1/*
2 * drivers/spi/spi_imx.c
3 *
4 * Copyright (C) 2006 SWAPP
5 *	Andrea Paterniani <a.paterniani@swapp-eng.it>
6 *
7 * Initial version inspired by:
8 *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 */
20
21#include <linux/init.h>
22#include <linux/module.h>
23#include <linux/device.h>
24#include <linux/ioport.h>
25#include <linux/errno.h>
26#include <linux/interrupt.h>
27#include <linux/platform_device.h>
28#include <linux/dma-mapping.h>
29#include <linux/spi/spi.h>
30#include <linux/workqueue.h>
31#include <linux/delay.h>
32
33#include <asm/io.h>
34#include <asm/irq.h>
35#include <asm/hardware.h>
36#include <asm/delay.h>
37
38#include <asm/arch/hardware.h>
39#include <asm/arch/imx-dma.h>
40#include <asm/arch/spi_imx.h>
41
42/*-------------------------------------------------------------------------*/
43/* SPI Registers offsets from peripheral base address */
44#define SPI_RXDATA		(0x00)
45#define SPI_TXDATA		(0x04)
46#define SPI_CONTROL		(0x08)
47#define SPI_INT_STATUS		(0x0C)
48#define SPI_TEST		(0x10)
49#define SPI_PERIOD		(0x14)
50#define SPI_DMA			(0x18)
51#define SPI_RESET		(0x1C)
52
53/* SPI Control Register Bit Fields & Masks */
54#define SPI_CONTROL_BITCOUNT_MASK	(0xF)		/* Bit Count Mask */
55#define SPI_CONTROL_BITCOUNT(n)		(((n) - 1) & SPI_CONTROL_BITCOUNT_MASK)
56#define SPI_CONTROL_POL			(0x1 << 4)      /* Clock Polarity Mask */
57#define SPI_CONTROL_POL_ACT_HIGH	(0x0 << 4)      /* Active high pol. (0=idle) */
58#define SPI_CONTROL_POL_ACT_LOW		(0x1 << 4)      /* Active low pol. (1=idle) */
59#define SPI_CONTROL_PHA			(0x1 << 5)      /* Clock Phase Mask */
60#define SPI_CONTROL_PHA_0		(0x0 << 5)      /* Clock Phase 0 */
61#define SPI_CONTROL_PHA_1		(0x1 << 5)      /* Clock Phase 1 */
62#define SPI_CONTROL_SSCTL		(0x1 << 6)      /* /SS Waveform Select Mask */
63#define SPI_CONTROL_SSCTL_0		(0x0 << 6)      /* Master: /SS stays low between SPI burst
64							   Slave: RXFIFO advanced by BIT_COUNT */
65#define SPI_CONTROL_SSCTL_1		(0x1 << 6)      /* Master: /SS insert pulse between SPI burst
66							   Slave: RXFIFO advanced by /SS rising edge */
67#define SPI_CONTROL_SSPOL		(0x1 << 7)      /* /SS Polarity Select Mask */
68#define SPI_CONTROL_SSPOL_ACT_LOW	(0x0 << 7)      /* /SS Active low */
69#define SPI_CONTROL_SSPOL_ACT_HIGH	(0x1 << 7)      /* /SS Active high */
70#define SPI_CONTROL_XCH			(0x1 << 8)      /* Exchange */
71#define SPI_CONTROL_SPIEN		(0x1 << 9)      /* SPI Module Enable */
72#define SPI_CONTROL_MODE		(0x1 << 10)     /* SPI Mode Select Mask */
73#define SPI_CONTROL_MODE_SLAVE		(0x0 << 10)     /* SPI Mode Slave */
74#define SPI_CONTROL_MODE_MASTER		(0x1 << 10)     /* SPI Mode Master */
75#define SPI_CONTROL_DRCTL		(0x3 << 11)     /* /SPI_RDY Control Mask */
76#define SPI_CONTROL_DRCTL_0		(0x0 << 11)     /* Ignore /SPI_RDY */
77#define SPI_CONTROL_DRCTL_1		(0x1 << 11)     /* /SPI_RDY falling edge triggers input */
78#define SPI_CONTROL_DRCTL_2		(0x2 << 11)     /* /SPI_RDY active low level triggers input */
79#define SPI_CONTROL_DATARATE		(0x7 << 13)     /* Data Rate Mask */
80#define SPI_PERCLK2_DIV_MIN		(0)		/* PERCLK2:4 */
81#define SPI_PERCLK2_DIV_MAX		(7)		/* PERCLK2:512 */
82#define SPI_CONTROL_DATARATE_MIN	(SPI_PERCLK2_DIV_MAX << 13)
83#define SPI_CONTROL_DATARATE_MAX	(SPI_PERCLK2_DIV_MIN << 13)
84#define SPI_CONTROL_DATARATE_BAD	(SPI_CONTROL_DATARATE_MIN + 1)
85
86/* SPI Interrupt/Status Register Bit Fields & Masks */
87#define SPI_STATUS_TE	(0x1 << 0)	/* TXFIFO Empty Status */
88#define SPI_STATUS_TH	(0x1 << 1)      /* TXFIFO Half Status */
89#define SPI_STATUS_TF	(0x1 << 2)      /* TXFIFO Full Status */
90#define SPI_STATUS_RR	(0x1 << 3)      /* RXFIFO Data Ready Status */
91#define SPI_STATUS_RH	(0x1 << 4)      /* RXFIFO Half Status */
92#define SPI_STATUS_RF	(0x1 << 5)      /* RXFIFO Full Status */
93#define SPI_STATUS_RO	(0x1 << 6)      /* RXFIFO Overflow */
94#define SPI_STATUS_BO	(0x1 << 7)      /* Bit Count Overflow */
95#define SPI_STATUS	(0xFF)		/* SPI Status Mask */
96#define SPI_INTEN_TE	(0x1 << 8)      /* TXFIFO Empty Interrupt Enable */
97#define SPI_INTEN_TH	(0x1 << 9)      /* TXFIFO Half Interrupt Enable */
98#define SPI_INTEN_TF	(0x1 << 10)     /* TXFIFO Full Interrupt Enable */
99#define SPI_INTEN_RE	(0x1 << 11)     /* RXFIFO Data Ready Interrupt Enable */
100#define SPI_INTEN_RH	(0x1 << 12)     /* RXFIFO Half Interrupt Enable */
101#define SPI_INTEN_RF	(0x1 << 13)     /* RXFIFO Full Interrupt Enable */
102#define SPI_INTEN_RO	(0x1 << 14)     /* RXFIFO Overflow Interrupt Enable */
103#define SPI_INTEN_BO	(0x1 << 15)     /* Bit Count Overflow Interrupt Enable */
104#define SPI_INTEN	(0xFF << 8)	/* SPI Interrupt Enable Mask */
105
106/* SPI Test Register Bit Fields & Masks */
107#define SPI_TEST_TXCNT		(0xF << 0)	/* TXFIFO Counter */
108#define SPI_TEST_RXCNT_LSB	(4)		/* RXFIFO Counter LSB */
109#define SPI_TEST_RXCNT		(0xF << 4)	/* RXFIFO Counter */
110#define SPI_TEST_SSTATUS	(0xF << 8)	/* State Machine Status */
111#define SPI_TEST_LBC		(0x1 << 14)	/* Loop Back Control */
112
113/* SPI Period Register Bit Fields & Masks */
114#define SPI_PERIOD_WAIT		(0x7FFF << 0)	/* Wait Between Transactions */
115#define SPI_PERIOD_MAX_WAIT	(0x7FFF)	/* Max Wait Between
116							Transactions */
117#define SPI_PERIOD_CSRC		(0x1 << 15)	/* Period Clock Source Mask */
118#define SPI_PERIOD_CSRC_BCLK	(0x0 << 15)	/* Period Clock Source is
119							Bit Clock */
120#define SPI_PERIOD_CSRC_32768	(0x1 << 15)	/* Period Clock Source is
121							32.768 KHz Clock */
122
123/* SPI DMA Register Bit Fields & Masks */
124#define SPI_DMA_RHDMA	(0x1 << 4)	/* RXFIFO Half Status */
125#define SPI_DMA_RFDMA	(0x1 << 5)      /* RXFIFO Full Status */
126#define SPI_DMA_TEDMA	(0x1 << 6)      /* TXFIFO Empty Status */
127#define SPI_DMA_THDMA	(0x1 << 7)      /* TXFIFO Half Status */
128#define SPI_DMA_RHDEN	(0x1 << 12)	/* RXFIFO Half DMA Request Enable */
129#define SPI_DMA_RFDEN	(0x1 << 13)     /* RXFIFO Full DMA Request Enable */
130#define SPI_DMA_TEDEN	(0x1 << 14)     /* TXFIFO Empty DMA Request Enable */
131#define SPI_DMA_THDEN	(0x1 << 15)     /* TXFIFO Half DMA Request Enable */
132
133/* SPI Soft Reset Register Bit Fields & Masks */
134#define SPI_RESET_START	(0x1)		/* Start */
135
136/* Default SPI configuration values */
137#define SPI_DEFAULT_CONTROL		\
138(					\
139	SPI_CONTROL_BITCOUNT(16) | 	\
140	SPI_CONTROL_POL_ACT_HIGH |	\
141	SPI_CONTROL_PHA_0 |		\
142	SPI_CONTROL_SPIEN |		\
143	SPI_CONTROL_SSCTL_1 |		\
144	SPI_CONTROL_MODE_MASTER |	\
145	SPI_CONTROL_DRCTL_0 |		\
146	SPI_CONTROL_DATARATE_MIN	\
147)
148#define SPI_DEFAULT_ENABLE_LOOPBACK	(0)
149#define SPI_DEFAULT_ENABLE_DMA		(0)
150#define SPI_DEFAULT_PERIOD_WAIT		(8)
151/*-------------------------------------------------------------------------*/
152
153
154/*-------------------------------------------------------------------------*/
155/* TX/RX SPI FIFO size */
156#define SPI_FIFO_DEPTH			(8)
157#define SPI_FIFO_BYTE_WIDTH		(2)
158#define SPI_FIFO_OVERFLOW_MARGIN	(2)
159
160/* DMA burst lenght for half full/empty request trigger */
161#define SPI_DMA_BLR			(SPI_FIFO_DEPTH * SPI_FIFO_BYTE_WIDTH / 2)
162
163/* Dummy char output to achieve reads.
