setattr,
81};
82
83#ifdef CONFIG_NFS_V3
84const struct inode_operations nfs3_dir_inode_operations = {
85	.create		= nfs_create,
86	.lookup		= nfs_lookup,
87	.link		= nfs_link,
88	.unlink		= nfs_unlink,
89	.symlink	= nfs_symlink,
90	.mkdir		= nfs_mkdir,
91	.rmdir		= nfs_rmdir,
92	.mknod		= nfs_mknod,
93	.rename		= nfs_rename,
94	.permission	= nfs_permission,
95	.getattr	= nfs_getattr,
96	.setattr	= nfs_setattr,
97	.listxattr	= nfs3_listxattr,
98	.getxattr	= nfs3_getxattr,
99	.setxattr	= nfs3_setxattr,
100	.removexattr	= nfs3_removexattr,
101};
102#endif  /* CONFIG_NFS_V3 */
103
104#ifdef CONFIG_NFS_V4
105
106static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
107const struct inode_operations nfs4_dir_inode_operations = {
108	.create		= nfs_create,
109	.lookup		= nfs_atomic_lookup,
110	.link		= nfs_link,
111	.unlink		= nfs_unlink,
112	.symlink	= nfs_symlink,
113	.mkdir		= nfs_mkdir,
114	.rmdir		= nfs_rmdir,
115	.mknod		= nfs_mknod,
116	.rename		= nfs_rename,
117	.permission	= nfs_permission,
118	.getattr	= nfs_getattr,
119	.setattr	= nfs_setattr,
120	.getxattr       = nfs4_getxattr,
121	.setxattr       = nfs4_setxattr,
122	.listxattr      = nfs4_listxattr,
123};
124
125#endif /* CONFIG_NFS_V4 */
126
127/*
128 * Open file
129 */
130static int
131nfs_opendir(struct inode *inode, struct file *filp)
132{
133	int res;
134
135	dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
136			inode->i_sb->s_id, inode->i_ino);
137
138	lock_kernel();
139	/* Call generic open code in order to cache credentials */
140	res = nfs_open(inode, filp);
141	unlock_kernel();
142	return res;
143}
144
145typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
146typedef struct {
147	struct file	*file;
148	struct page	*page;
149	unsigned long	page_index;
150	__be32		*ptr;
151	u64		*dir_cookie;
152	loff_t		current_index;
153	struct nfs_entry *entry;
154	decode_dirent_t	decode;
155	int		plus;
156	int		error;
157	unsigned long	timestamp;
158	int		timestamp_valid;
159} nfs_readdir_descriptor_t;
160
161/* Now we cache directories properly, by stuffing the dirent
162 * data directly in the page cache.
163 *
164 * Inode invalidation due to refresh etc. takes care of
165 * _everything_, no sloppy entry flushing logic, no extraneous
166 * copying, network direct to page cache, the way it was meant
167 * to be.
168 *
169 * NOTE: Dirent information verification is done always by the
170 *	 page-in of the RPC reply, nowhere else, this simplies
171 *	 things substantially.
172 */
173static
174int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
175{
176	struct file	*file = desc->file;
177	struct inode	*inode = file->f_path.dentry->d_inode;
178	struct rpc_cred	*cred = nfs_file_cred(file);
179	unsigned long	timestamp;
180	int		error;
181
182	dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
183			__FUNCTION__, (long long)desc->entry->cookie,
184			page->index);
185
186 again:
187	timestamp = jiffies;
188	error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
189					  NFS_SERVER(inode)->dtsize, desc->plus);
190	if (error < 0) {
191		/* We requested READDIRPLUS, but the server doesn't grok it */
192		if (error == -ENOTSUPP && desc->plus) {
193			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
194			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
195			desc->plus = 0;
196			goto again;
197		}
198		goto error;
199	}
200	desc->timestamp = timestamp;
201	desc->timestamp_valid = 1;
202	SetPageUptodate(page);
203	spin_lock(&inode->i_lock);
204	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
205	spin_unlock(&inode->i_lock);
206	/* Ensure consistent page alignment of the data.
207	 * Note: assumes we have exclusive access to this mapping either
208	 *	 through inode->i_mutex or some other mechanism.
209	 */
210	if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
211		/* Should never happen */
212		nfs_zap_mapping(inode, inode->i_mapping);
213	}
214	unlock_page(page);
215	return 0;
216 error:
217	SetPageError(page);
218	unlock_page(page);
219	nfs_zap_caches(inode);
220	desc->error = error;
221	return -EIO;
222}
223
224static inline
225int dir_decode(nfs_readdir_descriptor_t *desc)
226{
227	__be32	*p = desc->ptr;
228	p = desc->decode(p, desc->entry, desc->plus);
229	if (IS_ERR(p))
230		return PTR_ERR(p);
231	desc->ptr = p;
232	if (desc->timestamp_valid)
233		desc->entry->fattr->time_start = desc->timestamp;
234	else
235		desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
236	return 0;
237}
238
239static inline
240void dir_page_release(nfs_readdir_descriptor_t *desc)
241{
242	kunmap(desc->page);
243	page_cache_release(desc->page);
244	desc->page = NULL;
245	desc->ptr = NULL;
246}
247
248/*
249 * Given a pointer to a buffer that has already been filled by a call
250 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
251 *
252 * If the end of the buffer has been reached, return -EAGAIN, if not,
253 * return the offset within the buffer of the next entry to be
254 * read.
255 */
256static inline
257int find_dirent(nfs_readdir_descriptor_t *desc)
258{
259	struct nfs_entry *entry = desc->entry;
260	int		loop_count = 0,
261			status;
262
263	while((status = dir_decode(desc)) == 0) {
264		dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
265				__FUNCTION__, (unsigned long long)entry->cookie);
266		if (entry->prev_cookie == *desc->dir_cookie)
267			break;
268		if (loop_count++ > 200) {
269			loop_count = 0;
270			schedule();
271		}
272	}
273	return status;
274}
275
276/*
277 * Given a pointer to a buffer that has already been filled by a call
278 * to readdir, find the entry at offset 'desc->file->f_pos'.
279 *
280 * If the end of the buffer has been reached, return -EAGAIN, if not,
281 * return the offset within the buffer of the next entry to be
282 * read.
283 */
284static inline
285int find_dirent_index(nfs_readdir_descriptor_t *desc)
286{
287	struct nfs_entry *entry = desc->entry;
288	int		loop_count = 0,
289			status;
290
291	for(;;) {
292		status = dir_decode(desc);
293		if (status)
294			break;
295
296		dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
297				(unsigned long long)entry->cookie, desc->current_index);
298
299		if (desc->file->f_pos == desc->current_index) {
300			*desc->dir_cookie = entry->cookie;
301			break;
302		}
303		desc->current_index++;
304		if (loop_count++ > 200) {
305			loop_count = 0;
306			schedule();
307		}
308	}
309	return status;
310}
311
312/*
313 * Find the given page, and call find_dirent() or find_dirent_index in
314 * order to try to return the next entry.
