1/*
2 * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses.  You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 *     Redistribution and use in source and binary forms, with or
11 *     without modification, are permitted provided that the following
12 *     conditions are met:
13 *
14 *      - Redistributions of source code must retain the above
15 *        copyright notice, this list of conditions and the following
16 *        disclaimer.
17 *
18 *      - Redistributions in binary form must reproduce the above
19 *        copyright notice, this list of conditions and the following
20 *        disclaimer in the documentation and/or other materials
21 *        provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32#include <linux/skbuff.h>
33#include <linux/netdevice.h>
34#include <linux/etherdevice.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/tcp.h>
38#include <linux/dma-mapping.h>
39#include "common.h"
40#include "regs.h"
41#include "sge_defs.h"
42#include "t3_cpl.h"
43#include "firmware_exports.h"
44
45#define USE_GTS 0
46
47#define SGE_RX_SM_BUF_SIZE 1536
48
49/*
50 * If USE_RX_PAGE is defined, the small freelist populated with (partial)
51 * pages instead of skbs. Pages are carved up into RX_PAGE_SIZE chunks (must
52 * be a multiple of the host page size).
53 */
54#define USE_RX_PAGE
55#define RX_PAGE_SIZE 2048
56
57/*
58 * skb freelist packets are copied into a new skb (and the freelist one is
59 * reused) if their len is <=
60 */
61#define SGE_RX_COPY_THRES  256
62
63/*
64 * Minimum number of freelist entries before we start dropping TUNNEL frames.
65 */
66#define SGE_RX_DROP_THRES 16
67
68/*
69 * Period of the Tx buffer reclaim timer.  This timer does not need to run
70 * frequently as Tx buffers are usually reclaimed by new Tx packets.
71 */
72#define TX_RECLAIM_PERIOD (HZ / 4)
73
74/* WR size in bytes */
75#define WR_LEN (WR_FLITS * 8)
76
77/*
78 * Types of Tx queues in each queue set.  Order here matters, do not change.
79 */
80enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
81
82/* Values for sge_txq.flags */
83enum {
84	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */
85	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */
86};
87
88struct tx_desc {
89	u64 flit[TX_DESC_FLITS];
90};
91
92struct rx_desc {
93	__be32 addr_lo;
94	__be32 len_gen;
95	__be32 gen2;
96	__be32 addr_hi;
97};
98
99struct tx_sw_desc {		/* SW state per Tx descriptor */
100	struct sk_buff *skb;
101};
102
103struct rx_sw_desc {		/* SW state per Rx descriptor */
104	union {
105		struct sk_buff *skb;
106		struct sge_fl_page page;
107	} t;
108	 DECLARE_PCI_UNMAP_ADDR(dma_addr);
109};
110
111struct rsp_desc {		/* response queue descriptor */
112	struct rss_header rss_hdr;
113	__be32 flags;
114	__be32 len_cq;
115	u8 imm_data[47];
116	u8 intr_gen;
117};
118
119struct unmap_info {		/* packet unmapping info, overlays skb->cb */
120	int sflit;		/* start flit of first SGL entry in Tx descriptor */
121	u16 fragidx;		/* first page fragment in current Tx descriptor */
122	u16 addr_idx;		/* buffer index of first SGL entry in descriptor */
123	u32 len;		/* mapped length of skb main body */
124};
125
126/*
127 * Holds unmapping information for Tx packets that need deferred unmapping.
128 * This structure lives at skb->head and must be allocated by callers.
129 */
130struct deferred_unmap_info {
131	struct pci_dev *pdev;
132	dma_addr_t addr[MAX_SKB_FRAGS + 1];
133};
134
135/*
136 * Maps a number of flits to the number of Tx descriptors that can hold them.
137 * The formula is
138 *
139 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
140 *
141 * HW allows up to 4 descriptors to be combined into a WR.
142 */
143static u8 flit_desc_map[] = {
144	0,
145#if SGE_NUM_GENBITS == 1
146	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
147	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
148	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
149	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
150#elif SGE_NUM_GENBITS == 2
151	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
152	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
153	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
154	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
155#else
156# error "SGE_NUM_GENBITS must be 1 or 2"
157#endif
158};
159
160static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
161{
162	return container_of(q, struct sge_qset, fl[qidx]);
163}
164
165static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
166{
167	return container_of(q, struct sge_qset, rspq);
168}
169
170static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
171{
172	return container_of(q, struct sge_qset, txq[qidx]);
173}
174
175/**
176 *	refill_rspq - replenish an SGE response queue
177 *	@adapter: the adapter
178 *	@q: the response queue to replenish
179 *	@credits: how many new responses to make available
180 *
181 *	Replenishes a response queue by making the supplied number of responses
182 *	available to HW.
183 */
184static inline void refill_rspq(struct adapter *adapter,
185			       const struct sge_rspq *q, unsigned int credits)
186{
187	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
188		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
189}
190
191/**
192 *	need_skb_unmap - does the platform need unmapping of sk_buffs?
193 *
194 *	Returns true if the platfrom needs sk_buff unmapping.  The compiler
195 *	optimizes away unecessary code if this returns true.
196 */
197static inline int need_skb_unmap(void)
198{
199	/*
200	 * This structure is used to tell if the platfrom needs buffer
201	 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything.
202	 */
203	struct dummy {
204		DECLARE_PCI_UNMAP_ADDR(addr);
205	};
206
207	return sizeof(struct dummy) != 0;
208}
209
210/**
211 *	unmap_skb - unmap a packet main body and its page fragments
212 *	@skb: the packet
213 *	@q: the Tx queue containing Tx descriptors for the packet
214 *	@cidx: index of Tx descriptor
215 *	@pdev: the PCI device
216 *
217 *	Unmap the main body of an sk_buff and its page fragments, if any.
218 *	Because of the fairly complicated structure of our SGLs and the desire
219 *	to conserve space for metadata, we keep the information necessary to
220 *	unmap an sk_buff partly in the sk_buff itself (in its cb), and partly
221 *	in the Tx descriptors (the physical addresses of the various data
222 *	buffers).  The send functions initialize the state in skb->cb so we
223 *	can unmap the buffers held in the first Tx descriptor here, and we
224 *	have enough information at this point to update the state for the next
225 *	Tx descriptor.
226 */
227static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
228			     unsigned int cidx, struct pci_dev *pdev)
229{
230	const struct sg_ent *sgp;
231	struct unmap_info *ui = (struct unmap_info *)skb->cb;
232	int nfrags, frag_idx, curflit, j = ui->addr_idx;
233
234	sgp = (struct sg_ent *)&q->desc[cidx].flit[ui->sflit];
235
236	if (ui->len) {
237		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), ui->len,
238				 PCI_DMA_TODEVICE);
239		ui->len = 0;	/* so we know for next descriptor for this skb */
240		j = 1;
241	}
242
243	frag_idx = ui->fragidx;
244	curflit = ui->sflit + 1 + j;
245	nfrags = skb_shinfo(skb)->nr_frags;
246
247	while (frag_idx < nfrags && curflit < WR_FLITS) {
248		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
249			       skb_shinfo(skb)->frags[frag_idx].size,
250			       PCI_DMA_TODEVICE);
251		j ^= 1;
252		if (j == 0) {
253			sgp++;
254			curflit++;
255		}
256		curflit++;
257		frag_idx++;
258	}
259
260	if (frag_idx < nfrags) {	/* SGL continues into next Tx descriptor */
261		ui->fragidx = frag_idx;
262		ui->addr_idx = j;
263		ui->sflit = curflit - WR_FLITS - j;	/* sflit can be -1 */
264	}
265}
266
267/**
268 *	free_tx_desc - reclaims Tx descriptors and their buffers
269 *	@adapter: the adapter
270 *	@q: the Tx queue to reclaim descriptors from
271 *	@n: the number of descriptors to reclaim
272 *
273 *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated
274 *	Tx buffers.  Called with the Tx queue lock held.
275 */
276static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
277			 unsigned int n)
278{
279	struct tx_sw_desc *d;
280	struct pci_dev *pdev = adapter->pdev;
281	unsigned int cidx = q->cidx;
282
283	const int need_unmap = need_skb_unmap() &&
284			       q->cntxt_id >= FW_TUNNEL_SGEEC_START;
285
286	d = &q->sdesc[cidx];
287	while (n--) {
288		if (d->skb) {	/* an SGL is present */
289			if (need_unmap)
290				unmap_skb(d->skb, q, cidx, pdev);
291			if (d->skb->priority == cidx)
292				kfree_skb(d->skb);
293		}
294		++d;
295		if (++cidx == q->size) {
296			cidx = 0;
297			d = q->sdesc;
298		}
299	}
300	q->cidx = cidx;
301}
302
303/**
304 *	reclaim_completed_tx - reclaims completed Tx descriptors
305 *	@adapter: the adapter
306 *	@q: the Tx queue to reclaim completed descriptors from
307 *
308 *	Reclaims Tx descriptors that the SGE has indicated it has processed,
309 *	and frees the associated buffers if possible.  Called with the Tx
310 *	queue's lock held.
311 */
312static inline void reclaim_completed_tx(struct adapter *adapter,
313					struct sge_txq *q)
314{
315	unsigned int reclaim = q->processed - q->cleaned;
316
317	if (reclaim) {
318		free_tx_desc(adapter, q, reclaim);
319		q->cleaned += reclaim;
320		q->in_use -= reclaim;
321	}
322}
323
324/**
325 *	should_restart_tx - are there enough resources to restart a Tx queue?
326 *	@q: the Tx queue
327 *
328 *	Checks if there are enough descriptors to restart a suspended Tx queue.
329 */
330static inline int should_restart_tx(const struct sge_txq *q)
331{
332	unsigned int r = q->processed - q->cleaned;
333
334	return q->in_use - r < (q->size >> 1);
335}
336
337/**
338 *	free_rx_bufs - free the Rx buffers on an SGE free list
339 *	@pdev: the PCI device associated with the adapter
340 *	@rxq: the SGE free list to clean up
341 *
342 *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from
343 *	this queue should be stopped before calling this function.
344 */
345static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
346{
347	unsigned int cidx = q->cidx;
348
349	while (q->credits--) {
350		struct rx_sw_desc *d = &q->sdesc[cidx];
351
352		pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr),
353				 q->buf_size, PCI_DMA_FROMDEVICE);
354
355		if (q->buf_size != RX_PAGE_SIZE) {
356			kfree_skb(d->t.skb);
357			d->t.skb = NULL;
358		} else {
359			if (d->t.page.frag.page)
360				put_page(d->t.page.frag.page);
361			d->t.page.frag.page = NULL;
362		}
363		if (++cidx == q->size)
364			cidx = 0;
365	}
366
367	if (q->page.frag.page)
368		put_page(q->page.frag.page);
369	q->page.frag.page = NULL;
370}
371
372/**
373 *	add_one_rx_buf - add a packet buffer to a free-buffer list
374 *	@va: va of the buffer to add
375 *	@len: the buffer length
376 *	@d: the HW Rx descriptor to write
377 *	@sd: the SW Rx descriptor to write
378 *	@gen: the generation bit value
379 *	@pdev: the PCI device associated with the adapter
380 *
381 *	Add a buffer of the given length to the supplied HW and SW Rx
382 *	descriptors.