164   Choosing something different from all zeroes may help pattern recogition
165   for oscilloscope analysis, but may break some drivers. */
166#define SPI_DUMMY_u8			0
167#define SPI_DUMMY_u16			((SPI_DUMMY_u8 << 8) | SPI_DUMMY_u8)
168#define SPI_DUMMY_u32			((SPI_DUMMY_u16 << 16) | SPI_DUMMY_u16)
169
170/**
171 * Macro to change a u32 field:
172 * @r : register to edit
173 * @m : bit mask
174 * @v : new value for the field correctly bit-alligned
175*/
176#define u32_EDIT(r, m, v)		r = (r & ~(m)) | (v)
177
178/* Message state */
179#define START_STATE			((void*)0)
180#define RUNNING_STATE			((void*)1)
181#define DONE_STATE			((void*)2)
182#define ERROR_STATE			((void*)-1)
183
184/* Queue state */
185#define QUEUE_RUNNING			(0)
186#define QUEUE_STOPPED			(1)
187
188#define IS_DMA_ALIGNED(x) 		(((u32)(x) & 0x03) == 0)
189/*-------------------------------------------------------------------------*/
190
191
192/*-------------------------------------------------------------------------*/
193/* Driver data structs */
194
195/* Context */
196struct driver_data {
197	/* Driver model hookup */
198	struct platform_device *pdev;
199
200	/* SPI framework hookup */
201	struct spi_master *master;
202
203	/* IMX hookup */
204	struct spi_imx_master *master_info;
205
206	/* Memory resources and SPI regs virtual address */
207	struct resource *ioarea;
208	void __iomem *regs;
209
210	/* SPI RX_DATA physical address */
211	dma_addr_t rd_data_phys;
212
213	/* Driver message queue */
214	struct workqueue_struct	*workqueue;
215	struct work_struct work;
216	spinlock_t lock;
217	struct list_head queue;
218	int busy;
219	int run;
220
221	/* Message Transfer pump */
222	struct tasklet_struct pump_transfers;
223
224	/* Current message, transfer and state */
225	struct spi_message *cur_msg;
226	struct spi_transfer *cur_transfer;
227	struct chip_data *cur_chip;
228
229	/* Rd / Wr buffers pointers */
230	size_t len;
231	void *tx;
232	void *tx_end;
233	void *rx;
234	void *rx_end;
235
236	u8 rd_only;
237	u8 n_bytes;
238	int cs_change;
239
240	/* Function pointers */
241	irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
242	void (*cs_control)(u32 command);
243
244	/* DMA setup */
245	int rx_channel;
246	int tx_channel;
247	dma_addr_t rx_dma;
248	dma_addr_t tx_dma;
249	int rx_dma_needs_unmap;
250	int tx_dma_needs_unmap;
251	size_t tx_map_len;
252	u32 dummy_dma_buf ____cacheline_aligned;
253};
254
255/* Runtime state */
256struct chip_data {
257	u32 control;
258	u32 period;
259	u32 test;
260
261	u8 enable_dma:1;
262	u8 bits_per_word;
263	u8 n_bytes;
264	u32 max_speed_hz;
265
266	void (*cs_control)(u32 command);
267};
268/*-------------------------------------------------------------------------*/
269
270
271static void pump_messages(struct work_struct *work);
272
273static int flush(struct driver_data *drv_data)
274{
275	unsigned long limit = loops_per_jiffy << 1;
276	void __iomem *regs = drv_data->regs;
277	volatile u32 d;
278
279	dev_dbg(&drv_data->pdev->dev, "flush\n");
280	do {
281		while (readl(regs + SPI_INT_STATUS) & SPI_STATUS_RR)
282			d = readl(regs + SPI_RXDATA);
283	} while ((readl(regs + SPI_CONTROL) & SPI_CONTROL_XCH) && limit--);
284
285	return limit;
286}
287
288static void restore_state(struct driver_data *drv_data)
289{
290	void __iomem *regs = drv_data->regs;
291	struct chip_data *chip = drv_data->cur_chip;
292
293	/* Load chip registers */
294	dev_dbg(&drv_data->pdev->dev,
295		"restore_state\n"
296		"    test    = 0x%08X\n"
297		"    control = 0x%08X\n",
298		chip->test,
299		chip->control);
300	writel(chip->test, regs + SPI_TEST);
301	writel(chip->period, regs + SPI_PERIOD);
302	writel(0, regs + SPI_INT_STATUS);
303	writel(chip->control, regs + SPI_CONTROL);
304}
305
306static void null_cs_control(u32 command)
307{
308}
309
310static inline u32 data_to_write(struct driver_data *drv_data)
311{
312	return ((u32)(drv_data->tx_end - drv_data->tx)) / drv_data->n_bytes;
313}
314
315static inline u32 data_to_read(struct driver_data *drv_data)
316{
317	return ((u32)(drv_data->rx_end - drv_data->rx)) / drv_data->n_bytes;
318}
319
320static int write(struct driver_data *drv_data)
321{
322	void __iomem *regs = drv_data->regs;
323	void *tx = drv_data->tx;
324	void *tx_end = drv_data->tx_end;
325	u8 n_bytes = drv_data->n_bytes;
326	u32 remaining_writes;
327	u32 fifo_avail_space;
328	u32 n;
329	u16 d;
330
331	/* Compute how many fifo writes to do */
332	remaining_writes = (u32)(tx_end - tx) / n_bytes;
333	fifo_avail_space = SPI_FIFO_DEPTH -
334				(readl(regs + SPI_TEST) & SPI_TEST_TXCNT);
335	if (drv_data->rx && (fifo_avail_space > SPI_FIFO_OVERFLOW_MARGIN))
336		/* Fix misunderstood receive overflow */
337		fifo_avail_space -= SPI_FIFO_OVERFLOW_MARGIN;
338	n = min(remaining_writes, fifo_avail_space);
339
340	dev_dbg(&drv_data->pdev->dev,
341		"write type %s\n"
342		"    remaining writes = %d\n"
343		"    fifo avail space = %d\n"
344		"    fifo writes      = %d\n",
345		(n_bytes == 1) ? "u8" : "u16",
346		remaining_writes,
347		fifo_avail_space,
348		n);
349
350	if (n > 0) {
351		/* Fill SPI TXFIFO */
352		if (drv_data->rd_only) {
353			tx += n * n_bytes;
354			while (n--)
355				writel(SPI_DUMMY_u16, regs + SPI_TXDATA);
356		} else {
357			if (n_bytes == 1) {
358				while (n--) {
359					d = *(u8*)tx;
360					writel(d, regs + SPI_TXDATA);
361					tx += 1;
362				}
363			} else {
364				while (n--) {
365					d = *(u16*)tx;
366					writel(d, regs + SPI_TXDATA);
367					tx += 2;
368				}
369			}
370		}
371
372		/* Trigger transfer */
373		writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
374			regs + SPI_CONTROL);
375
376		/* Update tx pointer */
377		drv_data->tx = tx;
378	}
379
380	return (tx >= tx_end);
381}
382
383static int read(struct driver_data *drv_data)
384{
385	void __iomem *regs = drv_data->regs;
386	void *rx = drv_data->rx;
387	void *rx_end = drv_data->rx_end;
388	u8 n_bytes = drv_data->n_bytes;
389	u32 remaining_reads;
390	u32 fifo_rxcnt;
391	u32 n;
392	u16 d;
393
394	/* Compute how many fifo reads to do */
395	remaining_reads = (u32)(rx_end - rx) / n_bytes;
396	fifo_rxcnt = (readl(regs + SPI_TEST) & SPI_TEST_RXCNT) >>
397			SPI_TEST_RXCNT_LSB;
398	n = min(remaining_reads, fifo_rxcnt);
399
400	dev_dbg(&drv_data->pdev->dev,
401		"read type %s\n"
402		"    remaining reads = %d\n"
403		"    fifo rx count   = %d\n"
404		"    fifo reads      = %d\n",
405		(n_bytes == 1) ? "u8" : "u16",
406		remaining_reads,
407		fifo_rxcnt,