315 */
316static inline
317int find_dirent_page(nfs_readdir_descriptor_t *desc)
318{
319	struct inode	*inode = desc->file->f_path.dentry->d_inode;
320	struct page	*page;
321	int		status;
322
323	dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
324			__FUNCTION__, desc->page_index,
325			(long long) *desc->dir_cookie);
326
327	/* If we find the page in the page_cache, we cannot be sure
328	 * how fresh the data is, so we will ignore readdir_plus attributes.
329	 */
330	desc->timestamp_valid = 0;
331	page = read_cache_page(inode->i_mapping, desc->page_index,
332			       (filler_t *)nfs_readdir_filler, desc);
333	if (IS_ERR(page)) {
334		status = PTR_ERR(page);
335		goto out;
336	}
337
338	/* NOTE: Someone else may have changed the READDIRPLUS flag */
339	desc->page = page;
340	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
341	if (*desc->dir_cookie != 0)
342		status = find_dirent(desc);
343	else
344		status = find_dirent_index(desc);
345	if (status < 0)
346		dir_page_release(desc);
347 out:
348	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
349	return status;
350}
351
352/*
353 * Recurse through the page cache pages, and return a
354 * filled nfs_entry structure of the next directory entry if possible.
355 *
356 * The target for the search is '*desc->dir_cookie' if non-0,
357 * 'desc->file->f_pos' otherwise
358 */
359static inline
360int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
361{
362	int		loop_count = 0;
363	int		res;
364
365	/* Always search-by-index from the beginning of the cache */
366	if (*desc->dir_cookie == 0) {
367		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
368				(long long)desc->file->f_pos);
369		desc->page_index = 0;
370		desc->entry->cookie = desc->entry->prev_cookie = 0;
371		desc->entry->eof = 0;
372		desc->current_index = 0;
373	} else
374		dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
375				(unsigned long long)*desc->dir_cookie);
376
377	for (;;) {
378		res = find_dirent_page(desc);
379		if (res != -EAGAIN)
380			break;
381		/* Align to beginning of next page */
382		desc->page_index ++;
383		if (loop_count++ > 200) {
384			loop_count = 0;
385			schedule();
386		}
387	}
388
389	dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
390	return res;
391}
392
393static inline unsigned int dt_type(struct inode *inode)
394{
395	return (inode->i_mode >> 12) & 15;
396}
397
398static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
399
400/*
401 * Once we've found the start of the dirent within a page: fill 'er up...
402 */
403static
404int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
405		   filldir_t filldir)
406{
407	struct file	*file = desc->file;
408	struct nfs_entry *entry = desc->entry;
409	struct dentry	*dentry = NULL;
410	unsigned long	fileid;
411	int		loop_count = 0,
412			res;
413
414	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
415			(unsigned long long)entry->cookie);
416
417	for(;;) {
418		unsigned d_type = DT_UNKNOWN;
419		/* Note: entry->prev_cookie contains the cookie for
420		 *	 retrieving the current dirent on the server */
421		fileid = nfs_fileid_to_ino_t(entry->ino);
422
423		/* Get a dentry if we have one */
424		if (dentry != NULL)
425			dput(dentry);
426		dentry = nfs_readdir_lookup(desc);
427
428		/* Use readdirplus info */
429		if (dentry != NULL && dentry->d_inode != NULL) {
430			d_type = dt_type(dentry->d_inode);
431			fileid = dentry->d_inode->i_ino;
432		}
433
434		res = filldir(dirent, entry->name, entry->len,
435			      file->f_pos, fileid, d_type);
436		if (res < 0)
437			break;
438		file->f_pos++;
439		*desc->dir_cookie = entry->cookie;
440		if (dir_decode(desc) != 0) {
441			desc->page_index ++;
442			break;
443		}
444		if (loop_count++ > 200) {
445			loop_count = 0;
446			schedule();
447		}
448	}
449	dir_page_release(desc);
450	if (dentry != NULL)
451		dput(dentry);
452	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
453			(unsigned long long)*desc->dir_cookie, res);
454	return res;
455}
456
457/*
458 * If we cannot find a cookie in our cache, we suspect that this is
459 * because it points to a deleted file, so we ask the server to return
460 * whatever it thinks is the next entry. We then feed this to filldir.
461 * If all goes well, we should then be able to find our way round the
462 * cache on the next call to readdir_search_pagecache();
463 *
464 * NOTE: we cannot add the anonymous page to the pagecache because
465 *	 the data it contains might not be page aligned. Besides,
466 *	 we should already have a complete representation of the
467 *	 directory in the page cache by the time we get here.
468 */
469static inline
470int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
471		     filldir_t filldir)
472{
473	struct file	*file = desc->file;
474	struct inode	*inode = file->f_path.dentry->d_inode;
475	struct rpc_cred	*cred = nfs_file_cred(file);
476	struct page	*page = NULL;
477	int		status;
478	unsigned long	timestamp;
479
480	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
481			(unsigned long long)*desc->dir_cookie);
482
483	page = alloc_page(GFP_HIGHUSER);
484	if (!page) {
485		status = -ENOMEM;
486		goto out;
487	}
488	timestamp = jiffies;
489	desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
490						page,
491						NFS_SERVER(inode)->dtsize,
492						desc->plus);
493	spin_lock(&inode->i_lock);
494	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATIME;
495	spin_unlock(&inode->i_lock);
496	desc->page = page;
497	desc->ptr = kmap(page);		/* matching kunmap in nfs_do_filldir */
498	if (desc->error >= 0) {
499		desc->timestamp = timestamp;
500		desc->timestamp_valid = 1;
501		if ((status = dir_decode(desc)) == 0)
502			desc->entry->prev_cookie = *desc->dir_cookie;
503	} else
504		status = -EIO;
505	if (status < 0)
506		goto out_release;
507
508	status = nfs_do_filldir(desc, dirent, filldir);
509
510	/* Reset read descriptor so it searches the page cache from
511	 * the start upon the next call to readdir_search_pagecache() */
512	desc->page_index = 0;
513	desc->entry->cookie = desc->entry->prev_cookie = 0;
514	desc->entry->eof = 0;
515 out:
516	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
517			__FUNCTION__, status);
518	return status;
519 out_release:
520	dir_page_release(desc);
521	goto out;
522}
523
524/* The file offset position represents the dirent entry number.  A
525   last cookie cache takes care of the common case of reading the
526   whole directory.
527 */
528static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
529{
530	struct dentry	*dentry = filp->f_path.dentry;
531	struct inode	*inode = dentry->d_inode;
532	nfs_readdir_descriptor_t my_desc,
533			*desc = &my_desc;
534	struct nfs_entry my_entry;
535	struct nfs_fh	 fh;
536	struct nfs_fattr fattr;
537	long		res;
538
539	dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
540			dentry->d_parent->d_name.name, dentry->d_name.name,
541			(long long)filp->f_pos);
542	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
543
544	lock_kernel();
545
546	res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
547	if (res < 0) {
548		unlock_kernel();
549		return res;
550	}
551
552	/*
553	 * filp->f_pos points to the dirent entry number.
554	 * *desc->dir_cookie has the cookie for the next entry. We have
555	 * to either find the entry with the appropriate number or
556	 * revalidate the cookie.