383 */
384static inline void add_one_rx_buf(unsigned char *va, unsigned int len,
385				  struct rx_desc *d, struct rx_sw_desc *sd,
386				  unsigned int gen, struct pci_dev *pdev)
387{
388	dma_addr_t mapping;
389
390	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
391	pci_unmap_addr_set(sd, dma_addr, mapping);
392
393	d->addr_lo = cpu_to_be32(mapping);
394	d->addr_hi = cpu_to_be32((u64) mapping >> 32);
395	wmb();
396	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
397	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
398}
399
400/**
401 *	refill_fl - refill an SGE free-buffer list
402 *	@adapter: the adapter
403 *	@q: the free-list to refill
404 *	@n: the number of new buffers to allocate
405 *	@gfp: the gfp flags for allocating new buffers
406 *
407 *	(Re)populate an SGE free-buffer list with up to @n new packet buffers,
408 *	allocated with the supplied gfp flags.  The caller must assure that
409 *	@n does not exceed the queue's capacity.
410 */
411static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
412{
413	struct rx_sw_desc *sd = &q->sdesc[q->pidx];
414	struct rx_desc *d = &q->desc[q->pidx];
415	struct sge_fl_page *p = &q->page;
416
417	while (n--) {
418		unsigned char *va;
419
420		if (unlikely(q->buf_size != RX_PAGE_SIZE)) {
421			struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
422
423			if (!skb) {
424				q->alloc_failed++;
425				break;
426			}
427			va = skb->data;
428			sd->t.skb = skb;
429		} else {
430			if (!p->frag.page) {
431				p->frag.page = alloc_pages(gfp, 0);
432				if (unlikely(!p->frag.page)) {
433					q->alloc_failed++;
434					break;
435				} else {
436					p->frag.size = RX_PAGE_SIZE;
437					p->frag.page_offset = 0;
438					p->va = page_address(p->frag.page);
439				}
440			}
441
442			memcpy(&sd->t, p, sizeof(*p));
443			va = p->va;
444
445			p->frag.page_offset += RX_PAGE_SIZE;
446			BUG_ON(p->frag.page_offset > PAGE_SIZE);
447			p->va += RX_PAGE_SIZE;
448			if (p->frag.page_offset == PAGE_SIZE)
449				p->frag.page = NULL;
450			else
451				get_page(p->frag.page);
452		}
453
454		add_one_rx_buf(va, q->buf_size, d, sd, q->gen, adap->pdev);
455
456		d++;
457		sd++;
458		if (++q->pidx == q->size) {
459			q->pidx = 0;
460			q->gen ^= 1;
461			sd = q->sdesc;
462			d = q->desc;
463		}
464		q->credits++;
465	}
466
467	t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
468}
469
470static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
471{
472	refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC);
473}
474
475/**
476 *	recycle_rx_buf - recycle a receive buffer
477 *	@adapter: the adapter
478 *	@q: the SGE free list
479 *	@idx: index of buffer to recycle
480 *
481 *	Recycles the specified buffer on the given free list by adding it at
482 *	the next available slot on the list.
483 */
484static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
485			   unsigned int idx)
486{
487	struct rx_desc *from = &q->desc[idx];
488	struct rx_desc *to = &q->desc[q->pidx];
489
490	memcpy(&q->sdesc[q->pidx], &q->sdesc[idx], sizeof(struct rx_sw_desc));
491	to->addr_lo = from->addr_lo;	/* already big endian */
492	to->addr_hi = from->addr_hi;	/* likewise */
493	wmb();
494	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
495	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
496	q->credits++;
497
498	if (++q->pidx == q->size) {
499		q->pidx = 0;
500		q->gen ^= 1;
501	}
502	t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
503}
504
505/**
506 *	alloc_ring - allocate resources for an SGE descriptor ring
507 *	@pdev: the PCI device
508 *	@nelem: the number of descriptors
509 *	@elem_size: the size of each descriptor
510 *	@sw_size: the size of the SW state associated with each ring element
511 *	@phys: the physical address of the allocated ring
512 *	@metadata: address of the array holding the SW state for the ring
513 *
514 *	Allocates resources for an SGE descriptor ring, such as Tx queues,
515 *	free buffer lists, or response queues.  Each SGE ring requires
516 *	space for its HW descriptors plus, optionally, space for the SW state
517 *	associated with each HW entry (the metadata).  The function returns
518 *	three values: the virtual address for the HW ring (the return value
519 *	of the function), the physical address of the HW ring, and the address
520 *	of the SW ring.
521 */
522static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
523			size_t sw_size, dma_addr_t * phys, void *metadata)
524{
525	size_t len = nelem * elem_size;
526	void *s = NULL;
527	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
528
529	if (!p)
530		return NULL;
531	if (sw_size) {
532		s = kcalloc(nelem, sw_size, GFP_KERNEL);
533
534		if (!s) {
535			dma_free_coherent(&pdev->dev, len, p, *phys);
536			return NULL;
537		}
538	}
539	if (metadata)
540		*(void **)metadata = s;
541	memset(p, 0, len);
542	return p;
543}
544
545/**
546 *	free_qset - free the resources of an SGE queue set
547 *	@adapter: the adapter owning the queue set
548 *	@q: the queue set
549 *
550 *	Release the HW and SW resources associated with an SGE queue set, such
551 *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the
552 *	queue set must be quiesced prior to calling this.
553 */
554void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
555{
556	int i;
557	struct pci_dev *pdev = adapter->pdev;
558
559	if (q->tx_reclaim_timer.function)
560		del_timer_sync(&q->tx_reclaim_timer);
561
562	for (i = 0; i < SGE_RXQ_PER_SET; ++i)
563		if (q->fl[i].desc) {
564			spin_lock(&adapter->sge.reg_lock);
565			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
566			spin_unlock(&adapter->sge.reg_lock);
567			free_rx_bufs(pdev, &q->fl[i]);
568			kfree(q->fl[i].sdesc);
569			dma_free_coherent(&pdev->dev,
570					  q->fl[i].size *
571					  sizeof(struct rx_desc), q->fl[i].desc,
572					  q->fl[i].phys_addr);
573		}
574
575	for (i = 0; i < SGE_TXQ_PER_SET; ++i)
576		if (q->txq[i].desc) {
577			spin_lock(&adapter->sge.reg_lock);
578			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
579			spin_unlock(&adapter->sge.reg_lock);
580			if (q->txq[i].sdesc) {
581				free_tx_desc(adapter, &q->txq[i],
582					     q->txq[i].in_use);
583				kfree(q->txq[i].sdesc);
584			}
585			dma_free_coherent(&pdev->dev,
586					  q->txq[i].size *
587					  sizeof(struct tx_desc),
588					  q->txq[i].desc, q->txq[i].phys_addr);
589			__skb_queue_purge(&q->txq[i].sendq);
590		}
591
592	if (q->rspq.desc) {
593		spin_lock(&adapter->sge.reg_lock);
594		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
595		spin_unlock(&adapter->sge.reg_lock);
596		dma_free_coherent(&pdev->dev,
597				  q->rspq.size * sizeof(struct rsp_desc),
598				  q->rspq.desc, q->rspq.phys_addr);
599	}
600
601	if (q->netdev)
602		q->netdev->atalk_ptr = NULL;
603
604	memset(q, 0, sizeof(*q));
605}
606
607/**
608 *	init_qset_cntxt - initialize an SGE queue set context info
609 *	@qs: the queue set
610 *	@id: the queue set id
611 *
612 *	Initializes the TIDs and context ids for the queues of a queue set.
613 */
614static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
615{
616	qs->rspq.cntxt_id = id;
617	qs->fl[0].cntxt_id = 2 * id;
618	qs->fl[1].cntxt_id = 2 * id + 1;
619	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
620	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
621	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
622	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
623	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
624}
625
626/**
627 *	sgl_len - calculates the size of an SGL of the given capacity
628 *	@n: the number of SGL entries
629 *
630 *	Calculates the number of flits needed for a scatter/gather list that
631 *	can hold the given number of entries.
632 */
633static inline unsigned int sgl_len(unsigned int n)
634{
635	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */
636	return (3 * n) / 2 + (n & 1);
637}
638
639/**
640 *	flits_to_desc - returns the num of Tx descriptors for the given flits
641 *	@n: the number of flits
642 *
643 *	Calculates the number of Tx descriptors needed for the supplied number
644 *	of flits.
645 */
646static inline unsigned int flits_to_desc(unsigned int n)
647{
648	BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
649	return flit_desc_map[n];
650}
651
652/**
653 *	get_imm_packet - return the next ingress packet buffer from a response
654 *	@resp: the response descriptor containing the packet data
655 *
656 *	Return a packet containing the immediate data of the given response.
657 */
658static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
659{
660	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
661
662	if (skb) {
663		__skb_put(skb, IMMED_PKT_SIZE);
664		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
665	}
666	return skb;
667}
668
669/**
670 *	calc_tx_descs - calculate the number of Tx descriptors for a packet
671 *	@skb: the packet
672 *
673 * 	Returns the number of Tx descriptors needed for the given Ethernet
674 * 	packet.  Ethernet packets require addition of WR and CPL headers.
675 */
676static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
677{
678	unsigned int flits;
679
680	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
681		return 1;
682
683	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
684	if (skb_shinfo(skb)->gso_size)
685		flits++;
686	return flits_to_desc(flits);
687}
688
689/**
690 *	make_sgl - populate a scatter/gather list for a packet
691 *	@skb: the packet
692 *	@sgp: the SGL to populate
693 *	@start: start address of skb main body data to include in the SGL
694 *	@len: length of skb main body data to include in the SGL
695 *	@pdev: the PCI device
696 *
697 *	Generates a scatter/gather list for the buffers that make up a packet
698 *	and returns the SGL size in 8-byte words.  The caller must size the SGL
699 *	appropriately.
700 */
701static inline unsigned int make_sgl(const struct sk_buff *skb,
702				    struct sg_ent *sgp, unsigned char *start,
703				    unsigned int len, struct pci_dev *pdev)
704{
705	dma_addr_t mapping;
706	unsigned int i, j = 0, nfrags;
707
708	if (len) {
709		mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
710		sgp->len[0] = cpu_to_be32(len);
711		sgp->addr[0] = cpu_to_be64(mapping);
712		j = 1;
713	}
714
715	nfrags = skb_shinfo(skb)->nr_frags;
716	for (i = 0; i < nfrags; i++) {
717		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
718
719		mapping = pci_map_page(pdev, frag->page, frag->page_offset,
720				       frag->size, PCI_DMA_TODEVICE);
721		sgp->len[j] = cpu_to_be32(frag->size);
722		sgp->addr[j] = cpu_to_be64(mapping);
723		j ^= 1;
724		if (j == 0)
725			++sgp;
726	}
727	if (j)
728		sgp->len[j] = 0;
729	return ((nfrags + (len != 0)) * 3) / 2 + j;
730}
731
732/**
733 *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell
734 *	@adap: the adapter
735 *	@q: the Tx queue
736 *
737 *	Ring the doorbel if a Tx queue is asleep.  There is a natural race,
738 *	where the HW is going to sleep just after we checked, however,
739 *	then the interrupt handler will detect the outstanding TX packet
740 *	and ring the doorbell for us.