408		n);
409
410	if (n > 0) {
411		/* Read SPI RXFIFO */
412		if (n_bytes == 1) {
413			while (n--) {
414				d = readl(regs + SPI_RXDATA);
415				*((u8*)rx) = d;
416				rx += 1;
417			}
418		} else {
419			while (n--) {
420				d = readl(regs + SPI_RXDATA);
421				*((u16*)rx) = d;
422				rx += 2;
423			}
424		}
425
426		/* Update rx pointer */
427		drv_data->rx = rx;
428	}
429
430	return (rx >= rx_end);
431}
432
433static void *next_transfer(struct driver_data *drv_data)
434{
435	struct spi_message *msg = drv_data->cur_msg;
436	struct spi_transfer *trans = drv_data->cur_transfer;
437
438	/* Move to next transfer */
439	if (trans->transfer_list.next != &msg->transfers) {
440		drv_data->cur_transfer =
441			list_entry(trans->transfer_list.next,
442					struct spi_transfer,
443					transfer_list);
444		return RUNNING_STATE;
445	}
446
447	return DONE_STATE;
448}
449
450static int map_dma_buffers(struct driver_data *drv_data)
451{
452	struct spi_message *msg;
453	struct device *dev;
454	void *buf;
455
456	drv_data->rx_dma_needs_unmap = 0;
457	drv_data->tx_dma_needs_unmap = 0;
458
459	if (!drv_data->master_info->enable_dma ||
460		!drv_data->cur_chip->enable_dma)
461			return -1;
462
463	msg = drv_data->cur_msg;
464	dev = &msg->spi->dev;
465	if (msg->is_dma_mapped) {
466		if (drv_data->tx_dma)
467			/* The caller provided at least dma and cpu virtual
468			   address for write; pump_transfers() will consider the
469			   transfer as write only if cpu rx virtual address is
470			   NULL */
471			return 0;
472
473		if (drv_data->rx_dma) {
474			/* The caller provided dma and cpu virtual address to
475			   performe read only transfer -->
476			   use drv_data->dummy_dma_buf for dummy writes to
477			   achive reads */
478			buf = &drv_data->dummy_dma_buf;
479			drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
480			drv_data->tx_dma = dma_map_single(dev,
481							buf,
482							drv_data->tx_map_len,
483							DMA_TO_DEVICE);
484			if (dma_mapping_error(drv_data->tx_dma))
485				return -1;
486
487			drv_data->tx_dma_needs_unmap = 1;
488
489			/* Flags transfer as rd_only for pump_transfers() DMA
490			   regs programming (should be redundant) */
491			drv_data->tx = NULL;
492
493			return 0;
494		}
495	}
496
497	if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
498		return -1;
499
500	/* NULL rx means write-only transfer and no map needed
501	   since rx DMA will not be used */
502	if (drv_data->rx) {
503		buf = drv_data->rx;
504		drv_data->rx_dma = dma_map_single(
505					dev,
506					buf,
507					drv_data->len,
508					DMA_FROM_DEVICE);
509		if (dma_mapping_error(drv_data->rx_dma))
510			return -1;
511		drv_data->rx_dma_needs_unmap = 1;
512	}
513
514	if (drv_data->tx == NULL) {
515		/* Read only message --> use drv_data->dummy_dma_buf for dummy
516		   writes to achive reads */
517		buf = &drv_data->dummy_dma_buf;
518		drv_data->tx_map_len = sizeof(drv_data->dummy_dma_buf);
519	} else {
520		buf = drv_data->tx;
521		drv_data->tx_map_len = drv_data->len;
522	}
523	drv_data->tx_dma = dma_map_single(dev,
524					buf,
525					drv_data->tx_map_len,
526					DMA_TO_DEVICE);
527	if (dma_mapping_error(drv_data->tx_dma)) {
528		if (drv_data->rx_dma) {
529			dma_unmap_single(dev,
530					drv_data->rx_dma,
531					drv_data->len,
532					DMA_FROM_DEVICE);
533			drv_data->rx_dma_needs_unmap = 0;
534		}
535		return -1;
536	}
537	drv_data->tx_dma_needs_unmap = 1;
538
539	return 0;
540}
541
542static void unmap_dma_buffers(struct driver_data *drv_data)
543{
544	struct spi_message *msg = drv_data->cur_msg;
545	struct device *dev = &msg->spi->dev;
546
547	if (drv_data->rx_dma_needs_unmap) {
548		dma_unmap_single(dev,
549				drv_data->rx_dma,
550				drv_data->len,
551				DMA_FROM_DEVICE);
552		drv_data->rx_dma_needs_unmap = 0;
553	}
554	if (drv_data->tx_dma_needs_unmap) {
555		dma_unmap_single(dev,
556				drv_data->tx_dma,
557				drv_data->tx_map_len,
558				DMA_TO_DEVICE);
559		drv_data->tx_dma_needs_unmap = 0;
560	}
561}
562
563/* Caller already set message->status (dma is already blocked) */
564static void giveback(struct spi_message *message, struct driver_data *drv_data)
565{
566	void __iomem *regs = drv_data->regs;
567
568	/* Bring SPI to sleep; restore_state() and pump_transfer()
569	   will do new setup */
570	writel(0, regs + SPI_INT_STATUS);
571	writel(0, regs + SPI_DMA);
572
573	drv_data->cs_control(SPI_CS_DEASSERT);
574
575	message->state = NULL;
576	if (message->complete)
577		message->complete(message->context);
578
579	drv_data->cur_msg = NULL;
580	drv_data->cur_transfer = NULL;
581	drv_data->cur_chip = NULL;
582	queue_work(drv_data->workqueue, &drv_data->work);
583}
584
585static void dma_err_handler(int channel, void *data, int errcode)
586{
587	struct driver_data *drv_data = data;
588	struct spi_message *msg = drv_data->cur_msg;
589
590	dev_dbg(&drv_data->pdev->dev, "dma_err_handler\n");
591
592	/* Disable both rx and tx dma channels */
593	imx_dma_disable(drv_data->rx_channel);
594	imx_dma_disable(drv_data->tx_channel);
595
596	if (flush(drv_data) == 0)
597		dev_err(&drv_data->pdev->dev,
598				"dma_err_handler - flush failed\n");
599
600	unmap_dma_buffers(drv_data);
601
602	msg->state = ERROR_STATE;
603	tasklet_schedule(&drv_data->pump_transfers);
604}
605
606static void dma_tx_handler(int channel, void *data)
607{
608	struct driver_data *drv_data = data;
609
610	dev_dbg(&drv_data->pdev->dev, "dma_tx_handler\n");
611
612	imx_dma_disable(channel);
613
614	/* Now waits for TX FIFO empty */
615	writel(readl(drv_data->regs + SPI_INT_STATUS) | SPI_INTEN_TE,
616			drv_data->regs + SPI_INT_STATUS);
617}
618
619static irqreturn_t dma_transfer(struct driver_data *drv_data)
620{
621	u32 status;
622	struct spi_message *msg = drv_data->cur_msg;
623	void __iomem *regs = drv_data->regs;
624	unsigned long limit;
625
626	status = readl(regs + SPI_INT_STATUS);
627
628	if ((status & SPI_INTEN_RO) && (status & SPI_STATUS_RO)) {
629		writel(status & ~SPI_INTEN, regs + SPI_INT_STATUS);
630
631		imx_dma_disable(drv_data->rx_channel);
632		unmap_dma_buffers(drv_data);
633
634		if (flush(drv_data) == 0)
635			dev_err(&drv_data->pdev->dev,
636				"dma_transfer - flush failed\n");
637
638		dev_warn(&drv_data->pdev->dev,
639				"dma_transfer - fifo overun\n");
640
641		msg->state = ERROR_STATE;
642		tasklet_schedule(&drv_data->pump_transfers);
643
644		return IRQ_HANDLED;
645	}
646
647	if (status & SPI_STATUS_TE) {
648		writel(status & ~SPI_INTEN_TE, regs + SPI_INT_STATUS);