557	 */
558	memset(desc, 0, sizeof(*desc));
559
560	desc->file = filp;
561	desc->dir_cookie = &((struct nfs_open_context *)filp->private_data)->dir_cookie;
562	desc->decode = NFS_PROTO(inode)->decode_dirent;
563	desc->plus = NFS_USE_READDIRPLUS(inode);
564
565	my_entry.cookie = my_entry.prev_cookie = 0;
566	my_entry.eof = 0;
567	my_entry.fh = &fh;
568	my_entry.fattr = &fattr;
569	nfs_fattr_init(&fattr);
570	desc->entry = &my_entry;
571
572	while(!desc->entry->eof) {
573		res = readdir_search_pagecache(desc);
574
575		if (res == -EBADCOOKIE) {
576			/* This means either end of directory */
577			if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
578				/* Or that the server has 'lost' a cookie */
579				res = uncached_readdir(desc, dirent, filldir);
580				if (res >= 0)
581					continue;
582			}
583			res = 0;
584			break;
585		}
586		if (res == -ETOOSMALL && desc->plus) {
587			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
588			nfs_zap_caches(inode);
589			desc->plus = 0;
590			desc->entry->eof = 0;
591			continue;
592		}
593		if (res < 0)
594			break;
595
596		res = nfs_do_filldir(desc, dirent, filldir);
597		if (res < 0) {
598			res = 0;
599			break;
600		}
601	}
602	unlock_kernel();
603	if (res > 0)
604		res = 0;
605	dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
606			dentry->d_parent->d_name.name, dentry->d_name.name,
607			res);
608	return res;
609}
610
611static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
612{
613	mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
614	switch (origin) {
615		case 1:
616			offset += filp->f_pos;
617		case 0:
618			if (offset >= 0)
619				break;
620		default:
621			offset = -EINVAL;
622			goto out;
623	}
624	if (offset != filp->f_pos) {
625		filp->f_pos = offset;
626		((struct nfs_open_context *)filp->private_data)->dir_cookie = 0;
627	}
628out:
629	mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
630	return offset;
631}
632
633/*
634 * All directory operations under NFS are synchronous, so fsync()
635 * is a dummy operation.
636 */
637static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
638{
639	dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
640			dentry->d_parent->d_name.name, dentry->d_name.name,
641			datasync);
642
643	return 0;
644}
645
646/*
647 * A check for whether or not the parent directory has changed.
648 * In the case it has, we assume that the dentries are untrustworthy
649 * and may need to be looked up again.
650 */
651static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
652{
653	unsigned long verf;
654
655	if (IS_ROOT(dentry))
656		return 1;
657	verf = (unsigned long)dentry->d_fsdata;
658	if (nfs_caches_unstable(dir)
659			|| verf != NFS_I(dir)->cache_change_attribute)
660		return 0;
661	return 1;
662}
663
664static inline void nfs_set_verifier(struct dentry * dentry, unsigned long verf)
665{
666	dentry->d_fsdata = (void *)verf;
667}
668
669static void nfs_refresh_verifier(struct dentry * dentry, unsigned long verf)
670{
671	nfs_set_verifier(dentry, verf);
672}
673
674/*
675 * Whenever an NFS operation succeeds, we know that the dentry
676 * is valid, so we update the revalidation timestamp.
677 */
678static inline void nfs_renew_times(struct dentry * dentry)
679{
680	dentry->d_time = jiffies;
681}
682
683/*
684 * Return the intent data that applies to this particular path component
685 *
686 * Note that the current set of intents only apply to the very last
687 * component of the path.
688 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
689 */
690static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
691{
692	if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
693		return 0;
694	return nd->flags & mask;
695}
696
697/*
698 * Inode and filehandle revalidation for lookups.
699 *
700 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
701 * or if the intent information indicates that we're about to open this
702 * particular file and the "nocto" mount flag is not set.
703 *
704 */
705static inline
706int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
707{
708	struct nfs_server *server = NFS_SERVER(inode);
709
710	if (nd != NULL) {
711		/* VFS wants an on-the-wire revalidation */
712		if (nd->flags & LOOKUP_REVAL)
713			goto out_force;
714		/* This is an open(2) */
715		if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
716				!(server->flags & NFS_MOUNT_NOCTO) &&
717				(S_ISREG(inode->i_mode) ||
718				 S_ISDIR(inode->i_mode)))
719			goto out_force;
720	}
721	return nfs_revalidate_inode(server, inode);
722out_force:
723	return __nfs_revalidate_inode(server, inode);
724}
725
726/*
727 * We judge how long we want to trust negative
728 * dentries by looking at the parent inode mtime.
729 *
730 * If parent mtime has changed, we revalidate, else we wait for a
731 * period corresponding to the parent's attribute cache timeout value.
732 */
733static inline
734int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
735		       struct nameidata *nd)
736{
737	/* Don't revalidate a negative dentry if we're creating a new file */
738	if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
739		return 0;
740	return !nfs_check_verifier(dir, dentry);
741}
742
743/*
744 * This is called every time the dcache has a lookup hit,
745 * and we should check whether we can really trust that
746 * lookup.
747 *
748 * NOTE! The hit can be a negative hit too, don't assume
749 * we have an inode!
750 *
751 * If the parent directory is seen to have changed, we throw out the
752 * cached dentry and do a new lookup.
753 */
754static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
755{
756	struct inode *dir;
757	struct inode *inode;
758	struct dentry *parent;
759	int error;
760	struct nfs_fh fhandle;
761	struct nfs_fattr fattr;
762	unsigned long verifier;
763
764	parent = dget_parent(dentry);
765	lock_kernel();
766	dir = parent->d_inode;
767	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
768	inode = dentry->d_inode;
769
770	/* Revalidate parent directory attribute cache */
771	if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
772		goto out_zap_parent;
773
774	if (!inode) {
775		if (nfs_neg_need_reval(dir, dentry, nd))
776			goto out_bad;
777		goto out_valid;
778	}
779
780	if (is_bad_inode(inode)) {
781		dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
782				__FUNCTION__, dentry->d_parent->d_name.name,
783				dentry->d_name.name);
784		goto out_bad;
785	}
786
787	/* Force a full look up iff the parent directory has changed */
788	if (nfs_check_verifier(dir, dentry)) {
789		if (nfs_lookup_verify_inode(inode, nd))
790			goto out_zap_parent;
791		goto out_valid;
792	}
793
794	if (NFS_STALE(inode))
795		goto out_bad;
796
797	verifier = nfs_save_change_attribute(dir);
798	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
799	if (error)
800		goto out_bad;
801	if (nfs_compare_fh(NFS_FH(inode), &fhandle))
802		goto out_bad;
803	if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
804		goto out_bad;
805
806	nfs_renew_times(dentry);
807	nfs_refresh_verifier(dentry, verifier);
808 out_valid:
809	unlock_kernel();
810	dput(parent);
811	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
812			__FUNCTION__, dentry->d_parent->d_name.name,
813			dentry->d_name.name);
814	return 1;
815out_zap_parent:
816	nfs_zap_caches(dir);
817 out_bad:
818	NFS_CACHEINV(dir);
819	if (inode && S_ISDIR(inode->i_mode)) {
820		/* Purge readdir caches. */
821		nfs_zap_caches(inode);
822		/* If we have submounts, don't unhash ! */
823		if (have_submounts(dentry))
824			goto out_valid;
825		shrink_dcache_parent(dentry);
826	}
827	d_drop(dentry);
828	unlock_kernel();
829	dput(parent);
830	dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
831			__FUNCTION__, dentry->d_parent->d_name.name,
832			dentry->d_name.name);
833	return 0;
834}
835
836/*
837 * This is called from dput() when d_count is going to 0.