741 *
742 *	When GTS is disabled we unconditionally ring the doorbell.
743 */
744static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
745{
746#if USE_GTS
747	clear_bit(TXQ_LAST_PKT_DB, &q->flags);
748	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
749		set_bit(TXQ_LAST_PKT_DB, &q->flags);
750		t3_write_reg(adap, A_SG_KDOORBELL,
751			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
752	}
753#else
754	wmb();			/* write descriptors before telling HW */
755	t3_write_reg(adap, A_SG_KDOORBELL,
756		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
757#endif
758}
759
760static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
761{
762#if SGE_NUM_GENBITS == 2
763	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
764#endif
765}
766
767/**
768 *	write_wr_hdr_sgl - write a WR header and, optionally, SGL
769 *	@ndesc: number of Tx descriptors spanned by the SGL
770 *	@skb: the packet corresponding to the WR
771 *	@d: first Tx descriptor to be written
772 *	@pidx: index of above descriptors
773 *	@q: the SGE Tx queue
774 *	@sgl: the SGL
775 *	@flits: number of flits to the start of the SGL in the first descriptor
776 *	@sgl_flits: the SGL size in flits
777 *	@gen: the Tx descriptor generation
778 *	@wr_hi: top 32 bits of WR header based on WR type (big endian)
779 *	@wr_lo: low 32 bits of WR header based on WR type (big endian)
780 *
781 *	Write a work request header and an associated SGL.  If the SGL is
782 *	small enough to fit into one Tx descriptor it has already been written
783 *	and we just need to write the WR header.  Otherwise we distribute the
784 *	SGL across the number of descriptors it spans.
785 */
786static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
787			     struct tx_desc *d, unsigned int pidx,
788			     const struct sge_txq *q,
789			     const struct sg_ent *sgl,
790			     unsigned int flits, unsigned int sgl_flits,
791			     unsigned int gen, unsigned int wr_hi,
792			     unsigned int wr_lo)
793{
794	struct work_request_hdr *wrp = (struct work_request_hdr *)d;
795	struct tx_sw_desc *sd = &q->sdesc[pidx];
796
797	sd->skb = skb;
798	if (need_skb_unmap()) {
799		struct unmap_info *ui = (struct unmap_info *)skb->cb;
800
801		ui->fragidx = 0;
802		ui->addr_idx = 0;
803		ui->sflit = flits;
804	}
805
806	if (likely(ndesc == 1)) {
807		skb->priority = pidx;
808		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
809				   V_WR_SGLSFLT(flits)) | wr_hi;
810		wmb();
811		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
812				   V_WR_GEN(gen)) | wr_lo;
813		wr_gen2(d, gen);
814	} else {
815		unsigned int ogen = gen;
816		const u64 *fp = (const u64 *)sgl;
817		struct work_request_hdr *wp = wrp;
818
819		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
820				   V_WR_SGLSFLT(flits)) | wr_hi;
821
822		while (sgl_flits) {
823			unsigned int avail = WR_FLITS - flits;
824
825			if (avail > sgl_flits)
826				avail = sgl_flits;
827			memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
828			sgl_flits -= avail;
829			ndesc--;
830			if (!sgl_flits)
831				break;
832
833			fp += avail;
834			d++;
835			sd++;
836			if (++pidx == q->size) {
837				pidx = 0;
838				gen ^= 1;
839				d = q->desc;
840				sd = q->sdesc;
841			}
842
843			sd->skb = skb;
844			wrp = (struct work_request_hdr *)d;
845			wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
846					   V_WR_SGLSFLT(1)) | wr_hi;
847			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
848							sgl_flits + 1)) |
849					   V_WR_GEN(gen)) | wr_lo;
850			wr_gen2(d, gen);
851			flits = 1;
852		}
853		skb->priority = pidx;
854		wrp->wr_hi |= htonl(F_WR_EOP);
855		wmb();
856		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
857		wr_gen2((struct tx_desc *)wp, ogen);
858		WARN_ON(ndesc != 0);
859	}
860}
861
862/**
863 *	write_tx_pkt_wr - write a TX_PKT work request
864 *	@adap: the adapter
865 *	@skb: the packet to send
866 *	@pi: the egress interface
867 *	@pidx: index of the first Tx descriptor to write
868 *	@gen: the generation value to use
869 *	@q: the Tx queue
870 *	@ndesc: number of descriptors the packet will occupy
871 *	@compl: the value of the COMPL bit to use
872 *
873 *	Generate a TX_PKT work request to send the supplied packet.
874 */
875static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
876			    const struct port_info *pi,
877			    unsigned int pidx, unsigned int gen,
878			    struct sge_txq *q, unsigned int ndesc,
879			    unsigned int compl)
880{
881	unsigned int flits, sgl_flits, cntrl, tso_info;
882	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
883	struct tx_desc *d = &q->desc[pidx];
884	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
885
886	cpl->len = htonl(skb->len | 0x80000000);
887	cntrl = V_TXPKT_INTF(pi->port_id);
888
889	if (vlan_tx_tag_present(skb) && pi->vlan_grp)
890		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
891
892	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
893	if (tso_info) {
894		int eth_type;
895		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
896
897		d->flit[2] = 0;
898		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
899		hdr->cntrl = htonl(cntrl);
900		eth_type = skb_network_offset(skb) == ETH_HLEN ?
901		    CPL_ETH_II : CPL_ETH_II_VLAN;
902		tso_info |= V_LSO_ETH_TYPE(eth_type) |
903		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
904		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
905		hdr->lso_info = htonl(tso_info);
906		flits = 3;
907	} else {
908		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
909		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */
910		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
911		cpl->cntrl = htonl(cntrl);
912
913		if (skb->len <= WR_LEN - sizeof(*cpl)) {
914			q->sdesc[pidx].skb = NULL;
915			if (!skb->data_len)
916				skb_copy_from_linear_data(skb, &d->flit[2],
917							  skb->len);
918			else
919				skb_copy_bits(skb, 0, &d->flit[2], skb->len);
920
921			flits = (skb->len + 7) / 8 + 2;
922			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
923					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
924					      | F_WR_SOP | F_WR_EOP | compl);
925			wmb();
926			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
927					      V_WR_TID(q->token));
928			wr_gen2(d, gen);
929			kfree_skb(skb);
930			return;
931		}
932
933		flits = 2;
934	}
935
936	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
937	sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
938	if (need_skb_unmap())
939		((struct unmap_info *)skb->cb)->len = skb_headlen(skb);
940
941	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
942			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
943			 htonl(V_WR_TID(q->token)));
944}
945
946/**
947 *	eth_xmit - add a packet to the Ethernet Tx queue
948 *	@skb: the packet
949 *	@dev: the egress net device
950 *
951 *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled.
952 */
953int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
954{
955	unsigned int ndesc, pidx, credits, gen, compl;
956	const struct port_info *pi = netdev_priv(dev);
957	struct adapter *adap = dev->priv;
958	struct sge_qset *qs = dev2qset(dev);
959	struct sge_txq *q = &qs->txq[TXQ_ETH];
960
961	/*
962	 * The chip min packet length is 9 octets but play safe and reject
963	 * anything shorter than an Ethernet header.
964	 */
965	if (unlikely(skb->len < ETH_HLEN)) {
966		dev_kfree_skb(skb);
967		return NETDEV_TX_OK;
968	}
969
970	spin_lock(&q->lock);
971	reclaim_completed_tx(adap, q);
972
973	credits = q->size - q->in_use;
974	ndesc = calc_tx_descs(skb);
975
976	if (unlikely(credits < ndesc)) {
977		if (!netif_queue_stopped(dev)) {
978			netif_stop_queue(dev);
979			set_bit(TXQ_ETH, &qs->txq_stopped);
980			q->stops++;
981			dev_err(&adap->pdev->dev,
982				"%s: Tx ring %u full while queue awake!\n",
983				dev->name, q->cntxt_id & 7);
984		}
985		spin_unlock(&q->lock);
986		return NETDEV_TX_BUSY;
987	}
988
989	q->in_use += ndesc;
990	if (unlikely(credits - ndesc < q->stop_thres)) {
991		q->stops++;
992		netif_stop_queue(dev);
993		set_bit(TXQ_ETH, &qs->txq_stopped);
994#if !USE_GTS
995		if (should_restart_tx(q) &&
996		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
997			q->restarts++;
998			netif_wake_queue(dev);
999		}
1000#endif
1001	}
1002
1003	gen = q->gen;
1004	q->unacked += ndesc;
1005	compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1006	q->unacked &= 7;
1007	pidx = q->pidx;
1008	q->pidx += ndesc;
1009	if (q->pidx >= q->size) {
1010		q->pidx -= q->size;
1011		q->gen ^= 1;
1012	}
1013
1014	/* update port statistics */
1015	if (skb->ip_summed == CHECKSUM_COMPLETE)
1016		qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1017	if (skb_shinfo(skb)->gso_size)
1018		qs->port_stats[SGE_PSTAT_TSO]++;
1019	if (vlan_tx_tag_present(skb) && pi->vlan_grp)
1020		qs->port_stats[SGE_PSTAT_VLANINS]++;
1021
1022	dev->trans_start = jiffies;
1023	spin_unlock(&q->lock);
1024
1025	/*
1026	 * We do not use Tx completion interrupts to free DMAd Tx packets.
1027	 * This is good for performamce but means that we rely on new Tx
1028	 * packets arriving to run the destructors of completed packets,
1029	 * which open up space in their sockets' send queues.  Sometimes
1030	 * we do not get such new packets causing Tx to stall.  A single
1031	 * UDP transmitter is a good example of this situation.  We have
1032	 * a clean up timer that periodically reclaims completed packets
1033	 * but it doesn't run often enough (nor do we want it to) to prevent
1034	 * lengthy stalls.  A solution to this problem is to run the
1035	 * destructor early, after the packet is queued but before it's DMAd.
1036	 * A cons is that we lie to socket memory accounting, but the amount
1037	 * of extra memory is reasonable (limited by the number of Tx
1038	 * descriptors), the packets do actually get freed quickly by new
1039	 * packets almost always, and for protocols like TCP that wait for
1040	 * acks to really free up the data the extra memory is even less.
1041	 * On the positive side we run the destructors on the sending CPU
1042	 * rather than on a potentially different completing CPU, usually a
1043	 * good thing.  We also run them without holding our Tx queue lock,
1044	 * unlike what reclaim_completed_tx() would otherwise do.
1045	 *
1046	 * Run the destructor before telling the DMA engine about the packet
1047	 * to make sure it doesn't complete and get freed prematurely.
1048	 */
1049	if (likely(!skb_shared(skb)))
1050		skb_orphan(skb);
1051
1052	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1053	check_ring_tx_db(adap, q);
1054	return NETDEV_TX_OK;
1055}
1056
1057/**
1058 *	write_imm - write a packet into a Tx descriptor as immediate data
1059 *	@d: the Tx descriptor to write
1060 *	@skb: the packet
1061 *	@len: the length of packet data to write as immediate data
1062 *	@gen: the generation bit value to write
1063 *
1064 *	Writes a packet as immediate data into a Tx descriptor.  The packet
1065 *	contains a work request at its beginning.  We must write the packet
1066 *	carefully so the SGE doesn't read accidentally before it's written in
1067 *	its entirety.