649
650		if (drv_data->rx) {
651			/* Wait end of transfer before read trailing data */
652			limit = loops_per_jiffy << 1;
653			while ((readl(regs + SPI_CONTROL) & SPI_CONTROL_XCH) &&
654					limit--);
655
656			if (limit == 0)
657				dev_err(&drv_data->pdev->dev,
658					"dma_transfer - end of tx failed\n");
659			else
660				dev_dbg(&drv_data->pdev->dev,
661					"dma_transfer - end of tx\n");
662
663			imx_dma_disable(drv_data->rx_channel);
664			unmap_dma_buffers(drv_data);
665
666			/* Calculate number of trailing data and read them */
667			dev_dbg(&drv_data->pdev->dev,
668				"dma_transfer - test = 0x%08X\n",
669				readl(regs + SPI_TEST));
670			drv_data->rx = drv_data->rx_end -
671					((readl(regs + SPI_TEST) &
672					SPI_TEST_RXCNT) >>
673					SPI_TEST_RXCNT_LSB)*drv_data->n_bytes;
674			read(drv_data);
675		} else {
676			/* Write only transfer */
677			unmap_dma_buffers(drv_data);
678
679			if (flush(drv_data) == 0)
680				dev_err(&drv_data->pdev->dev,
681					"dma_transfer - flush failed\n");
682		}
683
684		/* End of transfer, update total byte transfered */
685		msg->actual_length += drv_data->len;
686
687		/* Release chip select if requested, transfer delays are
688		   handled in pump_transfers() */
689		if (drv_data->cs_change)
690			drv_data->cs_control(SPI_CS_DEASSERT);
691
692		/* Move to next transfer */
693		msg->state = next_transfer(drv_data);
694
695		/* Schedule transfer tasklet */
696		tasklet_schedule(&drv_data->pump_transfers);
697
698		return IRQ_HANDLED;
699	}
700
701	/* Opps problem detected */
702	return IRQ_NONE;
703}
704
705static irqreturn_t interrupt_wronly_transfer(struct driver_data *drv_data)
706{
707	struct spi_message *msg = drv_data->cur_msg;
708	void __iomem *regs = drv_data->regs;
709	u32 status;
710	irqreturn_t handled = IRQ_NONE;
711
712	status = readl(regs + SPI_INT_STATUS);
713
714	while (status & SPI_STATUS_TH) {
715		dev_dbg(&drv_data->pdev->dev,
716			"interrupt_wronly_transfer - status = 0x%08X\n", status);
717
718		/* Pump data */
719		if (write(drv_data)) {
720			writel(readl(regs + SPI_INT_STATUS) & ~SPI_INTEN,
721				regs + SPI_INT_STATUS);
722
723			dev_dbg(&drv_data->pdev->dev,
724				"interrupt_wronly_transfer - end of tx\n");
725
726			if (flush(drv_data) == 0)
727				dev_err(&drv_data->pdev->dev,
728					"interrupt_wronly_transfer - "
729					"flush failed\n");
730
731			/* End of transfer, update total byte transfered */
732			msg->actual_length += drv_data->len;
733
734			/* Release chip select if requested, transfer delays are
735			   handled in pump_transfers */
736			if (drv_data->cs_change)
737				drv_data->cs_control(SPI_CS_DEASSERT);
738
739			/* Move to next transfer */
740			msg->state = next_transfer(drv_data);
741
742			/* Schedule transfer tasklet */
743			tasklet_schedule(&drv_data->pump_transfers);
744
745			return IRQ_HANDLED;
746		}
747
748		status = readl(regs + SPI_INT_STATUS);
749
750		/* We did something */
751		handled = IRQ_HANDLED;
752	}
753
754	return handled;
755}
756
757static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
758{
759	struct spi_message *msg = drv_data->cur_msg;
760	void __iomem *regs = drv_data->regs;
761	u32 status;
762	irqreturn_t handled = IRQ_NONE;
763	unsigned long limit;
764
765	status = readl(regs + SPI_INT_STATUS);
766
767	while (status & (SPI_STATUS_TH | SPI_STATUS_RO)) {
768		dev_dbg(&drv_data->pdev->dev,
769			"interrupt_transfer - status = 0x%08X\n", status);
770
771		if (status & SPI_STATUS_RO) {
772			writel(readl(regs + SPI_INT_STATUS) & ~SPI_INTEN,
773				regs + SPI_INT_STATUS);
774
775			dev_warn(&drv_data->pdev->dev,
776				"interrupt_transfer - fifo overun\n"
777				"    data not yet written = %d\n"
778				"    data not yet read    = %d\n",
779				data_to_write(drv_data),
780				data_to_read(drv_data));
781
782			if (flush(drv_data) == 0)
783				dev_err(&drv_data->pdev->dev,
784					"interrupt_transfer - flush failed\n");
785
786			msg->state = ERROR_STATE;
787			tasklet_schedule(&drv_data->pump_transfers);
788
789			return IRQ_HANDLED;
790		}
791
792		/* Pump data */
793		read(drv_data);
794		if (write(drv_data)) {
795			writel(readl(regs + SPI_INT_STATUS) & ~SPI_INTEN,
796				regs + SPI_INT_STATUS);
797
798			dev_dbg(&drv_data->pdev->dev,
799				"interrupt_transfer - end of tx\n");
800
801			/* Read trailing bytes */
802			limit = loops_per_jiffy << 1;
803			while ((read(drv_data) == 0) && limit--);
804
805			if (limit == 0)
806				dev_err(&drv_data->pdev->dev,
807					"interrupt_transfer - "
808					"trailing byte read failed\n");
809			else
810				dev_dbg(&drv_data->pdev->dev,
811					"interrupt_transfer - end of rx\n");
812
813			/* End of transfer, update total byte transfered */
814			msg->actual_length += drv_data->len;
815
816			/* Release chip select if requested, transfer delays are
817			   handled in pump_transfers */
818			if (drv_data->cs_change)
819				drv_data->cs_control(SPI_CS_DEASSERT);
820
821			/* Move to next transfer */
822			msg->state = next_transfer(drv_data);
823
824			/* Schedule transfer tasklet */
825			tasklet_schedule(&drv_data->pump_transfers);
826
827			return IRQ_HANDLED;
828		}
829
830		status = readl(regs + SPI_INT_STATUS);
831
832		/* We did something */
833		handled = IRQ_HANDLED;
834	}
835
836	return handled;
837}
838
839static irqreturn_t spi_int(int irq, void *dev_id)
840{
841	struct driver_data *drv_data = (struct driver_data *)dev_id;
842
843	if (!drv_data->cur_msg) {
844		dev_err(&drv_data->pdev->dev,
845			"spi_int - bad message state\n");
846		/* Never fail */
847		return IRQ_HANDLED;
848	}
849
850	return drv_data->transfer_handler(drv_data);
851}
852
853static inline u32 spi_speed_hz(u32 data_rate)
854{
855	return imx_get_perclk2() / (4 << ((data_rate) >> 13));
856}
857
858static u32 spi_data_rate(u32 speed_hz)
859{
860	u32 div;
861	u32 quantized_hz = imx_get_perclk2() >> 2;
862
863	for (div = SPI_PERCLK2_DIV_MIN;
864		div <= SPI_PERCLK2_DIV_MAX;
865		div++, quantized_hz >>= 1) {
866			if (quantized_hz <= speed_hz)
867				/* Max available speed LEQ required speed */
868				return div << 13;
869	}
870	return SPI_CONTROL_DATARATE_BAD;
871}
872
873static void pump_transfers(unsigned long data)
874{
875	struct driver_data *drv_data = (struct driver_data *)data;
876	struct spi_message *message;
877	struct spi_transfer *transfer, *previous;
878	struct chip_data *chip;
879	void __iomem *regs;
880	u32 tmp, control;
881
