1/*
2 * Real Time Clock interface for StrongARM SA1x00 and XScale PXA2xx
3 *
4 * Copyright (c) 2000 Nils Faerber
5 *
6 * Based on rtc.c by Paul Gortmaker
7 *
8 * Original Driver by Nils Faerber <nils@kernelconcepts.de>
9 *
10 * Modifications from:
11 *   CIH <cih@coventive.com>
12 *   Nicolas Pitre <nico@cam.org>
13 *   Andrew Christian <andrew.christian@hp.com>
14 *
15 * Converted to the RTC subsystem and Driver Model
16 *   by Richard Purdie <rpurdie@rpsys.net>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 */
23
24#include <linux/platform_device.h>
25#include <linux/module.h>
26#include <linux/rtc.h>
27#include <linux/init.h>
28#include <linux/fs.h>
29#include <linux/interrupt.h>
30#include <linux/string.h>
31#include <linux/pm.h>
32
33#include <asm/bitops.h>
34#include <asm/hardware.h>
35#include <asm/irq.h>
36#include <asm/rtc.h>
37
38#ifdef CONFIG_ARCH_PXA
39#include <asm/arch/pxa-regs.h>
40#endif
41
42#define TIMER_FREQ		CLOCK_TICK_RATE
43#define RTC_DEF_DIVIDER		32768 - 1
44#define RTC_DEF_TRIM		0
45
46static unsigned long rtc_freq = 1024;
47static struct rtc_time rtc_alarm;
48static DEFINE_SPINLOCK(sa1100_rtc_lock);
49
50static int rtc_update_alarm(struct rtc_time *alrm)
51{
52	struct rtc_time alarm_tm, now_tm;
53	unsigned long now, time;
54	int ret;
55
56	do {
57		now = RCNR;
58		rtc_time_to_tm(now, &now_tm);
59		rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
60		ret = rtc_tm_to_time(&alarm_tm, &time);
61		if (ret != 0)
62			break;
63
64		RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
65		RTAR = time;
66	} while (now != RCNR);
67
68	return ret;
69}
70
71static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
72{
73	struct platform_device *pdev = to_platform_device(dev_id);
74	struct rtc_device *rtc = platform_get_drvdata(pdev);
75	unsigned int rtsr;
76	unsigned long events = 0;
77
78	spin_lock(&sa1100_rtc_lock);
79
80	rtsr = RTSR;
81	/* clear interrupt sources */
82	RTSR = 0;
83	RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
84
85	/* clear alarm interrupt if it has occurred */
86	if (rtsr & RTSR_AL)
87		rtsr &= ~RTSR_ALE;
88	RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
89
90	/* update irq data & counter */
91	if (rtsr & RTSR_AL)
92		events |= RTC_AF | RTC_IRQF;
93	if (rtsr & RTSR_HZ)
94		events |= RTC_UF | RTC_IRQF;
95
96	rtc_update_irq(rtc, 1, events);
97
98	if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
99		rtc_update_alarm(&rtc_alarm);
100
101	spin_unlock(&sa1100_rtc_lock);
102
103	return IRQ_HANDLED;
104}
105
106static int rtc_timer1_count;
107
108static irqreturn_t timer1_interrupt(int irq, void *dev_id)
109{
110	struct platform_device *pdev = to_platform_device(dev_id);
111	struct rtc_device *rtc = platform_get_drvdata(pdev);
112
113	/*
114	 * If we match for the first time, rtc_timer1_count will be 1.
115	 * Otherwise, we wrapped around (very unlikely but
116	 * still possible) so compute the amount of missed periods.
117	 * The match reg is updated only when the data is actually retrieved
118	 * to avoid unnecessary interrupts.