1068 */
1069static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1070			     unsigned int len, unsigned int gen)
1071{
1072	struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1073	struct work_request_hdr *to = (struct work_request_hdr *)d;
1074
1075	memcpy(&to[1], &from[1], len - sizeof(*from));
1076	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1077					V_WR_BCNTLFLT(len & 7));
1078	wmb();
1079	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1080					V_WR_LEN((len + 7) / 8));
1081	wr_gen2(d, gen);
1082	kfree_skb(skb);
1083}
1084
1085/**
1086 *	check_desc_avail - check descriptor availability on a send queue
1087 *	@adap: the adapter
1088 *	@q: the send queue
1089 *	@skb: the packet needing the descriptors
1090 *	@ndesc: the number of Tx descriptors needed
1091 *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1092 *
1093 *	Checks if the requested number of Tx descriptors is available on an
1094 *	SGE send queue.  If the queue is already suspended or not enough
1095 *	descriptors are available the packet is queued for later transmission.
1096 *	Must be called with the Tx queue locked.
1097 *
1098 *	Returns 0 if enough descriptors are available, 1 if there aren't
1099 *	enough descriptors and the packet has been queued, and 2 if the caller
1100 *	needs to retry because there weren't enough descriptors at the
1101 *	beginning of the call but some freed up in the mean time.
1102 */
1103static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1104				   struct sk_buff *skb, unsigned int ndesc,
1105				   unsigned int qid)
1106{
1107	if (unlikely(!skb_queue_empty(&q->sendq))) {
1108	      addq_exit:__skb_queue_tail(&q->sendq, skb);
1109		return 1;
1110	}
1111	if (unlikely(q->size - q->in_use < ndesc)) {
1112		struct sge_qset *qs = txq_to_qset(q, qid);
1113
1114		set_bit(qid, &qs->txq_stopped);
1115		smp_mb__after_clear_bit();
1116
1117		if (should_restart_tx(q) &&
1118		    test_and_clear_bit(qid, &qs->txq_stopped))
1119			return 2;
1120
1121		q->stops++;
1122		goto addq_exit;
1123	}
1124	return 0;
1125}
1126
1127/**
1128 *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1129 *	@q: the SGE control Tx queue
1130 *
1131 *	This is a variant of reclaim_completed_tx() that is used for Tx queues
1132 *	that send only immediate data (presently just the control queues) and
1133 *	thus do not have any sk_buffs to release.
1134 */
1135static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1136{
1137	unsigned int reclaim = q->processed - q->cleaned;
1138
1139	q->in_use -= reclaim;
1140	q->cleaned += reclaim;
1141}
1142
1143static inline int immediate(const struct sk_buff *skb)
1144{
1145	return skb->len <= WR_LEN && !skb->data_len;
1146}
1147
1148/**
1149 *	ctrl_xmit - send a packet through an SGE control Tx queue
1150 *	@adap: the adapter
1151 *	@q: the control queue
1152 *	@skb: the packet
1153 *
1154 *	Send a packet through an SGE control Tx queue.  Packets sent through
1155 *	a control queue must fit entirely as immediate data in a single Tx
1156 *	descriptor and have no page fragments.
1157 */
1158static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1159		     struct sk_buff *skb)
1160{
1161	int ret;
1162	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1163
1164	if (unlikely(!immediate(skb))) {
1165		WARN_ON(1);
1166		dev_kfree_skb(skb);
1167		return NET_XMIT_SUCCESS;
1168	}
1169
1170	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1171	wrp->wr_lo = htonl(V_WR_TID(q->token));
1172
1173	spin_lock(&q->lock);
1174      again:reclaim_completed_tx_imm(q);
1175
1176	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1177	if (unlikely(ret)) {
1178		if (ret == 1) {
1179			spin_unlock(&q->lock);
1180			return NET_XMIT_CN;
1181		}
1182		goto again;
1183	}
1184
1185	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1186
1187	q->in_use++;
1188	if (++q->pidx >= q->size) {
1189		q->pidx = 0;
1190		q->gen ^= 1;
1191	}
1192	spin_unlock(&q->lock);
1193	wmb();
1194	t3_write_reg(adap, A_SG_KDOORBELL,
1195		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1196	return NET_XMIT_SUCCESS;
1197}
1198
1199/**
1200 *	restart_ctrlq - restart a suspended control queue
1201 *	@qs: the queue set cotaining the control queue
1202 *
1203 *	Resumes transmission on a suspended Tx control queue.
1204 */
1205static void restart_ctrlq(unsigned long data)
1206{
1207	struct sk_buff *skb;
1208	struct sge_qset *qs = (struct sge_qset *)data;
1209	struct sge_txq *q = &qs->txq[TXQ_CTRL];
1210	struct adapter *adap = qs->netdev->priv;
1211
1212	spin_lock(&q->lock);
1213      again:reclaim_completed_tx_imm(q);
1214
1215	while (q->in_use < q->size && (skb = __skb_dequeue(&q->sendq)) != NULL) {
1216
1217		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1218
1219		if (++q->pidx >= q->size) {
1220			q->pidx = 0;
1221			q->gen ^= 1;
1222		}
1223		q->in_use++;
1224	}
1225
1226	if (!skb_queue_empty(&q->sendq)) {
1227		set_bit(TXQ_CTRL, &qs->txq_stopped);
1228		smp_mb__after_clear_bit();
1229
1230		if (should_restart_tx(q) &&
1231		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1232			goto again;
1233		q->stops++;
1234	}
1235
1236	spin_unlock(&q->lock);
1237	t3_write_reg(adap, A_SG_KDOORBELL,
1238		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1239}
1240
1241/*
1242 * Send a management message through control queue 0
1243 */
1244int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1245{
1246	return ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1247}
1248
1249/**
1250 *	deferred_unmap_destructor - unmap a packet when it is freed
1251 *	@skb: the packet
1252 *
1253 *	This is the packet destructor used for Tx packets that need to remain
1254 *	mapped until they are freed rather than until their Tx descriptors are
1255 *	freed.
1256 */
1257static void deferred_unmap_destructor(struct sk_buff *skb)
1258{
1259	int i;
1260	const dma_addr_t *p;
1261	const struct skb_shared_info *si;
1262	const struct deferred_unmap_info *dui;
1263	const struct unmap_info *ui = (struct unmap_info *)skb->cb;
1264
1265	dui = (struct deferred_unmap_info *)skb->head;
1266	p = dui->addr;
1267
1268	if (ui->len)
1269		pci_unmap_single(dui->pdev, *p++, ui->len, PCI_DMA_TODEVICE);
1270
1271	si = skb_shinfo(skb);
1272	for (i = 0; i < si->nr_frags; i++)
1273		pci_unmap_page(dui->pdev, *p++, si->frags[i].size,
1274			       PCI_DMA_TODEVICE);
1275}
1276
1277static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1278				     const struct sg_ent *sgl, int sgl_flits)
1279{
1280	dma_addr_t *p;
1281	struct deferred_unmap_info *dui;
1282
1283	dui = (struct deferred_unmap_info *)skb->head;
1284	dui->pdev = pdev;
1285	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1286		*p++ = be64_to_cpu(sgl->addr[0]);
1287		*p++ = be64_to_cpu(sgl->addr[1]);
1288	}
1289	if (sgl_flits)
1290		*p = be64_to_cpu(sgl->addr[0]);
1291}
1292
1293/**
1294 *	write_ofld_wr - write an offload work request
1295 *	@adap: the adapter
1296 *	@skb: the packet to send
1297 *	@q: the Tx queue
1298 *	@pidx: index of the first Tx descriptor to write
1299 *	@gen: the generation value to use
1300 *	@ndesc: number of descriptors the packet will occupy
1301 *
1302 *	Write an offload work request to send the supplied packet.  The packet
1303 *	data already carry the work request with most fields populated.
1304 */
1305static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1306			  struct sge_txq *q, unsigned int pidx,
1307			  unsigned int gen, unsigned int ndesc)
1308{
1309	unsigned int sgl_flits, flits;
1310	struct work_request_hdr *from;
1311	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1312	struct tx_desc *d = &q->desc[pidx];
1313
1314	if (immediate(skb)) {
1315		q->sdesc[pidx].skb = NULL;
1316		write_imm(d, skb, skb->len, gen);
1317		return;
1318	}
1319
1320	/* Only TX_DATA builds SGLs */
1321
1322	from = (struct work_request_hdr *)skb->data;
1323	memcpy(&d->flit[1], &from[1],
1324	       skb_transport_offset(skb) - sizeof(*from));
1325
1326	flits = skb_transport_offset(skb) / 8;
1327	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1328	sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1329			     skb->tail - skb->transport_header,
1330			     adap->pdev);
1331	if (need_skb_unmap()) {
1332		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1333		skb->destructor = deferred_unmap_destructor;
1334		((struct unmap_info *)skb->cb)->len = (skb->tail -
1335						       skb->transport_header);
1336	}
1337
1338	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1339			 gen, from->wr_hi, from->wr_lo);
1340}
1341
1342/**
1343 *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1344 *	@skb: the packet
1345 *
1346 * 	Returns the number of Tx descriptors needed for the given offload
1347 * 	packet.  These packets are already fully constructed.
1348 */
1349static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1350{
1351	unsigned int flits, cnt = skb_shinfo(skb)->nr_frags;
1352
1353	if (skb->len <= WR_LEN && cnt == 0)
1354		return 1;	/* packet fits as immediate data */
1355
1356	flits = skb_transport_offset(skb) / 8;	/* headers */
1357	if (skb->tail != skb->transport_header)
1358		cnt++;
1359	return flits_to_desc(flits + sgl_len(cnt));
1360}
1361
1362/**
1363 *	ofld_xmit - send a packet through an offload queue
1364 *	@adap: the adapter
1365 *	@q: the Tx offload queue
1366 *	@skb: the packet
1367 *
1368 *	Send an offload packet through an SGE offload queue.
1369 */
1370static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1371		     struct sk_buff *skb)
1372{
1373	int ret;
1374	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1375
1376	spin_lock(&q->lock);
1377      again:reclaim_completed_tx(adap, q);
1378
1379	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1380	if (unlikely(ret)) {
1381		if (ret == 1) {
1382			skb->priority = ndesc;	/* save for restart */
1383			spin_unlock(&q->lock);
1384			return NET_XMIT_CN;
1385		}
1386		goto again;
1387	}
1388
1389	gen = q->gen;
1390	q->in_use += ndesc;
1391	pidx = q->pidx;
1392	q->pidx += ndesc;
1393	if (q->pidx >= q->size) {
1394		q->pidx -= q->size;
1395		q->gen ^= 1;
1396	}
1397	spin_unlock(&q->lock);
1398
1399	write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1400	check_ring_tx_db(adap, q);
1401	return NET_XMIT_SUCCESS;
1402}
1403
1404/**
1405 *	restart_offloadq - restart a suspended offload queue
1406 *	@qs: the queue set cotaining the offload queue
1407 *
1408 *	Resumes transmission on a suspended Tx offload queue.