882	dev_dbg(&drv_data->pdev->dev, "pump_transfer\n");
883
884	message = drv_data->cur_msg;
885
886	/* Handle for abort */
887	if (message->state == ERROR_STATE) {
888		message->status = -EIO;
889		giveback(message, drv_data);
890		return;
891	}
892
893	/* Handle end of message */
894	if (message->state == DONE_STATE) {
895		message->status = 0;
896		giveback(message, drv_data);
897		return;
898	}
899
900	chip = drv_data->cur_chip;
901
902	/* Delay if requested at end of transfer*/
903	transfer = drv_data->cur_transfer;
904	if (message->state == RUNNING_STATE) {
905		previous = list_entry(transfer->transfer_list.prev,
906					struct spi_transfer,
907					transfer_list);
908		if (previous->delay_usecs)
909			udelay(previous->delay_usecs);
910	} else {
911		/* START_STATE */
912		message->state = RUNNING_STATE;
913		drv_data->cs_control = chip->cs_control;
914	}
915
916	transfer = drv_data->cur_transfer;
917	drv_data->tx = (void *)transfer->tx_buf;
918	drv_data->tx_end = drv_data->tx + transfer->len;
919	drv_data->rx = transfer->rx_buf;
920	drv_data->rx_end = drv_data->rx + transfer->len;
921	drv_data->rx_dma = transfer->rx_dma;
922	drv_data->tx_dma = transfer->tx_dma;
923	drv_data->len = transfer->len;
924	drv_data->cs_change = transfer->cs_change;
925	drv_data->rd_only = (drv_data->tx == NULL);
926
927	regs = drv_data->regs;
928	control = readl(regs + SPI_CONTROL);
929
930	/* Bits per word setup */
931	tmp = transfer->bits_per_word;
932	if (tmp == 0) {
933		/* Use device setup */
934		tmp = chip->bits_per_word;
935		drv_data->n_bytes = chip->n_bytes;
936	} else
937		/* Use per-transfer setup */
938		drv_data->n_bytes = (tmp <= 8) ? 1 : 2;
939	u32_EDIT(control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
940
941	/* Speed setup (surely valid because already checked) */
942	tmp = transfer->speed_hz;
943	if (tmp == 0)
944		tmp = chip->max_speed_hz;
945	tmp = spi_data_rate(tmp);
946	u32_EDIT(control, SPI_CONTROL_DATARATE, tmp);
947
948	writel(control, regs + SPI_CONTROL);
949
950	/* Assert device chip-select */
951	drv_data->cs_control(SPI_CS_ASSERT);
952
953	/* DMA cannot read/write SPI FIFOs other than 16 bits at a time; hence
954	   if bits_per_word is less or equal 8 PIO transfers are performed.
955	   Moreover DMA is convinient for transfer length bigger than FIFOs
956	   byte size. */
957	if ((drv_data->n_bytes == 2) &&
958		(drv_data->len > SPI_FIFO_DEPTH*SPI_FIFO_BYTE_WIDTH) &&
959		(map_dma_buffers(drv_data) == 0)) {
960		dev_dbg(&drv_data->pdev->dev,
961			"pump dma transfer\n"
962			"    tx      = %p\n"
963			"    tx_dma  = %08X\n"
964			"    rx      = %p\n"
965			"    rx_dma  = %08X\n"
966			"    len     = %d\n",
967			drv_data->tx,
968			(unsigned int)drv_data->tx_dma,
969			drv_data->rx,
970			(unsigned int)drv_data->rx_dma,
971			drv_data->len);
972
973		/* Ensure we have the correct interrupt handler */
974		drv_data->transfer_handler = dma_transfer;
975
976		/* Trigger transfer */
977		writel(readl(regs + SPI_CONTROL) | SPI_CONTROL_XCH,
978			regs + SPI_CONTROL);
979
980		/* Setup tx DMA */
981		if (drv_data->tx)
982			/* Linear source address */
983			CCR(drv_data->tx_channel) =
984				CCR_DMOD_FIFO |
985				CCR_SMOD_LINEAR |
986				CCR_SSIZ_32 | CCR_DSIZ_16 |
987				CCR_REN;
988		else
989			/* Read only transfer -> fixed source address for
990			   dummy write to achive read */
991			CCR(drv_data->tx_channel) =
992				CCR_DMOD_FIFO |
993				CCR_SMOD_FIFO |
994				CCR_SSIZ_32 | CCR_DSIZ_16 |
995				CCR_REN;
996
997		imx_dma_setup_single(
998			drv_data->tx_channel,
999			drv_data->tx_dma,
1000			drv_data->len,
1001			drv_data->rd_data_phys + 4,
1002			DMA_MODE_WRITE);
1003
1004		if (drv_data->rx) {
1005			/* Setup rx DMA for linear destination address */
1006			CCR(drv_data->rx_channel) =
1007				CCR_DMOD_LINEAR |
1008				CCR_SMOD_FIFO |
1009				CCR_DSIZ_32 | CCR_SSIZ_16 |
1010				CCR_REN;
1011			imx_dma_setup_single(
1012				drv_data->rx_channel,
1013				drv_data->rx_dma,
1014				drv_data->len,
1015				drv_data->rd_data_phys,
1016				DMA_MODE_READ);
1017			imx_dma_enable(drv_data->rx_channel);
1018
1019			/* Enable SPI interrupt */
1020			writel(SPI_INTEN_RO, regs + SPI_INT_STATUS);
1021
1022			/* Set SPI to request DMA service on both
1023			   Rx and Tx half fifo watermark */
1024			writel(SPI_DMA_RHDEN | SPI_DMA_THDEN, regs + SPI_DMA);
1025		} else
1026			/* Write only access -> set SPI to request DMA
1027			   service on Tx half fifo watermark */
1028			writel(SPI_DMA_THDEN, regs + SPI_DMA);
1029
1030		imx_dma_enable(drv_data->tx_channel);
1031	} else {
1032		dev_dbg(&drv_data->pdev->dev,
1033			"pump pio transfer\n"
1034			"    tx      = %p\n"
1035			"    rx      = %p\n"
1036			"    len     = %d\n",
1037			drv_data->tx,
1038			drv_data->rx,
1039			drv_data->len);
1040
1041		/* Ensure we have the correct interrupt handler	*/
1042		if (drv_data->rx)
1043			drv_data->transfer_handler = interrupt_transfer;
1044		else
1045			drv_data->transfer_handler = interrupt_wronly_transfer;
1046
1047		/* Enable SPI interrupt */
1048		if (drv_data->rx)
1049			writel(SPI_INTEN_TH | SPI_INTEN_RO,
1050				regs + SPI_INT_STATUS);
1051		else
1052			writel(SPI_INTEN_TH, regs + SPI_INT_STATUS);
1053	}
1054}
1055
1056static void pump_messages(struct work_struct *work)
1057{
1058	struct driver_data *drv_data =
1059				container_of(work, struct driver_data, work);
1060	unsigned long flags;
1061
1062	/* Lock queue and check for queue work */
1063	spin_lock_irqsave(&drv_data->lock, flags);
1064	if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
1065		drv_data->busy = 0;
1066		spin_unlock_irqrestore(&drv_data->lock, flags);
1067		return;
1068	}
1069
1070	/* Make sure we are not already running a message */
1071	if (drv_data->cur_msg) {
1072		spin_unlock_irqrestore(&drv_data->lock, flags);
1073		return;
1074	}
1075
1076	/* Extract head of queue */
1077	drv_data->cur_msg = list_entry(drv_data->queue.next,
1078					struct spi_message, queue);
1079	list_del_init(&drv_data->cur_msg->queue);
1080	drv_data->busy = 1;
1081	spin_unlock_irqrestore(&drv_data->lock, flags);
1082
1083	/* Initial message state */
1084	drv_data->cur_msg->state = START_STATE;
1085	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1086						struct spi_transfer,
1087						transfer_list);
1088
1089	/* Setup the SPI using the per chip configuration */
1090	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1091	restore_state(drv_data);
1092
1093	/* Mark as busy and launch transfers */