838 */
839static int nfs_dentry_delete(struct dentry *dentry)
840{
841	dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
842		dentry->d_parent->d_name.name, dentry->d_name.name,
843		dentry->d_flags);
844
845	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
846		/* Unhash it, so that ->d_iput() would be called */
847		return 1;
848	}
849	if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
850		/* Unhash it, so that ancestors of killed async unlink
851		 * files will be cleaned up during umount */
852		return 1;
853	}
854	return 0;
855
856}
857
858/*
859 * Called when the dentry loses inode.
860 * We use it to clean up silly-renamed files.
861 */
862static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
863{
864	nfs_inode_return_delegation(inode);
865	if (S_ISDIR(inode->i_mode))
866		/* drop any readdir cache as it could easily be old */
867		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
868
869	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
870		lock_kernel();
871		drop_nlink(inode);
872		nfs_complete_unlink(dentry);
873		unlock_kernel();
874	}
875	/* When creating a negative dentry, we want to renew d_time */
876	nfs_renew_times(dentry);
877	iput(inode);
878}
879
880struct dentry_operations nfs_dentry_operations = {
881	.d_revalidate	= nfs_lookup_revalidate,
882	.d_delete	= nfs_dentry_delete,
883	.d_iput		= nfs_dentry_iput,
884};
885
886/*
887 * Use intent information to check whether or not we're going to do
888 * an O_EXCL create using this path component.
889 */
890static inline
891int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
892{
893	if (NFS_PROTO(dir)->version == 2)
894		return 0;
895	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
896		return 0;
897	return (nd->intent.open.flags & O_EXCL) != 0;
898}
899
900static inline int nfs_reval_fsid(struct vfsmount *mnt, struct inode *dir,
901				 struct nfs_fh *fh, struct nfs_fattr *fattr)
902{
903	struct nfs_server *server = NFS_SERVER(dir);
904
905	if (!nfs_fsid_equal(&server->fsid, &fattr->fsid))
906		/* Revalidate fsid on root dir */
907		return __nfs_revalidate_inode(server, mnt->mnt_root->d_inode);
908	return 0;
909}
910
911static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
912{
913	struct dentry *res;
914	struct inode *inode = NULL;
915	int error;
916	struct nfs_fh fhandle;
917	struct nfs_fattr fattr;
918
919	dfprintk(VFS, "NFS: lookup(%s/%s)\n",
920		dentry->d_parent->d_name.name, dentry->d_name.name);
921	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
922
923	res = ERR_PTR(-ENAMETOOLONG);
924	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
925		goto out;
926
927	res = ERR_PTR(-ENOMEM);
928	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
929
930	lock_kernel();
931
932	/*
933	 * If we're doing an exclusive create, optimize away the lookup
934	 * but don't hash the dentry.
935	 */
936	if (nfs_is_exclusive_create(dir, nd)) {
937		d_instantiate(dentry, NULL);
938		res = NULL;
939		goto out_unlock;
940	}
941
942	error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
943	if (error == -ENOENT)
944		goto no_entry;
945	if (error < 0) {
946		res = ERR_PTR(error);
947		goto out_unlock;
948	}
949	error = nfs_reval_fsid(nd->mnt, dir, &fhandle, &fattr);
950	if (error < 0) {
951		res = ERR_PTR(error);
952		goto out_unlock;
953	}
954	inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
955	res = (struct dentry *)inode;
956	if (IS_ERR(res))
957		goto out_unlock;
958
959no_entry:
960	res = d_materialise_unique(dentry, inode);
961	if (res != NULL) {
962		struct dentry *parent;
963		if (IS_ERR(res))
964			goto out_unlock;
965		/* Was a directory renamed! */
966		parent = dget_parent(res);
967		if (!IS_ROOT(parent))
968			nfs_mark_for_revalidate(parent->d_inode);
969		dput(parent);
970		dentry = res;
971	}
972	nfs_renew_times(dentry);
973	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
974out_unlock:
975	unlock_kernel();
976out:
977	return res;
978}
979
980#ifdef CONFIG_NFS_V4
981static int nfs_open_revalidate(struct dentry *, struct nameidata *);
982
983struct dentry_operations nfs4_dentry_operations = {
984	.d_revalidate	= nfs_open_revalidate,
985	.d_delete	= nfs_dentry_delete,
986	.d_iput		= nfs_dentry_iput,
987};
988
989/*
990 * Use intent information to determine whether we need to substitute
991 * the NFSv4-style stateful OPEN for the LOOKUP call
992 */
993static int is_atomic_open(struct inode *dir, struct nameidata *nd)
994{
995	if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
996		return 0;
997	/* NFS does not (yet) have a stateful open for directories */
998	if (nd->flags & LOOKUP_DIRECTORY)
999		return 0;
1000	/* Are we trying to write to a read only partition? */
1001	if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1002		return 0;
1003	return 1;
1004}
1005
1006static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1007{
1008	struct dentry *res = NULL;
1009	int error;
1010
1011	dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1012			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1013
1014	/* Check that we are indeed trying to open this file */
1015	if (!is_atomic_open(dir, nd))
1016		goto no_open;
1017
1018	if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1019		res = ERR_PTR(-ENAMETOOLONG);
1020		goto out;
1021	}
1022	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1023
1024	/* Let vfs_create() deal with O_EXCL */
1025	if (nd->intent.open.flags & O_EXCL) {
1026		d_add(dentry, NULL);
1027		goto out;
1028	}
1029
1030	/* Open the file on the server */
1031	lock_kernel();
1032	/* Revalidate parent directory attribute cache */
1033	error = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1034	if (error < 0) {
1035		res = ERR_PTR(error);
1036		unlock_kernel();
1037		goto out;
1038	}
1039
1040	if (nd->intent.open.flags & O_CREAT) {
1041		nfs_begin_data_update(dir);
1042		res = nfs4_atomic_open(dir, dentry, nd);
1043		nfs_end_data_update(dir);
1044	} else
1045		res = nfs4_atomic_open(dir, dentry, nd);
1046	unlock_kernel();
1047	if (IS_ERR(res)) {
1048		error = PTR_ERR(res);
1049		switch (error) {
1050			/* Make a negative dentry */
1051			case -ENOENT:
1052				res = NULL;
1053				goto out;
1054			/* This turned out not to be a regular file */
1055			case -EISDIR:
1056			case -ENOTDIR:
1057				goto no_open;
1058			case -ELOOP:
1059				if (!(nd->intent.open.flags & O_NOFOLLOW))
1060					goto no_open;
1061			/* case -EINVAL: */
1062			default:
1063				goto out;
1064		}
1065	} else if (res != NULL)
1066		dentry = res;
1067	nfs_renew_times(dentry);
1068	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1069out:
1070	return res;
1071no_open:
1072	return nfs_lookup(dir, dentry, nd);
1073}
1074
1075static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1076{
1077	struct dentry *parent = NULL;
1078	struct inode *inode = dentry->d_inode;
1079	struct inode *dir;
1080	unsigned long verifier;
1081	int openflags, ret = 0;
1082
1083	parent = dget_parent(dentry);
1084	dir = parent->d_inode;
1085	if (!is_atomic_open(dir, nd))
1086		goto no_open;
1087	/* We can't create new files in nfs_open_revalidate(), so we
1088	 * optimize away revalidation of negative dentries.