1409 */
1410static void restart_offloadq(unsigned long data)
1411{
1412	struct sk_buff *skb;
1413	struct sge_qset *qs = (struct sge_qset *)data;
1414	struct sge_txq *q = &qs->txq[TXQ_OFLD];
1415	struct adapter *adap = qs->netdev->priv;
1416
1417	spin_lock(&q->lock);
1418      again:reclaim_completed_tx(adap, q);
1419
1420	while ((skb = skb_peek(&q->sendq)) != NULL) {
1421		unsigned int gen, pidx;
1422		unsigned int ndesc = skb->priority;
1423
1424		if (unlikely(q->size - q->in_use < ndesc)) {
1425			set_bit(TXQ_OFLD, &qs->txq_stopped);
1426			smp_mb__after_clear_bit();
1427
1428			if (should_restart_tx(q) &&
1429			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1430				goto again;
1431			q->stops++;
1432			break;
1433		}
1434
1435		gen = q->gen;
1436		q->in_use += ndesc;
1437		pidx = q->pidx;
1438		q->pidx += ndesc;
1439		if (q->pidx >= q->size) {
1440			q->pidx -= q->size;
1441			q->gen ^= 1;
1442		}
1443		__skb_unlink(skb, &q->sendq);
1444		spin_unlock(&q->lock);
1445
1446		write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1447		spin_lock(&q->lock);
1448	}
1449	spin_unlock(&q->lock);
1450
1451#if USE_GTS
1452	set_bit(TXQ_RUNNING, &q->flags);
1453	set_bit(TXQ_LAST_PKT_DB, &q->flags);
1454#endif
1455	t3_write_reg(adap, A_SG_KDOORBELL,
1456		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1457}
1458
1459/**
1460 *	queue_set - return the queue set a packet should use
1461 *	@skb: the packet
1462 *
1463 *	Maps a packet to the SGE queue set it should use.  The desired queue
1464 *	set is carried in bits 1-3 in the packet's priority.
1465 */
1466static inline int queue_set(const struct sk_buff *skb)
1467{
1468	return skb->priority >> 1;
1469}
1470
1471/**
1472 *	is_ctrl_pkt - return whether an offload packet is a control packet
1473 *	@skb: the packet
1474 *
1475 *	Determines whether an offload packet should use an OFLD or a CTRL
1476 *	Tx queue.  This is indicated by bit 0 in the packet's priority.
1477 */
1478static inline int is_ctrl_pkt(const struct sk_buff *skb)
1479{
1480	return skb->priority & 1;
1481}
1482
1483/**
1484 *	t3_offload_tx - send an offload packet
1485 *	@tdev: the offload device to send to
1486 *	@skb: the packet
1487 *
1488 *	Sends an offload packet.  We use the packet priority to select the
1489 *	appropriate Tx queue as follows: bit 0 indicates whether the packet
1490 *	should be sent as regular or control, bits 1-3 select the queue set.
1491 */
1492int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1493{
1494	struct adapter *adap = tdev2adap(tdev);
1495	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1496
1497	if (unlikely(is_ctrl_pkt(skb)))
1498		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1499
1500	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1501}
1502
1503/**
1504 *	offload_enqueue - add an offload packet to an SGE offload receive queue
1505 *	@q: the SGE response queue
1506 *	@skb: the packet
1507 *
1508 *	Add a new offload packet to an SGE response queue's offload packet
1509 *	queue.  If the packet is the first on the queue it schedules the RX
1510 *	softirq to process the queue.
1511 */
1512static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1513{
1514	skb->next = skb->prev = NULL;
1515	if (q->rx_tail)
1516		q->rx_tail->next = skb;
1517	else {
1518		struct sge_qset *qs = rspq_to_qset(q);
1519
1520		if (__netif_rx_schedule_prep(qs->netdev))
1521			__netif_rx_schedule(qs->netdev);
1522		q->rx_head = skb;
1523	}
1524	q->rx_tail = skb;
1525}
1526
1527/**
1528 *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1529 *	@tdev: the offload device that will be receiving the packets
1530 *	@q: the SGE response queue that assembled the bundle
1531 *	@skbs: the partial bundle
1532 *	@n: the number of packets in the bundle
1533 *
1534 *	Delivers a (partial) bundle of Rx offload packets to an offload device.
1535 */
1536static inline void deliver_partial_bundle(struct t3cdev *tdev,
1537					  struct sge_rspq *q,
1538					  struct sk_buff *skbs[], int n)
1539{
1540	if (n) {
1541		q->offload_bundles++;
1542		tdev->recv(tdev, skbs, n);
1543	}
1544}
1545
1546/**
1547 *	ofld_poll - NAPI handler for offload packets in interrupt mode
1548 *	@dev: the network device doing the polling
1549 *	@budget: polling budget
1550 *
1551 *	The NAPI handler for offload packets when a response queue is serviced
1552 *	by the hard interrupt handler, i.e., when it's operating in non-polling
1553 *	mode.  Creates small packet batches and sends them through the offload
1554 *	receive handler.  Batches need to be of modest size as we do prefetches
1555 *	on the packets in each.
1556 */
1557static int ofld_poll(struct net_device *dev, int *budget)
1558{
1559	struct adapter *adapter = dev->priv;
1560	struct sge_qset *qs = dev2qset(dev);
1561	struct sge_rspq *q = &qs->rspq;
1562	int work_done, limit = min(*budget, dev->quota), avail = limit;
1563
1564	while (avail) {
1565		struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE];
1566		int ngathered;
1567
1568		spin_lock_irq(&q->lock);
1569		head = q->rx_head;
1570		if (!head) {
1571			work_done = limit - avail;
1572			*budget -= work_done;
1573			dev->quota -= work_done;
1574			__netif_rx_complete(dev);
1575			spin_unlock_irq(&q->lock);
1576			return 0;
1577		}
1578
1579		tail = q->rx_tail;
1580		q->rx_head = q->rx_tail = NULL;
1581		spin_unlock_irq(&q->lock);
1582
1583		for (ngathered = 0; avail && head; avail--) {
1584			prefetch(head->data);
1585			skbs[ngathered] = head;
1586			head = head->next;
1587			skbs[ngathered]->next = NULL;
1588			if (++ngathered == RX_BUNDLE_SIZE) {
1589				q->offload_bundles++;
1590				adapter->tdev.recv(&adapter->tdev, skbs,
1591						   ngathered);
1592				ngathered = 0;
1593			}
1594		}
1595		if (head) {	/* splice remaining packets back onto Rx queue */
1596			spin_lock_irq(&q->lock);
1597			tail->next = q->rx_head;
1598			if (!q->rx_head)
1599				q->rx_tail = tail;
1600			q->rx_head = head;
1601			spin_unlock_irq(&q->lock);
1602		}
1603		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1604	}
1605	work_done = limit - avail;
1606	*budget -= work_done;
1607	dev->quota -= work_done;
1608	return 1;
1609}
1610
1611/**
1612 *	rx_offload - process a received offload packet
1613 *	@tdev: the offload device receiving the packet
1614 *	@rq: the response queue that received the packet
1615 *	@skb: the packet
1616 *	@rx_gather: a gather list of packets if we are building a bundle
1617 *	@gather_idx: index of the next available slot in the bundle
1618 *
1619 *	Process an ingress offload pakcet and add it to the offload ingress
1620 *	queue. 	Returns the index of the next available slot in the bundle.
1621 */
1622static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1623			     struct sk_buff *skb, struct sk_buff *rx_gather[],
1624			     unsigned int gather_idx)
1625{
1626	rq->offload_pkts++;
1627	skb_reset_mac_header(skb);
1628	skb_reset_network_header(skb);
1629	skb_reset_transport_header(skb);
1630
1631	if (rq->polling) {
1632		rx_gather[gather_idx++] = skb;
1633		if (gather_idx == RX_BUNDLE_SIZE) {
1634			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1635			gather_idx = 0;
1636			rq->offload_bundles++;
1637		}
1638	} else
1639		offload_enqueue(rq, skb);
1640
1641	return gather_idx;
1642}
1643
1644/**
1645 *	restart_tx - check whether to restart suspended Tx queues
1646 *	@qs: the queue set to resume
1647 *
1648 *	Restarts suspended Tx queues of an SGE queue set if they have enough
1649 *	free resources to resume operation.
1650 */
1651static void restart_tx(struct sge_qset *qs)
1652{
1653	if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1654	    should_restart_tx(&qs->txq[TXQ_ETH]) &&
1655	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1656		qs->txq[TXQ_ETH].restarts++;
1657		if (netif_running(qs->netdev))
1658			netif_wake_queue(qs->netdev);
1659	}
1660
1661	if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1662	    should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1663	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1664		qs->txq[TXQ_OFLD].restarts++;
1665		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1666	}
1667	if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1668	    should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1669	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1670		qs->txq[TXQ_CTRL].restarts++;
1671		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1672	}
1673}
1674
1675/**
1676 *	rx_eth - process an ingress ethernet packet
1677 *	@adap: the adapter
1678 *	@rq: the response queue that received the packet
1679 *	@skb: the packet
1680 *	@pad: amount of padding at the start of the buffer
1681 *
1682 *	Process an ingress ethernet pakcet and deliver it to the stack.
1683 *	The padding is 2 if the packet was delivered in an Rx buffer and 0
1684 *	if it was immediate data in a response.
1685 */
1686static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
1687		   struct sk_buff *skb, int pad)
1688{
1689	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
1690	struct port_info *pi;
1691
1692	skb_pull(skb, sizeof(*p) + pad);
1693	skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
1694	skb->dev->last_rx = jiffies;
1695	pi = netdev_priv(skb->dev);
1696	if (pi->rx_csum_offload && p->csum_valid && p->csum == 0xffff &&
1697	    !p->fragment) {
1698		rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
1699		skb->ip_summed = CHECKSUM_UNNECESSARY;
1700	} else
1701		skb->ip_summed = CHECKSUM_NONE;
1702
1703	if (unlikely(p->vlan_valid)) {
1704		struct vlan_group *grp = pi->vlan_grp;
1705
1706		rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++;
1707		if (likely(grp))
1708			__vlan_hwaccel_rx(skb, grp, ntohs(p->vlan),
1709					  rq->polling);
1710		else
1711			dev_kfree_skb_any(skb);
1712	} else if (rq->polling)
1713		netif_receive_skb(skb);
1714	else
1715		netif_rx(skb);
1716}
1717
1718#define SKB_DATA_SIZE 128
1719
1720static void skb_data_init(struct sk_buff *skb, struct sge_fl_page *p,
1721			  unsigned int len)
1722{
1723	skb->len = len;
1724	if (len <= SKB_DATA_SIZE) {
1725		skb_copy_to_linear_data(skb, p->va, len);
1726		skb->tail += len;
1727		put_page(p->frag.page);
1728	} else {
1729		skb_copy_to_linear_data(skb, p->va, SKB_DATA_SIZE);
1730		skb_shinfo(skb)->frags[0].page = p->frag.page;
1731		skb_shinfo(skb)->frags[0].page_offset =
1732		    p->frag.page_offset + SKB_DATA_SIZE;
1733		skb_shinfo(skb)->frags[0].size = len - SKB_DATA_SIZE;
1734		skb_shinfo(skb)->nr_frags = 1;
1735		skb->data_len = len - SKB_DATA_SIZE;
1736		skb->tail += SKB_DATA_SIZE;
1737		skb->truesize += skb->data_len;
1738	}
1739}
1740
1741/**
1742*      get_packet - return the next ingress packet buffer from a free list
1743*      @adap: the adapter that received the packet
1744*      @fl: the SGE free list holding the packet
1745*      @len: the packet length including any SGE padding
1746*      @drop_thres: # of remaining buffers before we start dropping packets
1747*
1748*      Get the next packet from a free list and complete setup of the
1749*      sk_buff.  If the packet is small we make a copy and recycle the
1750*      original buffer, otherwise we use the original buffer itself.  If a
1751*      positive drop threshold is supplied packets are dropped and their
1752*      buffers recycled if (a) the number of remaining buffers is under the
1753*      threshold and the packet is too big to copy, or (b) the packet should
1754*      be copied but there is no memory for the copy.