1094	tasklet_schedule(&drv_data->pump_transfers);
1095}
1096
1097static int transfer(struct spi_device *spi, struct spi_message *msg)
1098{
1099	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1100	u32 min_speed_hz, max_speed_hz, tmp;
1101	struct spi_transfer *trans;
1102	unsigned long flags;
1103
1104	msg->actual_length = 0;
1105
1106	/* Per transfer setup check */
1107	min_speed_hz = spi_speed_hz(SPI_CONTROL_DATARATE_MIN);
1108	max_speed_hz = spi->max_speed_hz;
1109	list_for_each_entry(trans, &msg->transfers, transfer_list) {
1110		tmp = trans->bits_per_word;
1111		if (tmp > 16) {
1112			dev_err(&drv_data->pdev->dev,
1113				"message rejected : "
1114				"invalid transfer bits_per_word (%d bits)\n",
1115				tmp);
1116			goto msg_rejected;
1117		}
1118		tmp = trans->speed_hz;
1119		if (tmp) {
1120			if (tmp < min_speed_hz) {
1121				dev_err(&drv_data->pdev->dev,
1122					"message rejected : "
1123					"device min speed (%d Hz) exceeds "
1124					"required transfer speed (%d Hz)\n",
1125					min_speed_hz,
1126					tmp);
1127				goto msg_rejected;
1128			} else if (tmp > max_speed_hz) {
1129				dev_err(&drv_data->pdev->dev,
1130					"message rejected : "
1131					"transfer speed (%d Hz) exceeds "
1132					"device max speed (%d Hz)\n",
1133					tmp,
1134					max_speed_hz);
1135				goto msg_rejected;
1136			}
1137		}
1138	}
1139
1140	/* Message accepted */
1141	msg->status = -EINPROGRESS;
1142	msg->state = START_STATE;
1143
1144	spin_lock_irqsave(&drv_data->lock, flags);
1145	if (drv_data->run == QUEUE_STOPPED) {
1146		spin_unlock_irqrestore(&drv_data->lock, flags);
1147		return -ESHUTDOWN;
1148	}
1149
1150	list_add_tail(&msg->queue, &drv_data->queue);
1151	if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
1152		queue_work(drv_data->workqueue, &drv_data->work);
1153
1154	spin_unlock_irqrestore(&drv_data->lock, flags);
1155	return 0;
1156
1157msg_rejected:
1158	/* Message rejected and not queued */
1159	msg->status = -EINVAL;
1160	msg->state = ERROR_STATE;
1161	if (msg->complete)
1162		msg->complete(msg->context);
1163	return -EINVAL;
1164}
1165
1166/* On first setup bad values must free chip_data memory since will cause
1167   spi_new_device to fail. Bad value setup from protocol driver are simply not
1168   applied and notified to the calling driver. */
1169static int setup(struct spi_device *spi)
1170{
1171	struct spi_imx_chip *chip_info;
1172	struct chip_data *chip;
1173	int first_setup = 0;
1174	u32 tmp;
1175	int status = 0;
1176
1177	/* Get controller data */
1178	chip_info = spi->controller_data;
1179
1180	/* Get controller_state */
1181	chip = spi_get_ctldata(spi);
1182	if (chip == NULL) {
1183		first_setup = 1;
1184
1185		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1186		if (!chip) {
1187			dev_err(&spi->dev,
1188				"setup - cannot allocate controller state");
1189			return -ENOMEM;
1190		}
1191		chip->control = SPI_DEFAULT_CONTROL;
1192
1193		if (chip_info == NULL) {
1194			/* spi_board_info.controller_data not is supplied */
1195			chip_info = kzalloc(sizeof(struct spi_imx_chip),
1196						GFP_KERNEL);
1197			if (!chip_info) {
1198				dev_err(&spi->dev,
1199					"setup - "
1200					"cannot allocate controller data");
1201				status = -ENOMEM;
1202				goto err_first_setup;
1203			}
1204			/* Set controller data default value */
1205			chip_info->enable_loopback =
1206						SPI_DEFAULT_ENABLE_LOOPBACK;
1207			chip_info->enable_dma = SPI_DEFAULT_ENABLE_DMA;
1208			chip_info->ins_ss_pulse = 1;
1209			chip_info->bclk_wait = SPI_DEFAULT_PERIOD_WAIT;
1210			chip_info->cs_control = null_cs_control;
1211		}
1212	}
1213
1214	/* Now set controller state based on controller data */
1215
1216	if (first_setup) {
1217		/* SPI loopback */
1218		if (chip_info->enable_loopback)
1219			chip->test = SPI_TEST_LBC;
1220		else
1221			chip->test = 0;
1222
1223		/* SPI dma driven */
1224		chip->enable_dma = chip_info->enable_dma;
1225
1226		/* SPI /SS pulse between spi burst */
1227		if (chip_info->ins_ss_pulse)
1228			u32_EDIT(chip->control,
1229				SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_1);
1230		else
1231			u32_EDIT(chip->control,
1232				SPI_CONTROL_SSCTL, SPI_CONTROL_SSCTL_0);
1233
1234		/* SPI bclk waits between each bits_per_word spi burst */
1235		if (chip_info->bclk_wait > SPI_PERIOD_MAX_WAIT) {
1236			dev_err(&spi->dev,
1237				"setup - "
1238				"bclk_wait exceeds max allowed (%d)\n",
1239				SPI_PERIOD_MAX_WAIT);
1240			goto err_first_setup;
1241		}
1242		chip->period = SPI_PERIOD_CSRC_BCLK |
1243				(chip_info->bclk_wait & SPI_PERIOD_WAIT);
1244	}
1245
1246	/* SPI mode */
1247	tmp = spi->mode;
1248	if (tmp & SPI_LSB_FIRST) {
1249		status = -EINVAL;
1250		if (first_setup) {
1251			dev_err(&spi->dev,
1252				"setup - "
1253				"HW doesn't support LSB first transfer\n");
1254			goto err_first_setup;
1255		} else {
1256			dev_err(&spi->dev,
1257				"setup - "
1258				"HW doesn't support LSB first transfer, "
1259				"default to MSB first\n");
1260			spi->mode &= ~SPI_LSB_FIRST;
1261		}
1262	}
1263	if (tmp & SPI_CS_HIGH) {
1264		u32_EDIT(chip->control,
1265				SPI_CONTROL_SSPOL, SPI_CONTROL_SSPOL_ACT_HIGH);
1266	}
1267	switch (tmp & SPI_MODE_3) {
1268	case SPI_MODE_0:
1269		tmp = 0;
1270		break;
1271	case SPI_MODE_1:
1272		tmp = SPI_CONTROL_PHA_1;
1273		break;
1274	case SPI_MODE_2:
1275		tmp = SPI_CONTROL_POL_ACT_LOW;
1276		break;
1277	default:
1278		/* SPI_MODE_3 */
1279		tmp = SPI_CONTROL_PHA_1 | SPI_CONTROL_POL_ACT_LOW;
1280		break;
1281	}
1282	u32_EDIT(chip->control, SPI_CONTROL_POL | SPI_CONTROL_PHA, tmp);
1283
1284	/* SPI word width */
1285	tmp = spi->bits_per_word;
1286	if (tmp == 0) {
1287		tmp = 8;
1288		spi->bits_per_word = 8;
1289	} else if (tmp > 16) {
1290		status = -EINVAL;
1291		dev_err(&spi->dev,
1292			"setup - "
1293			"invalid bits_per_word (%d)\n",
1294			tmp);
1295		if (first_setup)
1296			goto err_first_setup;
1297		else {
1298			/* Undo setup using chip as backup copy */
1299			tmp = chip->bits_per_word;
1300			spi->bits_per_word = tmp;
1301		}
1302	}
1303	chip->bits_per_word = tmp;
1304	u32_EDIT(chip->control, SPI_CONTROL_BITCOUNT_MASK, tmp - 1);
1305	chip->n_bytes = (tmp <= 8) ? 1 : 2;
1306
1307	/* SPI datarate */
1308	tmp = spi_data_rate(spi->max_speed_hz);
1309	if (tmp == SPI_CONTROL_DATARATE_BAD) {
1310		status = -EINVAL;
1311		dev_err(&spi->dev,
1312			"setup - "
1313			"HW min speed (%d Hz) exceeds required "
1314			"max speed (%d Hz)\n",