1089	 */
1090	if (inode == NULL)
1091		goto out;
1092	/* NFS only supports OPEN on regular files */
1093	if (!S_ISREG(inode->i_mode))
1094		goto no_open;
1095	openflags = nd->intent.open.flags;
1096	/* We cannot do exclusive creation on a positive dentry */
1097	if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1098		goto no_open;
1099	/* We can't create new files, or truncate existing ones here */
1100	openflags &= ~(O_CREAT|O_TRUNC);
1101
1102	/*
1103	 * Note: we're not holding inode->i_mutex and so may be racing with
1104	 * operations that change the directory. We therefore save the
1105	 * change attribute *before* we do the RPC call.
1106	 */
1107	lock_kernel();
1108	verifier = nfs_save_change_attribute(dir);
1109	ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1110	if (!ret)
1111		nfs_refresh_verifier(dentry, verifier);
1112	unlock_kernel();
1113out:
1114	dput(parent);
1115	if (!ret)
1116		d_drop(dentry);
1117	return ret;
1118no_open:
1119	dput(parent);
1120	if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1121		return 1;
1122	return nfs_lookup_revalidate(dentry, nd);
1123}
1124#endif /* CONFIG_NFSV4 */
1125
1126static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1127{
1128	struct dentry *parent = desc->file->f_path.dentry;
1129	struct inode *dir = parent->d_inode;
1130	struct nfs_entry *entry = desc->entry;
1131	struct dentry *dentry, *alias;
1132	struct qstr name = {
1133		.name = entry->name,
1134		.len = entry->len,
1135	};
1136	struct inode *inode;
1137
1138	switch (name.len) {
1139		case 2:
1140			if (name.name[0] == '.' && name.name[1] == '.')
1141				return dget_parent(parent);
1142			break;
1143		case 1:
1144			if (name.name[0] == '.')
1145				return dget(parent);
1146	}
1147	name.hash = full_name_hash(name.name, name.len);
1148	dentry = d_lookup(parent, &name);
1149	if (dentry != NULL) {
1150		/* Is this a positive dentry that matches the readdir info? */
1151		if (dentry->d_inode != NULL &&
1152				(NFS_FILEID(dentry->d_inode) == entry->ino ||
1153				d_mountpoint(dentry))) {
1154			if (!desc->plus || entry->fh->size == 0)
1155				return dentry;
1156			if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1157						entry->fh) == 0)
1158				goto out_renew;
1159		}
1160		/* No, so d_drop to allow one to be created */
1161		d_drop(dentry);
1162		dput(dentry);
1163	}
1164	if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1165		return NULL;
1166	/* Note: caller is already holding the dir->i_mutex! */
1167	dentry = d_alloc(parent, &name);
1168	if (dentry == NULL)
1169		return NULL;
1170	dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1171	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1172	if (IS_ERR(inode)) {
1173		dput(dentry);
1174		return NULL;
1175	}
1176
1177	alias = d_materialise_unique(dentry, inode);
1178	if (alias != NULL) {
1179		dput(dentry);
1180		if (IS_ERR(alias))
1181			return NULL;
1182		dentry = alias;
1183	}
1184
1185	nfs_renew_times(dentry);
1186	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1187	return dentry;
1188out_renew:
1189	nfs_renew_times(dentry);
1190	nfs_refresh_verifier(dentry, nfs_save_change_attribute(dir));
1191	return dentry;
1192}
1193
1194/*
1195 * Code common to create, mkdir, and mknod.
1196 */
1197int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1198				struct nfs_fattr *fattr)
1199{
1200	struct inode *inode;
1201	int error = -EACCES;
1202
1203	/* We may have been initialized further down */
1204	if (dentry->d_inode)
1205		return 0;
1206	if (fhandle->size == 0) {
1207		struct inode *dir = dentry->d_parent->d_inode;
1208		error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1209		if (error)
1210			return error;
1211	}
1212	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1213		struct nfs_server *server = NFS_SB(dentry->d_sb);
1214		error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1215		if (error < 0)
1216			return error;
1217	}
1218	inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1219	error = PTR_ERR(inode);
1220	if (IS_ERR(inode))
1221		return error;
1222	d_instantiate(dentry, inode);
1223	if (d_unhashed(dentry))
1224		d_rehash(dentry);
1225	return 0;
1226}
1227
1228/*
1229 * Following a failed create operation, we drop the dentry rather
1230 * than retain a negative dentry. This avoids a problem in the event
1231 * that the operation succeeded on the server, but an error in the
1232 * reply path made it appear to have failed.
1233 */
1234static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1235		struct nameidata *nd)
1236{
1237	struct iattr attr;
1238	int error;
1239	int open_flags = 0;
1240
1241	dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1242			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1243
1244	attr.ia_mode = mode;
1245	attr.ia_valid = ATTR_MODE;
1246
1247	if (nd && (nd->flags & LOOKUP_CREATE))
1248		open_flags = nd->intent.open.flags;
1249
1250	lock_kernel();
1251	nfs_begin_data_update(dir);
1252	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1253	nfs_end_data_update(dir);
1254	if (error != 0)
1255		goto out_err;
1256	nfs_renew_times(dentry);
1257	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1258	unlock_kernel();
1259	return 0;
1260out_err:
1261	unlock_kernel();
1262	d_drop(dentry);
1263	return error;
1264}
1265
1266/*
1267 * See comments for nfs_proc_create regarding failed operations.
1268 */
1269static int
1270nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1271{
1272	struct iattr attr;
1273	int status;
1274
1275	dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1276			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1277
1278	if (!new_valid_dev(rdev))
1279		return -EINVAL;
1280
1281	attr.ia_mode = mode;
1282	attr.ia_valid = ATTR_MODE;
1283
1284	lock_kernel();
1285	nfs_begin_data_update(dir);
1286	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1287	nfs_end_data_update(dir);
1288	if (status != 0)
1289		goto out_err;
1290	nfs_renew_times(dentry);
1291	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1292	unlock_kernel();
1293	return 0;
1294out_err:
1295	unlock_kernel();
1296	d_drop(dentry);
1297	return status;
1298}
1299
1300/*
1301 * See comments for nfs_proc_create regarding failed operations.