1755*/
1756static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
1757				  unsigned int len, unsigned int drop_thres)
1758{
1759	struct sk_buff *skb = NULL;
1760	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1761
1762	prefetch(sd->t.skb->data);
1763
1764	if (len <= SGE_RX_COPY_THRES) {
1765		skb = alloc_skb(len, GFP_ATOMIC);
1766		if (likely(skb != NULL)) {
1767			struct rx_desc *d = &fl->desc[fl->cidx];
1768			dma_addr_t mapping =
1769			    (dma_addr_t)((u64) be32_to_cpu(d->addr_hi) << 32 |
1770					 be32_to_cpu(d->addr_lo));
1771
1772			__skb_put(skb, len);
1773			pci_dma_sync_single_for_cpu(adap->pdev, mapping, len,
1774						    PCI_DMA_FROMDEVICE);
1775			skb_copy_from_linear_data(sd->t.skb, skb->data, len);
1776			pci_dma_sync_single_for_device(adap->pdev, mapping, len,
1777						       PCI_DMA_FROMDEVICE);
1778		} else if (!drop_thres)
1779			goto use_orig_buf;
1780recycle:
1781		recycle_rx_buf(adap, fl, fl->cidx);
1782		return skb;
1783	}
1784
1785	if (unlikely(fl->credits < drop_thres))
1786		goto recycle;
1787
1788use_orig_buf:
1789	pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr),
1790			 fl->buf_size, PCI_DMA_FROMDEVICE);
1791	skb = sd->t.skb;
1792	skb_put(skb, len);
1793	__refill_fl(adap, fl);
1794	return skb;
1795}
1796
1797/**
1798 *	handle_rsp_cntrl_info - handles control information in a response
1799 *	@qs: the queue set corresponding to the response
1800 *	@flags: the response control flags
1801 *
1802 *	Handles the control information of an SGE response, such as GTS
1803 *	indications and completion credits for the queue set's Tx queues.
1804 *	HW coalesces credits, we don't do any extra SW coalescing.
1805 */
1806static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
1807{
1808	unsigned int credits;
1809
1810#if USE_GTS
1811	if (flags & F_RSPD_TXQ0_GTS)
1812		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
1813#endif
1814
1815	credits = G_RSPD_TXQ0_CR(flags);
1816	if (credits)
1817		qs->txq[TXQ_ETH].processed += credits;
1818
1819	credits = G_RSPD_TXQ2_CR(flags);
1820	if (credits)
1821		qs->txq[TXQ_CTRL].processed += credits;
1822
1823# if USE_GTS
1824	if (flags & F_RSPD_TXQ1_GTS)
1825		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
1826# endif
1827	credits = G_RSPD_TXQ1_CR(flags);
1828	if (credits)
1829		qs->txq[TXQ_OFLD].processed += credits;
1830}
1831
1832/**
1833 *	check_ring_db - check if we need to ring any doorbells
1834 *	@adapter: the adapter
1835 *	@qs: the queue set whose Tx queues are to be examined
1836 *	@sleeping: indicates which Tx queue sent GTS
1837 *
1838 *	Checks if some of a queue set's Tx queues need to ring their doorbells
1839 *	to resume transmission after idling while they still have unprocessed
1840 *	descriptors.
1841 */
1842static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
1843			  unsigned int sleeping)
1844{
1845	if (sleeping & F_RSPD_TXQ0_GTS) {
1846		struct sge_txq *txq = &qs->txq[TXQ_ETH];
1847
1848		if (txq->cleaned + txq->in_use != txq->processed &&
1849		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1850			set_bit(TXQ_RUNNING, &txq->flags);
1851			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1852				     V_EGRCNTX(txq->cntxt_id));
1853		}
1854	}
1855
1856	if (sleeping & F_RSPD_TXQ1_GTS) {
1857		struct sge_txq *txq = &qs->txq[TXQ_OFLD];
1858
1859		if (txq->cleaned + txq->in_use != txq->processed &&
1860		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
1861			set_bit(TXQ_RUNNING, &txq->flags);
1862			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
1863				     V_EGRCNTX(txq->cntxt_id));
1864		}
1865	}
1866}
1867
1868/**
1869 *	is_new_response - check if a response is newly written
1870 *	@r: the response descriptor
1871 *	@q: the response queue
1872 *
1873 *	Returns true if a response descriptor contains a yet unprocessed
1874 *	response.
1875 */
1876static inline int is_new_response(const struct rsp_desc *r,
1877				  const struct sge_rspq *q)
1878{
1879	return (r->intr_gen & F_RSPD_GEN2) == q->gen;
1880}
1881
1882#define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
1883#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
1884			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
1885			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
1886			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
1887
1888/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
1889#define NOMEM_INTR_DELAY 2500
1890
1891/**
1892 *	process_responses - process responses from an SGE response queue
1893 *	@adap: the adapter
1894 *	@qs: the queue set to which the response queue belongs
1895 *	@budget: how many responses can be processed in this round
1896 *
1897 *	Process responses from an SGE response queue up to the supplied budget.
1898 *	Responses include received packets as well as credits and other events
1899 *	for the queues that belong to the response queue's queue set.
1900 *	A negative budget is effectively unlimited.
1901 *
1902 *	Additionally choose the interrupt holdoff time for the next interrupt
1903 *	on this queue.  If the system is under memory shortage use a fairly
1904 *	long delay to help recovery.
1905 */
1906static int process_responses(struct adapter *adap, struct sge_qset *qs,
1907			     int budget)
1908{
1909	struct sge_rspq *q = &qs->rspq;
1910	struct rsp_desc *r = &q->desc[q->cidx];
1911	int budget_left = budget;
1912	unsigned int sleeping = 0;
1913	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
1914	int ngathered = 0;
1915
1916	q->next_holdoff = q->holdoff_tmr;
1917
1918	while (likely(budget_left && is_new_response(r, q))) {
1919		int eth, ethpad = 2;
1920		struct sk_buff *skb = NULL;
1921		u32 len, flags = ntohl(r->flags);
1922		u32 rss_hi = *(const u32 *)r, rss_lo = r->rss_hdr.rss_hash_val;
1923
1924		eth = r->rss_hdr.opcode == CPL_RX_PKT;
1925
1926		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
1927			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
1928			if (!skb)
1929				goto no_mem;
1930
1931			memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
1932			skb->data[0] = CPL_ASYNC_NOTIF;
1933			rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
1934			q->async_notif++;
1935		} else if (flags & F_RSPD_IMM_DATA_VALID) {
1936			skb = get_imm_packet(r);
1937			if (unlikely(!skb)) {
1938			      no_mem:
1939				q->next_holdoff = NOMEM_INTR_DELAY;
1940				q->nomem++;
1941				/* consume one credit since we tried */
1942				budget_left--;
1943				break;
1944			}
1945			q->imm_data++;
1946			ethpad = 0;
1947		} else if ((len = ntohl(r->len_cq)) != 0) {
1948			struct sge_fl *fl =
1949			    (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
1950
1951			if (fl->buf_size == RX_PAGE_SIZE) {
1952				struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
1953				struct sge_fl_page *p = &sd->t.page;
1954
1955				prefetch(p->va);
1956				prefetch(p->va + L1_CACHE_BYTES);
1957
1958				__refill_fl(adap, fl);
1959
1960				pci_unmap_single(adap->pdev,
1961						 pci_unmap_addr(sd, dma_addr),
1962						 fl->buf_size,
1963						 PCI_DMA_FROMDEVICE);
1964
1965				if (eth) {
1966					if (unlikely(fl->credits <
1967						     SGE_RX_DROP_THRES))
1968						goto eth_recycle;
1969
1970					skb = alloc_skb(SKB_DATA_SIZE,
1971							GFP_ATOMIC);
1972					if (unlikely(!skb)) {
1973eth_recycle:
1974						q->rx_drops++;
1975						recycle_rx_buf(adap, fl,
1976							       fl->cidx);
1977						goto eth_done;
1978					}
1979				} else {
1980					skb = alloc_skb(SKB_DATA_SIZE,
1981							GFP_ATOMIC);
1982					if (unlikely(!skb))
1983						goto no_mem;
1984				}
1985
1986				skb_data_init(skb, p, G_RSPD_LEN(len));
1987eth_done:
1988				fl->credits--;
1989				q->eth_pkts++;
1990			} else {
1991				fl->credits--;
1992				skb = get_packet(adap, fl, G_RSPD_LEN(len),
1993						 eth ? SGE_RX_DROP_THRES : 0);
1994			}
1995
1996			if (++fl->cidx == fl->size)
1997				fl->cidx = 0;
1998		} else
1999			q->pure_rsps++;
2000
2001		if (flags & RSPD_CTRL_MASK) {
2002			sleeping |= flags & RSPD_GTS_MASK;
2003			handle_rsp_cntrl_info(qs, flags);
2004		}
2005
2006		r++;
2007		if (unlikely(++q->cidx == q->size)) {
2008			q->cidx = 0;
2009			q->gen ^= 1;
2010			r = q->desc;
2011		}
2012		prefetch(r);
2013
2014		if (++q->credits >= (q->size / 4)) {
2015			refill_rspq(adap, q, q->credits);
2016			q->credits = 0;
2017		}
2018
2019		if (skb) {
2020			/* Preserve the RSS info in csum & priority */
2021			skb->csum = rss_hi;
2022			skb->priority = rss_lo;
2023
2024			if (eth)
2025				rx_eth(adap, q, skb, ethpad);
2026			else {
2027				if (unlikely(r->rss_hdr.opcode ==
2028					     CPL_TRACE_PKT))
2029					__skb_pull(skb, ethpad);
2030
2031				ngathered = rx_offload(&adap->tdev, q,
2032						       skb, offload_skbs,
2033						       ngathered);
2034			}
2035		}
2036		--budget_left;
2037	}
2038
2039	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2040	if (sleeping)
2041		check_ring_db(adap, qs, sleeping);
2042
2043	smp_mb();		/* commit Tx queue .processed updates */
2044	if (unlikely(qs->txq_stopped != 0))
2045		restart_tx(qs);
2046
2047	budget -= budget_left;
2048	return budget;
2049}
2050
2051static inline int is_pure_response(const struct rsp_desc *r)
2052{
2053	u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2054
2055	return (n | r->len_cq) == 0;
2056}
2057
2058/**
2059 *	napi_rx_handler - the NAPI handler for Rx processing
2060 *	@dev: the net device
2061 *	@budget: how many packets we can process in this round
2062 *
2063 *	Handler for new data events when using NAPI.