119	 */
120	OSSR = OSSR_M1;	/* clear match on timer1 */
121
122	rtc_update_irq(rtc, rtc_timer1_count, RTC_PF | RTC_IRQF);
123
124	if (rtc_timer1_count == 1)
125		rtc_timer1_count = (rtc_freq * ((1<<30)/(TIMER_FREQ>>2)));
126
127	return IRQ_HANDLED;
128}
129
130static int sa1100_rtc_read_callback(struct device *dev, int data)
131{
132	if (data & RTC_PF) {
133		/* interpolate missed periods and set match for the next */
134		unsigned long period = TIMER_FREQ/rtc_freq;
135		unsigned long oscr = OSCR;
136		unsigned long osmr1 = OSMR1;
137		unsigned long missed = (oscr - osmr1)/period;
138		data += missed << 8;
139		OSSR = OSSR_M1;	/* clear match on timer 1 */
140		OSMR1 = osmr1 + (missed + 1)*period;
141		/* Ensure we didn't miss another match in the mean time.
142		 * Here we compare (match - OSCR) 8 instead of 0 --
143		 * see comment in pxa_timer_interrupt() for explanation.
144		 */
145		while( (signed long)((osmr1 = OSMR1) - OSCR) <= 8 ) {
146			data += 0x100;
147			OSSR = OSSR_M1;	/* clear match on timer 1 */
148			OSMR1 = osmr1 + period;
149		}
150	}
151	return data;
152}
153
154static int sa1100_rtc_open(struct device *dev)
155{
156	int ret;
157
158	ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
159				"rtc 1Hz", dev);
160	if (ret) {
161		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
162		goto fail_ui;
163	}
164	ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
165				"rtc Alrm", dev);
166	if (ret) {
167		dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
168		goto fail_ai;
169	}
170	ret = request_irq(IRQ_OST1, timer1_interrupt, IRQF_DISABLED,
171				"rtc timer", dev);
172	if (ret) {
173		dev_err(dev, "IRQ %d already in use.\n", IRQ_OST1);
174		goto fail_pi;
175	}
176	return 0;
177
178 fail_pi:
179	free_irq(IRQ_RTCAlrm, dev);
180 fail_ai:
181	free_irq(IRQ_RTC1Hz, dev);
182 fail_ui:
183	return ret;
184}
185
186static void sa1100_rtc_release(struct device *dev)
187{
188	spin_lock_irq(&sa1100_rtc_lock);
189	RTSR = 0;
190	OIER &= ~OIER_E1;
191	OSSR = OSSR_M1;
192	spin_unlock_irq(&sa1100_rtc_lock);
193
194	free_irq(IRQ_OST1, dev);
195	free_irq(IRQ_RTCAlrm, dev);
196	free_irq(IRQ_RTC1Hz, dev);
197}
198
199
200static int sa1100_rtc_ioctl(struct device *dev, unsigned int cmd,
201		unsigned long arg)
202{
203	switch(cmd) {
204	case RTC_AIE_OFF:
205		spin_lock_irq(&sa1100_rtc_lock);
206		RTSR &= ~RTSR_ALE;
207		spin_unlock_irq(&sa1100_rtc_lock);
208		return 0;
209	case RTC_AIE_ON:
210		spin_lock_irq(&sa1100_rtc_lock);
211		RTSR |= RTSR_ALE;
212		spin_unlock_irq(&sa1100_rtc_lock);
213		return 0;
214	case RTC_UIE_OFF:
215		spin_lock_irq(&sa1100_rtc_lock);
216		RTSR &= ~RTSR_HZE;
217		spin_unlock_irq(&sa1100_rtc_lock);
218		return 0;
219	case RTC_UIE_ON:
220		spin_lock_irq(&sa1100_rtc_lock);
221		RTSR |= RTSR_HZE;
222		spin_unlock_irq(&sa1100_rtc_lock);
223		return 0;
224	case RTC_PIE_OFF:
225		spin_lock_irq(&sa1100_rtc_lock);
226		OIER &= ~OIER_E1;
227		spin_unlock_irq(&sa1100_rtc_lock);
228		return 0;
229	case RTC_PIE_ON:
230		spin_lock_irq(&sa1100_rtc_lock);
231		OSMR1 = TIMER_FREQ/rtc_freq + OSCR;
232		OIER |= OIER_E1;
233		rtc_timer1_count = 1;
234		spin_unlock_irq(&sa1100_rtc_lock);
235		return 0;
236	case RTC_IRQP_READ:
237		return put_user(rtc_freq, (unsigned long *)arg);
238	case RTC_IRQP_SET:
239		if (arg < 1 || arg > TIMER_FREQ)
240			return -EINVAL;
241		rtc_freq = arg;
242		return 0;
243	}
244	return -ENOIOCTLCMD;
245}
246