1315			spi_speed_hz(SPI_CONTROL_DATARATE_MIN),
1316			spi->max_speed_hz);
1317		if (first_setup)
1318			goto err_first_setup;
1319		else
1320			/* Undo setup using chip as backup copy */
1321			spi->max_speed_hz = chip->max_speed_hz;
1322	} else {
1323		u32_EDIT(chip->control, SPI_CONTROL_DATARATE, tmp);
1324		/* Actual rounded max_speed_hz */
1325		tmp = spi_speed_hz(tmp);
1326		spi->max_speed_hz = tmp;
1327		chip->max_speed_hz = tmp;
1328	}
1329
1330	/* SPI chip-select management */
1331	if (chip_info->cs_control)
1332		chip->cs_control = chip_info->cs_control;
1333	else
1334		chip->cs_control = null_cs_control;
1335
1336	/* Save controller_state */
1337	spi_set_ctldata(spi, chip);
1338
1339	/* Summary */
1340	dev_dbg(&spi->dev,
1341		"setup succeded\n"
1342		"    loopback enable   = %s\n"
1343		"    dma enable        = %s\n"
1344		"    insert /ss pulse  = %s\n"
1345		"    period wait       = %d\n"
1346		"    mode              = %d\n"
1347		"    bits per word     = %d\n"
1348		"    min speed         = %d Hz\n"
1349		"    rounded max speed = %d Hz\n",
1350		chip->test & SPI_TEST_LBC ? "Yes" : "No",
1351		chip->enable_dma ? "Yes" : "No",
1352		chip->control & SPI_CONTROL_SSCTL ? "Yes" : "No",
1353		chip->period & SPI_PERIOD_WAIT,
1354		spi->mode,
1355		spi->bits_per_word,
1356		spi_speed_hz(SPI_CONTROL_DATARATE_MIN),
1357		spi->max_speed_hz);
1358	return status;
1359
1360err_first_setup:
1361	kfree(chip);
1362	return status;
1363}
1364
1365static void cleanup(struct spi_device *spi)
1366{
1367	kfree(spi_get_ctldata(spi));
1368}
1369
1370static int init_queue(struct driver_data *drv_data)
1371{
1372	INIT_LIST_HEAD(&drv_data->queue);
1373	spin_lock_init(&drv_data->lock);
1374
1375	drv_data->run = QUEUE_STOPPED;
1376	drv_data->busy = 0;
1377
1378	tasklet_init(&drv_data->pump_transfers,
1379			pump_transfers,	(unsigned long)drv_data);
1380
1381	INIT_WORK(&drv_data->work, pump_messages);
1382	drv_data->workqueue = create_singlethread_workqueue(
1383					drv_data->master->cdev.dev->bus_id);
1384	if (drv_data->workqueue == NULL)
1385		return -EBUSY;
1386
1387	return 0;
1388}
1389
1390static int start_queue(struct driver_data *drv_data)
1391{
1392	unsigned long flags;
1393
1394	spin_lock_irqsave(&drv_data->lock, flags);
1395
1396	if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
1397		spin_unlock_irqrestore(&drv_data->lock, flags);
1398		return -EBUSY;
1399	}
1400
1401	drv_data->run = QUEUE_RUNNING;
1402	drv_data->cur_msg = NULL;
1403	drv_data->cur_transfer = NULL;
1404	drv_data->cur_chip = NULL;
1405	spin_unlock_irqrestore(&drv_data->lock, flags);
1406
1407	queue_work(drv_data->workqueue, &drv_data->work);
1408
1409	return 0;
1410}
1411
1412static int stop_queue(struct driver_data *drv_data)
1413{
1414	unsigned long flags;
1415	unsigned limit = 500;
1416	int status = 0;
1417
1418	spin_lock_irqsave(&drv_data->lock, flags);
1419
1420	/* This is a bit lame, but is optimized for the common execution path.
1421	 * A wait_queue on the drv_data->busy could be used, but then the common
1422	 * execution path (pump_messages) would be required to call wake_up or
1423	 * friends on every SPI message. Do this instead */
1424	drv_data->run = QUEUE_STOPPED;
1425	while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
1426		spin_unlock_irqrestore(&drv_data->lock, flags);
1427		msleep(10);
1428		spin_lock_irqsave(&drv_data->lock, flags);
1429	}
1430
1431	if (!list_empty(&drv_data->queue) || drv_data->busy)
1432		status = -EBUSY;
1433
1434	spin_unlock_irqrestore(&drv_data->lock, flags);
1435
1436	return status;
1437}
1438
1439static int destroy_queue(struct driver_data *drv_data)
1440{
1441	int status;
1442
1443	status = stop_queue(drv_data);
1444	if (status != 0)
1445		return status;
1446
1447	if (drv_data->workqueue)
1448		destroy_workqueue(drv_data->workqueue);
1449
1450	return 0;
1451}
1452
1453static int spi_imx_probe(struct platform_device *pdev)
1454{
1455	struct device *dev = &pdev->dev;
1456	struct spi_imx_master *platform_info;
1457	struct spi_master *master;
1458	struct driver_data *drv_data = NULL;
1459	struct resource *res;
1460	int irq, status = 0;
1461
1462	platform_info = dev->platform_data;
1463	if (platform_info == NULL) {
1464		dev_err(&pdev->dev, "probe - no platform data supplied\n");
1465		status = -ENODEV;
1466		goto err_no_pdata;
1467	}
1468
1469	/* Allocate master with space for drv_data */
1470	master = spi_alloc_master(dev, sizeof(struct driver_data));
1471	if (!master) {
1472		dev_err(&pdev->dev, "probe - cannot alloc spi_master\n");
1473		status = -ENOMEM;
1474		goto err_no_mem;
1475	}
1476	drv_data = spi_master_get_devdata(master);
1477	drv_data->master = master;
1478	drv_data->master_info = platform_info;
1479	drv_data->pdev = pdev;
1480
1481	master->bus_num = pdev->id;
1482	master->num_chipselect = platform_info->num_chipselect;
1483	master->cleanup = cleanup;
1484	master->setup = setup;
1485	master->transfer = transfer;
1486
1487	drv_data->dummy_dma_buf = SPI_DUMMY_u32;
1488
1489	/* Find and map resources */
1490	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1491	if (!res) {
1492		dev_err(&pdev->dev, "probe - MEM resources not defined\n");
1493		status = -ENODEV;
1494		goto err_no_iores;
1495	}
1496	drv_data->ioarea = request_mem_region(res->start,
1497						res->end - res->start + 1,
1498						pdev->name);
1499	if (drv_data->ioarea == NULL) {
1500		dev_err(&pdev->dev, "probe - cannot reserve region\n");
1501		status = -ENXIO;
1502		goto err_no_iores;
1503	}
1504	drv_data->regs = ioremap(res->start, res->end - res->start + 1);
1505	if (drv_data->regs == NULL) {
1506		dev_err(&pdev->dev, "probe - cannot map IO\n");
1507		status = -ENXIO;
1508		goto err_no_iomap;
1509	}
1510	drv_data->rd_data_phys = (dma_addr_t)res->start;
1511
1512	/* Attach to IRQ */
1513	irq = platform_get_irq(pdev, 0);
1514	if (irq < 0) {
1515		dev_err(&pdev->dev, "probe - IRQ resource not defined\n");
1516		status = -ENODEV;
1517		goto err_no_irqres;
1518	}
1519	status = request_irq(irq, spi_int, IRQF_DISABLED, dev->bus_id, drv_data);
1520	if (status < 0) {
1521		dev_err(&pdev->dev, "probe - cannot get IRQ (%d)\n", status);
1522		goto err_no_irqres;
1523	}
1524
1525	/* Setup DMA if requested */
1526	drv_data->tx_channel = -1;
1527	drv_data->rx_channel = -1;
1528	if (platform_info->enable_dma) {
1529		/* Get rx DMA channel */
1530		status = imx_dma_request_by_prio(&drv_data->rx_channel,
1531			"spi_imx_rx", DMA_PRIO_HIGH);
1532		if (status < 0) {