2064 */
2065static int napi_rx_handler(struct net_device *dev, int *budget)
2066{
2067	struct adapter *adap = dev->priv;
2068	struct sge_qset *qs = dev2qset(dev);
2069	int effective_budget = min(*budget, dev->quota);
2070
2071	int work_done = process_responses(adap, qs, effective_budget);
2072	*budget -= work_done;
2073	dev->quota -= work_done;
2074
2075	if (work_done >= effective_budget)
2076		return 1;
2077
2078	netif_rx_complete(dev);
2079
2080	/*
2081	 * Because we don't atomically flush the following write it is
2082	 * possible that in very rare cases it can reach the device in a way
2083	 * that races with a new response being written plus an error interrupt
2084	 * causing the NAPI interrupt handler below to return unhandled status
2085	 * to the OS.  To protect against this would require flushing the write
2086	 * and doing both the write and the flush with interrupts off.  Way too
2087	 * expensive and unjustifiable given the rarity of the race.
2088	 *
2089	 * The race cannot happen at all with MSI-X.
2090	 */
2091	t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2092		     V_NEWTIMER(qs->rspq.next_holdoff) |
2093		     V_NEWINDEX(qs->rspq.cidx));
2094	return 0;
2095}
2096
2097/*
2098 * Returns true if the device is already scheduled for polling.
2099 */
2100static inline int napi_is_scheduled(struct net_device *dev)
2101{
2102	return test_bit(__LINK_STATE_RX_SCHED, &dev->state);
2103}
2104
2105/**
2106 *	process_pure_responses - process pure responses from a response queue
2107 *	@adap: the adapter
2108 *	@qs: the queue set owning the response queue
2109 *	@r: the first pure response to process
2110 *
2111 *	A simpler version of process_responses() that handles only pure (i.e.,
2112 *	non data-carrying) responses.  Such respones are too light-weight to
2113 *	justify calling a softirq under NAPI, so we handle them specially in
2114 *	the interrupt handler.  The function is called with a pointer to a
2115 *	response, which the caller must ensure is a valid pure response.
2116 *
2117 *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2118 */
2119static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2120				  struct rsp_desc *r)
2121{
2122	struct sge_rspq *q = &qs->rspq;
2123	unsigned int sleeping = 0;
2124
2125	do {
2126		u32 flags = ntohl(r->flags);
2127
2128		r++;
2129		if (unlikely(++q->cidx == q->size)) {
2130			q->cidx = 0;
2131			q->gen ^= 1;
2132			r = q->desc;
2133		}
2134		prefetch(r);
2135
2136		if (flags & RSPD_CTRL_MASK) {
2137			sleeping |= flags & RSPD_GTS_MASK;
2138			handle_rsp_cntrl_info(qs, flags);
2139		}
2140
2141		q->pure_rsps++;
2142		if (++q->credits >= (q->size / 4)) {
2143			refill_rspq(adap, q, q->credits);
2144			q->credits = 0;
2145		}
2146	} while (is_new_response(r, q) && is_pure_response(r));
2147
2148	if (sleeping)
2149		check_ring_db(adap, qs, sleeping);
2150
2151	smp_mb();		/* commit Tx queue .processed updates */
2152	if (unlikely(qs->txq_stopped != 0))
2153		restart_tx(qs);
2154
2155	return is_new_response(r, q);
2156}
2157
2158/**
2159 *	handle_responses - decide what to do with new responses in NAPI mode
2160 *	@adap: the adapter
2161 *	@q: the response queue
2162 *
2163 *	This is used by the NAPI interrupt handlers to decide what to do with
2164 *	new SGE responses.  If there are no new responses it returns -1.  If
2165 *	there are new responses and they are pure (i.e., non-data carrying)
2166 *	it handles them straight in hard interrupt context as they are very
2167 *	cheap and don't deliver any packets.  Finally, if there are any data
2168 *	signaling responses it schedules the NAPI handler.  Returns 1 if it
2169 *	schedules NAPI, 0 if all new responses were pure.
2170 *
2171 *	The caller must ascertain NAPI is not already running.
2172 */
2173static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2174{
2175	struct sge_qset *qs = rspq_to_qset(q);
2176	struct rsp_desc *r = &q->desc[q->cidx];
2177
2178	if (!is_new_response(r, q))
2179		return -1;
2180	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2181		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2182			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2183		return 0;
2184	}
2185	if (likely(__netif_rx_schedule_prep(qs->netdev)))
2186		__netif_rx_schedule(qs->netdev);
2187	return 1;
2188}
2189
2190/*
2191 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2192 * (i.e., response queue serviced in hard interrupt).
2193 */
2194irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2195{
2196	struct sge_qset *qs = cookie;
2197	struct adapter *adap = qs->netdev->priv;
2198	struct sge_rspq *q = &qs->rspq;
2199
2200	spin_lock(&q->lock);
2201	if (process_responses(adap, qs, -1) == 0)
2202		q->unhandled_irqs++;
2203	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2204		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2205	spin_unlock(&q->lock);
2206	return IRQ_HANDLED;
2207}
2208
2209/*
2210 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2211 * (i.e., response queue serviced by NAPI polling).
2212 */
2213irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2214{
2215	struct sge_qset *qs = cookie;
2216	struct adapter *adap = qs->netdev->priv;
2217	struct sge_rspq *q = &qs->rspq;
2218
2219	spin_lock(&q->lock);
2220
2221	if (handle_responses(adap, q) < 0)
2222		q->unhandled_irqs++;
2223	spin_unlock(&q->lock);
2224	return IRQ_HANDLED;
2225}
2226
2227/*
2228 * The non-NAPI MSI interrupt handler.  This needs to handle data events from
2229 * SGE response queues as well as error and other async events as they all use
2230 * the same MSI vector.  We use one SGE response queue per port in this mode
2231 * and protect all response queues with queue 0's lock.
2232 */
2233static irqreturn_t t3_intr_msi(int irq, void *cookie)
2234{
2235	int new_packets = 0;
2236	struct adapter *adap = cookie;
2237	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2238
2239	spin_lock(&q->lock);
2240
2241	if (process_responses(adap, &adap->sge.qs[0], -1)) {
2242		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2243			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2244		new_packets = 1;
2245	}
2246
2247	if (adap->params.nports == 2 &&
2248	    process_responses(adap, &adap->sge.qs[1], -1)) {
2249		struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2250
2251		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2252			     V_NEWTIMER(q1->next_holdoff) |
2253			     V_NEWINDEX(q1->cidx));
2254		new_packets = 1;
2255	}
2256
2257	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2258		q->unhandled_irqs++;
2259
2260	spin_unlock(&q->lock);
2261	return IRQ_HANDLED;
2262}
2263
2264static int rspq_check_napi(struct net_device *dev, struct sge_rspq *q)
2265{
2266	if (!napi_is_scheduled(dev) && is_new_response(&q->desc[q->cidx], q)) {
2267		if (likely(__netif_rx_schedule_prep(dev)))
2268			__netif_rx_schedule(dev);
2269		return 1;
2270	}
2271	return 0;
2272}
2273
2274/*
2275 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2276 * by NAPI polling).  Handles data events from SGE response queues as well as
2277 * error and other async events as they all use the same MSI vector.  We use
2278 * one SGE response queue per port in this mode and protect all response
2279 * queues with queue 0's lock.
2280 */
2281irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2282{
2283	int new_packets;
2284	struct adapter *adap = cookie;
2285	struct sge_rspq *q = &adap->sge.qs[0].rspq;
2286
2287	spin_lock(&q->lock);
2288
2289	new_packets = rspq_check_napi(adap->sge.qs[0].netdev, q);
2290	if (adap->params.nports == 2)
2291		new_packets += rspq_check_napi(adap->sge.qs[1].netdev,
2292					       &adap->sge.qs[1].rspq);
2293	if (!new_packets && t3_slow_intr_handler(adap) == 0)
2294		q->unhandled_irqs++;
2295
2296	spin_unlock(&q->lock);
2297	return IRQ_HANDLED;
2298}
2299
2300/*
2301 * A helper function that processes responses and issues GTS.
2302 */
2303static inline int process_responses_gts(struct adapter *adap,
2304					struct sge_rspq *rq)
2305{
2306	int work;
2307
2308	work = process_responses(adap, rspq_to_qset(rq), -1);
2309	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2310		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2311	return work;
2312}
2313
2314/*
2315 * The legacy INTx interrupt handler.  This needs to handle data events from
2316 * SGE response queues as well as error and other async events as they all use
2317 * the same interrupt pin.  We use one SGE response queue per port in this mode
2318 * and protect all response queues with queue 0's lock.
2319 */
2320static irqreturn_t t3_intr(int irq, void *cookie)
2321{
2322	int work_done, w0, w1;
2323	struct adapter *adap = cookie;
2324	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2325	struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2326
2327	spin_lock(&q0->lock);
2328
2329	w0 = is_new_response(&q0->desc[q0->cidx], q0);
2330	w1 = adap->params.nports == 2 &&
2331	    is_new_response(&q1->desc[q1->cidx], q1);
2332
2333	if (likely(w0 | w1)) {
2334		t3_write_reg(adap, A_PL_CLI, 0);
2335		t3_read_reg(adap, A_PL_CLI);	/* flush */
2336
2337		if (likely(w0))
2338			process_responses_gts(adap, q0);
2339
2340		if (w1)
2341			process_responses_gts(adap, q1);
2342
2343		work_done = w0 | w1;
2344	} else
2345		work_done = t3_slow_intr_handler(adap);
2346
2347	spin_unlock(&q0->lock);
2348	return IRQ_RETVAL(work_done != 0);
2349}
2350
2351/*
2352 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2353 * Handles data events from SGE response queues as well as error and other
2354 * async events as they all use the same interrupt pin.  We use one SGE
2355 * response queue per port in this mode and protect all response queues with
2356 * queue 0's lock.
2357 */
2358static irqreturn_t t3b_intr(int irq, void *cookie)
2359{
2360	u32 map;
2361	struct adapter *adap = cookie;
2362	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2363
2364	t3_write_reg(adap, A_PL_CLI, 0);
2365	map = t3_read_reg(adap, A_SG_DATA_INTR);
2366
2367	if (unlikely(!map))	/* shared interrupt, most likely */
2368		return IRQ_NONE;
2369
2370	spin_lock(&q0->lock);
2371
2372	if (unlikely(map & F_ERRINTR))
2373		t3_slow_intr_handler(adap);
2374
2375	if (likely(map & 1))
2376		process_responses_gts(adap, q0);
2377
2378	if (map & 2)
2379		process_responses_gts(adap, &adap->sge.qs[1].rspq);
2380
2381	spin_unlock(&q0->lock);
2382	return IRQ_HANDLED;
2383}
2384
2385/*
2386 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2387 * Handles data events from SGE response queues as well as error and other
2388 * async events as they all use the same interrupt pin.  We use one SGE
2389 * response queue per port in this mode and protect all response queues with
2390 * queue 0's lock.