1302 */
1303static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1304{
1305	struct iattr attr;
1306	int error;
1307
1308	dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1309			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1310
1311	attr.ia_valid = ATTR_MODE;
1312	attr.ia_mode = mode | S_IFDIR;
1313
1314	lock_kernel();
1315	nfs_begin_data_update(dir);
1316	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1317	nfs_end_data_update(dir);
1318	if (error != 0)
1319		goto out_err;
1320	nfs_renew_times(dentry);
1321	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1322	unlock_kernel();
1323	return 0;
1324out_err:
1325	d_drop(dentry);
1326	unlock_kernel();
1327	return error;
1328}
1329
1330static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1331{
1332	int error;
1333
1334	dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1335			dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1336
1337	lock_kernel();
1338	nfs_begin_data_update(dir);
1339	error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1340	/* Ensure the VFS deletes this inode */
1341	if (error == 0 && dentry->d_inode != NULL)
1342		clear_nlink(dentry->d_inode);
1343	nfs_end_data_update(dir);
1344	unlock_kernel();
1345
1346	return error;
1347}
1348
1349static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1350{
1351	static unsigned int sillycounter;
1352	const int      i_inosize  = sizeof(dir->i_ino)*2;
1353	const int      countersize = sizeof(sillycounter)*2;
1354	const int      slen       = sizeof(".nfs") + i_inosize + countersize - 1;
1355	char           silly[slen+1];
1356	struct qstr    qsilly;
1357	struct dentry *sdentry;
1358	int            error = -EIO;
1359
1360	dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1361		dentry->d_parent->d_name.name, dentry->d_name.name,
1362		atomic_read(&dentry->d_count));
1363	nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1364
1365	/*
1366	 * We don't allow a dentry to be silly-renamed twice.
1367	 */
1368	error = -EBUSY;
1369	if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1370		goto out;
1371
1372	sprintf(silly, ".nfs%*.*lx",
1373		i_inosize, i_inosize, dentry->d_inode->i_ino);
1374
1375	/* Return delegation in anticipation of the rename */
1376	nfs_inode_return_delegation(dentry->d_inode);
1377
1378	sdentry = NULL;
1379	do {
1380		char *suffix = silly + slen - countersize;
1381
1382		dput(sdentry);
1383		sillycounter++;
1384		sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1385
1386		dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1387				dentry->d_name.name, silly);
1388
1389		sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1390		/*
1391		 * N.B. Better to return EBUSY here ... it could be
1392		 * dangerous to delete the file while it's in use.
1393		 */
1394		if (IS_ERR(sdentry))
1395			goto out;
1396	} while(sdentry->d_inode != NULL); /* need negative lookup */
1397
1398	qsilly.name = silly;
1399	qsilly.len  = strlen(silly);
1400	nfs_begin_data_update(dir);
1401	if (dentry->d_inode) {
1402		nfs_begin_data_update(dentry->d_inode);
1403		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1404				dir, &qsilly);
1405		nfs_mark_for_revalidate(dentry->d_inode);
1406		nfs_end_data_update(dentry->d_inode);
1407	} else
1408		error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1409				dir, &qsilly);
1410	nfs_end_data_update(dir);
1411	if (!error) {
1412		nfs_renew_times(dentry);
1413		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1414		d_move(dentry, sdentry);
1415		error = nfs_async_unlink(dentry);
1416 		/* If we return 0 we don't unlink */
1417	}
1418	dput(sdentry);
1419out:
1420	return error;
1421}
1422
1423/*
1424 * Remove a file after making sure there are no pending writes,
1425 * and after checking that the file has only one user.
1426 *
1427 * We invalidate the attribute cache and free the inode prior to the operation
1428 * to avoid possible races if the server reuses the inode.
1429 */
1430static int nfs_safe_remove(struct dentry *dentry)
1431{
1432	struct inode *dir = dentry->d_parent->d_inode;
1433	struct inode *inode = dentry->d_inode;
1434	int error = -EBUSY;
1435
1436	dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1437		dentry->d_parent->d_name.name, dentry->d_name.name);
1438
1439	/* If the dentry was sillyrenamed, we simply call d_delete() */
1440	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1441		error = 0;
1442		goto out;
1443	}
1444
1445	nfs_begin_data_update(dir);
1446	if (inode != NULL) {
1447		nfs_inode_return_delegation(inode);
1448		nfs_begin_data_update(inode);
1449		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1450		/* The VFS may want to delete this inode */
1451		if (error == 0)
1452			drop_nlink(inode);
1453		nfs_mark_for_revalidate(inode);
1454		nfs_end_data_update(inode);
1455	} else
1456		error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1457	nfs_end_data_update(dir);
1458out:
1459	return error;
1460}
1461
1462/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1463 *  belongs to an active ".nfs..." file and we return -EBUSY.
1464 *
1465 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1466 */
1467static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1468{
1469	int error;
1470	int need_rehash = 0;
1471
1472	dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1473		dir->i_ino, dentry->d_name.name);
1474
1475	lock_kernel();
1476	spin_lock(&dcache_lock);
1477	spin_lock(&dentry->d_lock);
1478	if (atomic_read(&dentry->d_count) > 1) {
1479		spin_unlock(&dentry->d_lock);
1480		spin_unlock(&dcache_lock);
1481		/* Start asynchronous writeout of the inode */
1482		write_inode_now(dentry->d_inode, 0);
1483		error = nfs_sillyrename(dir, dentry);
1484		unlock_kernel();
1485		return error;
1486	}
1487	if (!d_unhashed(dentry)) {
1488		__d_drop(dentry);
1489		need_rehash = 1;
1490	}
1491	spin_unlock(&dentry->d_lock);
1492	spin_unlock(&dcache_lock);
1493	error = nfs_safe_remove(dentry);
1494	if (!error) {
1495		nfs_renew_times(dentry);
1496		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1497	} else if (need_rehash)
1498		d_rehash(dentry);
1499	unlock_kernel();
1500	return error;
1501}
1502
1503/*
1504 * To create a symbolic link, most file systems instantiate a new inode,
1505 * add a page to it containing the path, then write it out to the disk
1506 * using prepare_write/commit_write.
1507 *
1508 * Unfortunately the NFS client can't create the in-core inode first
1509 * because it needs a file handle to create an in-core inode (see
1510 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1511 * symlink request has completed on the server.
1512 *
1513 * So instead we allocate a raw page, copy the symname into it, then do
1514 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1515 * now have a new file handle and can instantiate an in-core NFS inode
1516 * and move the raw page into its mapping.
1517 */
1518static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1519{
1520	struct pagevec lru_pvec;
1521	struct page *page;
1522	char *kaddr;
1523	struct iattr attr;
1524	unsigned int pathlen = strlen(symname);
1525	int error;
1526
1527	dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1528		dir->i_ino, dentry->d_name.name, symname);
1529
1530	if (pathlen > PAGE_SIZE)
1531		return -ENAMETOOLONG;
1532
1533	attr.ia_mode = S_IFLNK | S_IRWXUGO;
1534	attr.ia_valid = ATTR_MODE;
1535
1536	lock_kernel();
1537
1538	page = alloc_page(GFP_KERNEL);
1539	if (!page) {
1540		unlock_kernel();
1541		return -ENOMEM;
1542	}
1543
1544	kaddr = kmap_atomic(page, KM_USER0);
1545	memcpy(kaddr, symname, pathlen);
1546	if (pathlen < PAGE_SIZE)
1547		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1548	kunmap_atomic(kaddr, KM_USER0);
1549
1550	nfs_begin_data_update(dir);
1551	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1552	nfs_end_data_update(dir);
1553	if (error != 0) {
1554		dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1555			dir->i_sb->s_id, dir->i_ino,
1556			dentry->d_name.name, symname, error);
1557		d_drop(dentry);
1558		__free_page(page);
1559		unlock_kernel();
1560		return error;
1561	}
1562
1563	/*
1564	 * No big deal if we can't add this page to the page cache here.