247static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
248{
249	rtc_time_to_tm(RCNR, tm);
250	return 0;
251}
252
253static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
254{
255	unsigned long time;
256	int ret;
257
258	ret = rtc_tm_to_time(tm, &time);
259	if (ret == 0)
260		RCNR = time;
261	return ret;
262}
263
264static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
265{
266	u32	rtsr;
267
268	memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
269	rtsr = RTSR;
270	alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
271	alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
272	return 0;
273}
274
275static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
276{
277	int ret;
278
279	spin_lock_irq(&sa1100_rtc_lock);
280	ret = rtc_update_alarm(&alrm->time);
281	if (ret == 0) {
282		if (alrm->enabled)
283			RTSR |= RTSR_ALE;
284		else
285			RTSR &= ~RTSR_ALE;
286	}
287	spin_unlock_irq(&sa1100_rtc_lock);
288
289	return ret;
290}
291
292static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
293{
294	seq_printf(seq, "trim/divider\t: 0x%08x\n", (u32) RTTR);
295	seq_printf(seq, "update_IRQ\t: %s\n",
296			(RTSR & RTSR_HZE) ? "yes" : "no");
297	seq_printf(seq, "periodic_IRQ\t: %s\n",
298			(OIER & OIER_E1) ? "yes" : "no");
299	seq_printf(seq, "periodic_freq\t: %ld\n", rtc_freq);
300
301	return 0;
302}
303
304static const struct rtc_class_ops sa1100_rtc_ops = {
305	.open = sa1100_rtc_open,
306	.read_callback = sa1100_rtc_read_callback,
307	.release = sa1100_rtc_release,
308	.ioctl = sa1100_rtc_ioctl,
309	.read_time = sa1100_rtc_read_time,
310	.set_time = sa1100_rtc_set_time,
311	.read_alarm = sa1100_rtc_read_alarm,
312	.set_alarm = sa1100_rtc_set_alarm,
313	.proc = sa1100_rtc_proc,
314};
315
316static int sa1100_rtc_probe(struct platform_device *pdev)
317{
318	struct rtc_device *rtc;
319
320	/*
321	 * According to the manual we should be able to let RTTR be zero
322	 * and then a default diviser for a 32.768KHz clock is used.
323	 * Apparently this doesn't work, at least for my SA1110 rev 5.
324	 * If the clock divider is uninitialized then reset it to the
325	 * default value to get the 1Hz clock.
326	 */
327	if (RTTR == 0) {
328		RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
329		dev_warn(&pdev->dev, "warning: initializing default clock divider/trim value\n");
330		/* The current RTC value probably doesn't make sense either */
331		RCNR = 0;
332	}
333
334	rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
335				THIS_MODULE);
336
337	if (IS_ERR(rtc))
338		return PTR_ERR(rtc);
339
340	platform_set_drvdata(pdev, rtc);
341
342	return 0;
343}
344
345static int sa1100_rtc_remove(struct platform_device *pdev)
346{
347	struct rtc_device *rtc = platform_get_drvdata(pdev);
348
349 	if (rtc)
350		rtc_device_unregister(rtc);
351
352	return 0;
353}
354
355static struct platform_driver sa1100_rtc_driver = {
356	.probe		= sa1100_rtc_probe,
357	.remove		= sa1100_rtc_remove,
358	.driver		= {
359		.name		= "sa1100-rtc",
360	},
361};
362
363static int __init sa1100_rtc_init(void)
364{
365	return platform_driver_register(&sa1100_rtc_driver);
366}
367
368static void __exit sa1100_rtc_exit(void)
369{
370	platform_driver_unregister(&sa1100_rtc_driver);
371}
372
373module_init(sa1100_rtc_init);
374module_exit(sa1100_rtc_exit);
375
376MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
377MODULE_DESCRIPTION("SA11x0/PXA2xx Realtime Clock Driver (RTC)");
378MODULE_LICENSE("GPL");
379