1533			dev_err(dev,
1534				"probe - problem (%d) requesting rx channel\n",
1535				status);
1536			goto err_no_rxdma;
1537		} else
1538			imx_dma_setup_handlers(drv_data->rx_channel, NULL,
1539						dma_err_handler, drv_data);
1540
1541		/* Get tx DMA channel */
1542		status = imx_dma_request_by_prio(&drv_data->tx_channel,
1543						"spi_imx_tx", DMA_PRIO_MEDIUM);
1544		if (status < 0) {
1545			dev_err(dev,
1546				"probe - problem (%d) requesting tx channel\n",
1547				status);
1548			imx_dma_free(drv_data->rx_channel);
1549			goto err_no_txdma;
1550		} else
1551			imx_dma_setup_handlers(drv_data->tx_channel,
1552						dma_tx_handler, dma_err_handler,
1553						drv_data);
1554
1555		/* Set request source and burst length for allocated channels */
1556		switch (drv_data->pdev->id) {
1557		case 1:
1558			/* Using SPI1 */
1559			RSSR(drv_data->rx_channel) = DMA_REQ_SPI1_R;
1560			RSSR(drv_data->tx_channel) = DMA_REQ_SPI1_T;
1561			break;
1562		case 2:
1563			/* Using SPI2 */
1564			RSSR(drv_data->rx_channel) = DMA_REQ_SPI2_R;
1565			RSSR(drv_data->tx_channel) = DMA_REQ_SPI2_T;
1566			break;
1567		default:
1568			dev_err(dev, "probe - bad SPI Id\n");
1569			imx_dma_free(drv_data->rx_channel);
1570			imx_dma_free(drv_data->tx_channel);
1571			status = -ENODEV;
1572			goto err_no_devid;
1573		}
1574		BLR(drv_data->rx_channel) = SPI_DMA_BLR;
1575		BLR(drv_data->tx_channel) = SPI_DMA_BLR;
1576	}
1577
1578	/* Load default SPI configuration */
1579	writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1580	writel(0, drv_data->regs + SPI_RESET);
1581	writel(SPI_DEFAULT_CONTROL, drv_data->regs + SPI_CONTROL);
1582
1583	/* Initial and start queue */
1584	status = init_queue(drv_data);
1585	if (status != 0) {
1586		dev_err(&pdev->dev, "probe - problem initializing queue\n");
1587		goto err_init_queue;
1588	}
1589	status = start_queue(drv_data);
1590	if (status != 0) {
1591		dev_err(&pdev->dev, "probe - problem starting queue\n");
1592		goto err_start_queue;
1593	}
1594
1595	/* Register with the SPI framework */
1596	platform_set_drvdata(pdev, drv_data);
1597	status = spi_register_master(master);
1598	if (status != 0) {
1599		dev_err(&pdev->dev, "probe - problem registering spi master\n");
1600		goto err_spi_register;
1601	}
1602
1603	dev_dbg(dev, "probe succeded\n");
1604	return 0;
1605
1606err_init_queue:
1607err_start_queue:
1608err_spi_register:
1609	destroy_queue(drv_data);
1610
1611err_no_rxdma:
1612err_no_txdma:
1613err_no_devid:
1614	free_irq(irq, drv_data);
1615
1616err_no_irqres:
1617	iounmap(drv_data->regs);
1618
1619err_no_iomap:
1620	release_resource(drv_data->ioarea);
1621	kfree(drv_data->ioarea);
1622
1623err_no_iores:
1624	spi_master_put(master);
1625
1626err_no_pdata:
1627err_no_mem:
1628	return status;
1629}
1630
1631static int __devexit spi_imx_remove(struct platform_device *pdev)
1632{
1633	struct driver_data *drv_data = platform_get_drvdata(pdev);
1634	int irq;
1635	int status = 0;
1636
1637	if (!drv_data)
1638		return 0;
1639
1640	tasklet_kill(&drv_data->pump_transfers);
1641
1642	/* Remove the queue */
1643	status = destroy_queue(drv_data);
1644	if (status != 0) {
1645		dev_err(&pdev->dev, "queue remove failed (%d)\n", status);
1646		return status;
1647	}
1648
1649	/* Reset SPI */
1650	writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1651	writel(0, drv_data->regs + SPI_RESET);
1652
1653	/* Release DMA */
1654	if (drv_data->master_info->enable_dma) {
1655		RSSR(drv_data->rx_channel) = 0;
1656		RSSR(drv_data->tx_channel) = 0;
1657		imx_dma_free(drv_data->tx_channel);
1658		imx_dma_free(drv_data->rx_channel);
1659	}
1660
1661	/* Release IRQ */
1662	irq = platform_get_irq(pdev, 0);
1663	if (irq >= 0)
1664		free_irq(irq, drv_data);
1665
1666	/* Release map resources */
1667	iounmap(drv_data->regs);
1668	release_resource(drv_data->ioarea);
1669	kfree(drv_data->ioarea);
1670
1671	/* Disconnect from the SPI framework */
1672	spi_unregister_master(drv_data->master);
1673	spi_master_put(drv_data->master);
1674
1675	/* Prevent double remove */
1676	platform_set_drvdata(pdev, NULL);
1677
1678	dev_dbg(&pdev->dev, "remove succeded\n");
1679
1680	return 0;
1681}
1682
1683static void spi_imx_shutdown(struct platform_device *pdev)
1684{
1685	struct driver_data *drv_data = platform_get_drvdata(pdev);
1686
1687	/* Reset SPI */
1688	writel(SPI_RESET_START, drv_data->regs + SPI_RESET);
1689	writel(0, drv_data->regs + SPI_RESET);
1690
1691	dev_dbg(&pdev->dev, "shutdown succeded\n");
1692}
1693
1694#ifdef CONFIG_PM
1695static int suspend_devices(struct device *dev, void *pm_message)
1696{
1697	pm_message_t *state = pm_message;
1698
1699	if (dev->power.power_state.event != state->event) {
1700		dev_warn(dev, "pm state does not match request\n");
1701		return -1;
1702	}
1703
1704	return 0;
1705}
1706
1707static int spi_imx_suspend(struct platform_device *pdev, pm_message_t state)
1708{
1709	struct driver_data *drv_data = platform_get_drvdata(pdev);
1710	int status = 0;
1711
1712	status = stop_queue(drv_data);
1713	if (status != 0) {
1714		dev_warn(&pdev->dev, "suspend cannot stop queue\n");
1715		return status;
1716	}
1717
1718	dev_dbg(&pdev->dev, "suspended\n");
1719
1720	return 0;
1721}
1722
1723static int spi_imx_resume(struct platform_device *pdev)
1724{
1725	struct driver_data *drv_data = platform_get_drvdata(pdev);
1726	int status = 0;
1727
1728	/* Start the queue running */
1729	status = start_queue(drv_data);
1730	if (status != 0)
1731		dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
1732	else
1733		dev_dbg(&pdev->dev, "resumed\n");
1734
1735	return status;
1736}
1737#else
1738#define spi_imx_suspend NULL
1739#define spi_imx_resume NULL
1740#endif /* CONFIG_PM */
1741
1742static struct platform_driver driver = {
1743	.driver = {
1744		.name = "imx-spi",
1745		.bus = &platform_bus_type,
1746		.owner = THIS_MODULE,
1747	},
1748	.probe = spi_imx_probe,
1749	.remove = __devexit_p(spi_imx_remove),
1750	.shutdown = spi_imx_shutdown,
1751	.suspend = spi_imx_suspend,
1752	.resume = spi_imx_resume,
1753};
1754
1755static int __init spi_imx_init(void)
1756{
1757	return platform_driver_register(&driver);
1758}
1759module_init(spi_imx_init);
1760
1761static void __exit spi_imx_exit(void)
1762{
1763	platform_driver_unregister(&driver);
1764}
1765module_exit(spi_imx_exit);
1766
1767MODULE_AUTHOR("Andrea Paterniani, <a.paterniani@swapp-eng.it>");
1768MODULE_DESCRIPTION("iMX SPI Contoller Driver");
1769MODULE_LICENSE("GPL");
1770