1565	 * READLINK will get the missing page from the server if needed.
1566	 */
1567	pagevec_init(&lru_pvec, 0);
1568	if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1569							GFP_KERNEL)) {
1570		pagevec_add(&lru_pvec, page);
1571		pagevec_lru_add(&lru_pvec);
1572		SetPageUptodate(page);
1573		unlock_page(page);
1574	} else
1575		__free_page(page);
1576
1577	unlock_kernel();
1578	return 0;
1579}
1580
1581static int
1582nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1583{
1584	struct inode *inode = old_dentry->d_inode;
1585	int error;
1586
1587	dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1588		old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1589		dentry->d_parent->d_name.name, dentry->d_name.name);
1590
1591	lock_kernel();
1592	nfs_begin_data_update(dir);
1593	nfs_begin_data_update(inode);
1594	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1595	if (error == 0) {
1596		atomic_inc(&inode->i_count);
1597		d_instantiate(dentry, inode);
1598	}
1599	nfs_end_data_update(inode);
1600	nfs_end_data_update(dir);
1601	unlock_kernel();
1602	return error;
1603}
1604
1605static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1606		      struct inode *new_dir, struct dentry *new_dentry)
1607{
1608	struct inode *old_inode = old_dentry->d_inode;
1609	struct inode *new_inode = new_dentry->d_inode;
1610	struct dentry *dentry = NULL, *rehash = NULL;
1611	int error = -EBUSY;
1612
1613	/*
1614	 * To prevent any new references to the target during the rename,
1615	 * we unhash the dentry and free the inode in advance.
1616	 */
1617	lock_kernel();
1618	if (!d_unhashed(new_dentry)) {
1619		d_drop(new_dentry);
1620		rehash = new_dentry;
1621	}
1622
1623	dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1624		 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1625		 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1626		 atomic_read(&new_dentry->d_count));
1627
1628	/*
1629	 * First check whether the target is busy ... we can't
1630	 * safely do _any_ rename if the target is in use.
1631	 *
1632	 * For files, make a copy of the dentry and then do a
1633	 * silly-rename. If the silly-rename succeeds, the
1634	 * copied dentry is hashed and becomes the new target.
1635	 */
1636	if (!new_inode)
1637		goto go_ahead;
1638	if (S_ISDIR(new_inode->i_mode)) {
1639		error = -EISDIR;
1640		if (!S_ISDIR(old_inode->i_mode))
1641			goto out;
1642	} else if (atomic_read(&new_dentry->d_count) > 2) {
1643		int err;
1644		/* copy the target dentry's name */
1645		dentry = d_alloc(new_dentry->d_parent,
1646				 &new_dentry->d_name);
1647		if (!dentry)
1648			goto out;
1649
1650		/* silly-rename the existing target ... */
1651		err = nfs_sillyrename(new_dir, new_dentry);
1652		if (!err) {
1653			new_dentry = rehash = dentry;
1654			new_inode = NULL;
1655			/* instantiate the replacement target */
1656			d_instantiate(new_dentry, NULL);
1657		} else if (atomic_read(&new_dentry->d_count) > 1)
1658			/* dentry still busy? */
1659			goto out;
1660	} else
1661		drop_nlink(new_inode);
1662
1663go_ahead:
1664	/*
1665	 * ... prune child dentries and writebacks if needed.
1666	 */
1667	if (atomic_read(&old_dentry->d_count) > 1) {
1668		if (S_ISREG(old_inode->i_mode))
1669			nfs_wb_all(old_inode);
1670		shrink_dcache_parent(old_dentry);
1671	}
1672	nfs_inode_return_delegation(old_inode);
1673
1674	if (new_inode != NULL) {
1675		nfs_inode_return_delegation(new_inode);
1676		d_delete(new_dentry);
1677	}
1678
1679	nfs_begin_data_update(old_dir);
1680	nfs_begin_data_update(new_dir);
1681	nfs_begin_data_update(old_inode);
1682	error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1683					   new_dir, &new_dentry->d_name);
1684	nfs_mark_for_revalidate(old_inode);
1685	nfs_end_data_update(old_inode);
1686	nfs_end_data_update(new_dir);
1687	nfs_end_data_update(old_dir);
1688out:
1689	if (rehash)
1690		d_rehash(rehash);
1691	if (!error) {
1692		d_move(old_dentry, new_dentry);
1693		nfs_renew_times(new_dentry);
1694		nfs_refresh_verifier(new_dentry, nfs_save_change_attribute(new_dir));
1695	}
1696
1697	/* new dentry created? */
1698	if (dentry)
1699		dput(dentry);
1700	unlock_kernel();
1701	return error;
1702}
1703
1704static DEFINE_SPINLOCK(nfs_access_lru_lock);
1705static LIST_HEAD(nfs_access_lru_list);
1706static atomic_long_t nfs_access_nr_entries;
1707
1708static void nfs_access_free_entry(struct nfs_access_entry *entry)
1709{
1710	put_rpccred(entry->cred);
1711	kfree(entry);
1712	smp_mb__before_atomic_dec();
1713	atomic_long_dec(&nfs_access_nr_entries);
1714	smp_mb__after_atomic_dec();
1715}
1716
1717int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1718{
1719	LIST_HEAD(head);
1720	struct nfs_inode *nfsi;
1721	struct nfs_access_entry *cache;
1722
1723	spin_lock(&nfs_access_lru_lock);
1724restart:
1725	list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1726		struct inode *inode;
1727
1728		if (nr_to_scan-- == 0)
1729			break;
1730		inode = igrab(&nfsi->vfs_inode);
1731		if (inode == NULL)
1732			continue;
1733		spin_lock(&inode->i_lock);
1734		if (list_empty(&nfsi->access_cache_entry_lru))
1735			goto remove_lru_entry;
1736		cache = list_entry(nfsi->access_cache_entry_lru.next,
1737				struct nfs_access_entry, lru);
1738		list_move(&cache->lru, &head);
1739		rb_erase(&cache->rb_node, &nfsi->access_cache);
1740		if (!list_empty(&nfsi->access_cache_entry_lru))
1741			list_move_tail(&nfsi->access_cache_inode_lru,
1742					&nfs_access_lru_list);
1743		else {
1744remove_lru_entry:
1745			list_del_init(&nfsi->access_cache_inode_lru);
1746			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1747		}
1748		spin_unlock(&inode->i_lock);
1749		iput(inode);
1750		goto restart;
1751	}
1752	spin_unlock(&nfs_access_lru_lock);
1753	while (!list_empty(&head)) {
1754		cache = list_entry(head.next, struct nfs_access_entry, lru);
1755		list_del(&cache->lru);
1756		nfs_access_free_entry(cache);
1757	}
1758	return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1759}
1760
1761static void __nfs_access_zap_cache(struct inode *inode)
1762{
1763	struct nfs_inode *nfsi = NFS_I(inode);
1764	struct rb_root *root_node = &nfsi->access_cache;
1765	struct rb_node *n, *dispose = NULL;
1766	struct nfs_access_entry *entry;
1767
1768	/* Unhook entries from the cache */
1769	while ((n = rb_first(root_node)) != NULL) {
1770		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1771		rb_erase(n, root_node);
1772		list_del(&entry->lru);
1773		n->rb_left = dispose;
1774		dispose = n;
1775	}
1776	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1777	spin_unlock(&inode->i_lock);
1778
1779	/* Now kill them all! */
1780	while (dispose != NULL) {
1781		n = dispose;
1782		dispose = n->rb_left;
1783		nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1784	}
1785}
1786
1787void nfs_access_zap_cache(struct inode *inode)
1788{
1789	/* Remove from global LRU init */
1790	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1791		spin_lock(&nfs_access_lru_lock);
1792		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1793		spin_unlock(&nfs_access_lru_lock);
1794	}
1795
1796	spin_lock(&inode->i_lock);
1797	/* This will release the spinlock */
1798	__nfs_access_zap_cache(inode);
1799}
1800
1801static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1802{
1803	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1804	struct nfs_access_entry *entry;
1805
1806	while (n != NULL) {
1807		entry = rb_entry(n, struct nfs_access_entry, rb_node);
1808
1809		if (cred < entry->cred)
1810			n = n->rb_left;
1811		else if (cred > entry->cred)
1812			n = n->rb_right;
1813		else
1814			return entry;
1815	}
1816	return NULL;
1817}
1818
1819int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1820{
1821	struct nfs_inode *nfsi = NFS_I(inode);
1822	struct nfs_access_entry *cache;
1823	int err = -ENOENT;
1824
1825	spin_lock(&inode->i_lock);
1826	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1827		goto out_zap;
1828	cache = nfs_access_search_rbtree(inode, cred);
1829	if (cache == NULL)
1830		goto out;
1831	if (time_after(jiffies, cache->jiffies + NFS_ATTRTIMEO(inode)))
1832		goto out_stale;
1833	res->jiffies = cache->jiffies;
1834	res->cred = cache->cred;
1835	res->mask = cache->mask;
1836	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1837	err = 0;
1838out:
1839	spin_unlock(&inode->i_lock);
1840	return err;
1841out_stale:
1842	rb_erase(&cache->rb_node, &nfsi->access_cache);
1843	list_del(&cache->lru);
1844	spin_unlock(&inode->i_lock);
1845	nfs_access_free_entry(cache);
1846	return -ENOENT;
1847out_zap:
1848	/* This will release the spinlock */
1849	__nfs_access_zap_cache(inode);
1850	return -ENOENT;
1851}
1852
1853static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1854{
1855	struct nfs_inode *nfsi = NFS_I(inode);
1856	struct rb_root *root_node = &nfsi->access_cache;
1857	struct rb_node **p = &root_node->rb_node;
1858	struct rb_node *parent = NULL;
1859	struct nfs_access_entry *entry;
1860
1861	spin_lock(&inode->i_lock);
1862	while (*p != NULL) {
1863		parent = *p;
1864		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1865
1866		if (set->cred < entry->cred)
1867			p = &parent->rb_left;
1868		else if (set->cred > entry->cred)
1869			p = &parent->rb_right;
1870		else
1871			goto found;
1872	}
1873	rb_link_node(&set->rb_node, parent, p);
1874	rb_insert_color(&set->rb_node, root_node);
1875	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1876	spin_unlock(&inode->i_lock);
1877	return;
1878found:
1879	rb_replace_node(parent, &set->rb_node, root_node);
1880	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1881	list_del(&entry->lru);
1882	spin_unlock(&inode->i_lock);
1883	nfs_access_free_entry(entry);
1884}
1885
1886void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1887{
1888	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1889	if (cache == NULL)
1890		return;
1891	RB_CLEAR_NODE(&cache->rb_node);
1892	cache->jiffies = set->jiffies;
1893	cache->cred = get_rpccred(set->cred);
1894	cache->mask = set->mask;
1895
1896	nfs_access_add_rbtree(inode, cache);
1897
1898	/* Update accounting */
1899	smp_mb__before_atomic_inc();
1900	atomic_long_inc(&nfs_access_nr_entries);
1901	smp_mb__after_atomic_inc();
1902
1903	/* Add inode to global LRU list */
1904	if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1905		spin_lock(&nfs_access_lru_lock);
1906		list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1907		spin_unlock(&nfs_access_lru_lock);
1908	}
1909}
1910
1911static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1912{
1913	struct nfs_access_entry cache;
1914	int status;
1915
1916	status = nfs_access_get_cached(inode, cred, &cache);
1917	if (status == 0)
1918		goto out;
1919
1920	/* Be clever: ask server to check for all possible rights */
1921	cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1922	cache.cred = cred;
1923	cache.jiffies = jiffies;
1924	status = NFS_PROTO(inode)->access(inode, &cache);
1925	if (status != 0)
1926		return status;
1927	nfs_access_add_cache(inode, &cache);
1928out:
1929	if ((cache.mask & mask) == mask)
1930		return 0;
1931	return -EACCES;
1932}
1933
1934int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1935{
1936	struct rpc_cred *cred;
1937	int res = 0;
1938
1939	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1940
1941	if (mask == 0)
1942		goto out;
1943	/* Is this sys_access() ? */
1944	if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1945		goto force_lookup;
1946
1947	switch (inode->i_mode & S_IFMT) {
1948		case S_IFLNK:
1949			goto out;
1950		case S_IFREG:
1951			/* NFSv4 has atomic_open... */
1952			if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1953					&& nd != NULL
1954					&& (nd->flags & LOOKUP_OPEN))
1955				goto out;
1956			break;
1957		case S_IFDIR:
1958			/*
1959			 * Optimize away all write operations, since the server
1960			 * will check permissions when we perform the op.
1961			 */
1962			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1963				goto out;
1964	}
1965
1966force_lookup:
1967	lock_kernel();
1968
1969	if (!NFS_PROTO(inode)->access)
1970		goto out_notsup;
1971
1972	cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1973	if (!IS_ERR(cred)) {
1974		res = nfs_do_access(inode, cred, mask);
1975		put_rpccred(cred);
1976	} else
1977		res = PTR_ERR(cred);
1978	unlock_kernel();
1979out:
1980	dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1981		inode->i_sb->s_id, inode->i_ino, mask, res);
1982	return res;
1983out_notsup:
1984	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1985	if (res == 0)
1986		res = generic_permission(inode, mask, NULL);
1987	unlock_kernel();
1988	goto out;
1989}
1990
1991/*
1992 * Local variables:
1993 *  version-control: t
1994 *  kept-new-versions: 5
1995 * End:
1996 */
1997