2391 */
2392static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2393{
2394	u32 map;
2395	struct net_device *dev;
2396	struct adapter *adap = cookie;
2397	struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2398
2399	t3_write_reg(adap, A_PL_CLI, 0);
2400	map = t3_read_reg(adap, A_SG_DATA_INTR);
2401
2402	if (unlikely(!map))	/* shared interrupt, most likely */
2403		return IRQ_NONE;
2404
2405	spin_lock(&q0->lock);
2406
2407	if (unlikely(map & F_ERRINTR))
2408		t3_slow_intr_handler(adap);
2409
2410	if (likely(map & 1)) {
2411		dev = adap->sge.qs[0].netdev;
2412
2413		if (likely(__netif_rx_schedule_prep(dev)))
2414			__netif_rx_schedule(dev);
2415	}
2416	if (map & 2) {
2417		dev = adap->sge.qs[1].netdev;
2418
2419		if (likely(__netif_rx_schedule_prep(dev)))
2420			__netif_rx_schedule(dev);
2421	}
2422
2423	spin_unlock(&q0->lock);
2424	return IRQ_HANDLED;
2425}
2426
2427/**
2428 *	t3_intr_handler - select the top-level interrupt handler
2429 *	@adap: the adapter
2430 *	@polling: whether using NAPI to service response queues
2431 *
2432 *	Selects the top-level interrupt handler based on the type of interrupts
2433 *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2434 *	response queues.
2435 */
2436intr_handler_t t3_intr_handler(struct adapter *adap, int polling)
2437{
2438	if (adap->flags & USING_MSIX)
2439		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2440	if (adap->flags & USING_MSI)
2441		return polling ? t3_intr_msi_napi : t3_intr_msi;
2442	if (adap->params.rev > 0)
2443		return polling ? t3b_intr_napi : t3b_intr;
2444	return t3_intr;
2445}
2446
2447/**
2448 *	t3_sge_err_intr_handler - SGE async event interrupt handler
2449 *	@adapter: the adapter
2450 *
2451 *	Interrupt handler for SGE asynchronous (non-data) events.
2452 */
2453void t3_sge_err_intr_handler(struct adapter *adapter)
2454{
2455	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2456
2457	if (status & F_RSPQCREDITOVERFOW)
2458		CH_ALERT(adapter, "SGE response queue credit overflow\n");
2459
2460	if (status & F_RSPQDISABLED) {
2461		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2462
2463		CH_ALERT(adapter,
2464			 "packet delivered to disabled response queue "
2465			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2466	}
2467
2468	t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2469	if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED))
2470		t3_fatal_err(adapter);
2471}
2472
2473/**
2474 *	sge_timer_cb - perform periodic maintenance of an SGE qset
2475 *	@data: the SGE queue set to maintain
2476 *
2477 *	Runs periodically from a timer to perform maintenance of an SGE queue
2478 *	set.  It performs two tasks:
2479 *
2480 *	a) Cleans up any completed Tx descriptors that may still be pending.
2481 *	Normal descriptor cleanup happens when new packets are added to a Tx
2482 *	queue so this timer is relatively infrequent and does any cleanup only
2483 *	if the Tx queue has not seen any new packets in a while.  We make a
2484 *	best effort attempt to reclaim descriptors, in that we don't wait
2485 *	around if we cannot get a queue's lock (which most likely is because
2486 *	someone else is queueing new packets and so will also handle the clean
2487 *	up).  Since control queues use immediate data exclusively we don't
2488 *	bother cleaning them up here.
2489 *
2490 *	b) Replenishes Rx queues that have run out due to memory shortage.
2491 *	Normally new Rx buffers are added when existing ones are consumed but
2492 *	when out of memory a queue can become empty.  We try to add only a few
2493 *	buffers here, the queue will be replenished fully as these new buffers
2494 *	are used up if memory shortage has subsided.
2495 */
2496static void sge_timer_cb(unsigned long data)
2497{
2498	spinlock_t *lock;
2499	struct sge_qset *qs = (struct sge_qset *)data;
2500	struct adapter *adap = qs->netdev->priv;
2501
2502	if (spin_trylock(&qs->txq[TXQ_ETH].lock)) {
2503		reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]);
2504		spin_unlock(&qs->txq[TXQ_ETH].lock);
2505	}
2506	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2507		reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]);
2508		spin_unlock(&qs->txq[TXQ_OFLD].lock);
2509	}
2510	lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock :
2511	    &adap->sge.qs[0].rspq.lock;
2512	if (spin_trylock_irq(lock)) {
2513		if (!napi_is_scheduled(qs->netdev)) {
2514			u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2515
2516			if (qs->fl[0].credits < qs->fl[0].size)
2517				__refill_fl(adap, &qs->fl[0]);
2518			if (qs->fl[1].credits < qs->fl[1].size)
2519				__refill_fl(adap, &qs->fl[1]);
2520
2521			if (status & (1 << qs->rspq.cntxt_id)) {
2522				qs->rspq.starved++;
2523				if (qs->rspq.credits) {
2524					refill_rspq(adap, &qs->rspq, 1);
2525					qs->rspq.credits--;
2526					qs->rspq.restarted++;
2527					t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2528						     1 << qs->rspq.cntxt_id);
2529				}
2530			}
2531		}
2532		spin_unlock_irq(lock);
2533	}
2534	mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2535}
2536
2537/**
2538 *	t3_update_qset_coalesce - update coalescing settings for a queue set
2539 *	@qs: the SGE queue set
2540 *	@p: new queue set parameters
2541 *
2542 *	Update the coalescing settings for an SGE queue set.  Nothing is done
2543 *	if the queue set is not initialized yet.
2544 */
2545void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2546{
2547	if (!qs->netdev)
2548		return;
2549
2550	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2551	qs->rspq.polling = p->polling;
2552	qs->netdev->poll = p->polling ? napi_rx_handler : ofld_poll;
2553}
2554
2555/**
2556 *	t3_sge_alloc_qset - initialize an SGE queue set
2557 *	@adapter: the adapter
2558 *	@id: the queue set id
2559 *	@nports: how many Ethernet ports will be using this queue set
2560 *	@irq_vec_idx: the IRQ vector index for response queue interrupts
2561 *	@p: configuration parameters for this queue set
2562 *	@ntxq: number of Tx queues for the queue set
2563 *	@netdev: net device associated with this queue set
2564 *
2565 *	Allocate resources and initialize an SGE queue set.  A queue set
2566 *	comprises a response queue, two Rx free-buffer queues, and up to 3
2567 *	Tx queues.  The Tx queues are assigned roles in the order Ethernet
2568 *	queue, offload queue, and control queue.
2569 */
2570int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2571		      int irq_vec_idx, const struct qset_params *p,
2572		      int ntxq, struct net_device *netdev)
2573{
2574	int i, ret = -ENOMEM;
2575	struct sge_qset *q = &adapter->sge.qs[id];
2576
2577	init_qset_cntxt(q, id);
2578	init_timer(&q->tx_reclaim_timer);
2579	q->tx_reclaim_timer.data = (unsigned long)q;
2580	q->tx_reclaim_timer.function = sge_timer_cb;
2581
2582	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2583				   sizeof(struct rx_desc),
2584				   sizeof(struct rx_sw_desc),
2585				   &q->fl[0].phys_addr, &q->fl[0].sdesc);
2586	if (!q->fl[0].desc)
2587		goto err;
2588
2589	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2590				   sizeof(struct rx_desc),
2591				   sizeof(struct rx_sw_desc),
2592				   &q->fl[1].phys_addr, &q->fl[1].sdesc);
2593	if (!q->fl[1].desc)
2594		goto err;
2595
2596	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2597				  sizeof(struct rsp_desc), 0,
2598				  &q->rspq.phys_addr, NULL);
2599	if (!q->rspq.desc)
2600		goto err;
2601
2602	for (i = 0; i < ntxq; ++i) {
2603		/*
2604		 * The control queue always uses immediate data so does not
2605		 * need to keep track of any sk_buffs.
2606		 */
2607		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
2608
2609		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
2610					    sizeof(struct tx_desc), sz,
2611					    &q->txq[i].phys_addr,
2612					    &q->txq[i].sdesc);
2613		if (!q->txq[i].desc)
2614			goto err;
2615
2616		q->txq[i].gen = 1;
2617		q->txq[i].size = p->txq_size[i];
2618		spin_lock_init(&q->txq[i].lock);
2619		skb_queue_head_init(&q->txq[i].sendq);
2620	}
2621
2622	tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
2623		     (unsigned long)q);
2624	tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
2625		     (unsigned long)q);
2626
2627	q->fl[0].gen = q->fl[1].gen = 1;
2628	q->fl[0].size = p->fl_size;
2629	q->fl[1].size = p->jumbo_size;
2630
2631	q->rspq.gen = 1;
2632	q->rspq.size = p->rspq_size;
2633	spin_lock_init(&q->rspq.lock);
2634
2635	q->txq[TXQ_ETH].stop_thres = nports *
2636	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
2637
2638	if (!is_offload(adapter)) {
2639#ifdef USE_RX_PAGE
2640		q->fl[0].buf_size = RX_PAGE_SIZE;
2641#else
2642		q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + 2 +
2643		    sizeof(struct cpl_rx_pkt);
2644#endif
2645		q->fl[1].buf_size = MAX_FRAME_SIZE + 2 +
2646		    sizeof(struct cpl_rx_pkt);
2647	} else {
2648#ifdef USE_RX_PAGE
2649		q->fl[0].buf_size = RX_PAGE_SIZE;
2650#else
2651		q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE +
2652		    sizeof(struct cpl_rx_data);
2653#endif
2654		q->fl[1].buf_size = (16 * 1024) -
2655		    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2656	}
2657
2658	spin_lock(&adapter->sge.reg_lock);
2659
2660	/* FL threshold comparison uses < */
2661	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
2662				   q->rspq.phys_addr, q->rspq.size,
2663				   q->fl[0].buf_size, 1, 0);
2664	if (ret)
2665		goto err_unlock;
2666
2667	for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
2668		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
2669					  q->fl[i].phys_addr, q->fl[i].size,
2670					  q->fl[i].buf_size, p->cong_thres, 1,
2671					  0);
2672		if (ret)
2673			goto err_unlock;
2674	}
2675
2676	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
2677				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
2678				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
2679				 1, 0);
2680	if (ret)
2681		goto err_unlock;
2682
2683	if (ntxq > 1) {
2684		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
2685					 USE_GTS, SGE_CNTXT_OFLD, id,
2686					 q->txq[TXQ_OFLD].phys_addr,
2687					 q->txq[TXQ_OFLD].size, 0, 1, 0);
2688		if (ret)
2689			goto err_unlock;
2690	}
2691
2692	if (ntxq > 2) {
2693		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
2694					 SGE_CNTXT_CTRL, id,
2695					 q->txq[TXQ_CTRL].phys_addr,
2696					 q->txq[TXQ_CTRL].size,
2697					 q->txq[TXQ_CTRL].token, 1, 0);
2698		if (ret)
2699			goto err_unlock;
2700	}
2701
2702	spin_unlock(&adapter->sge.reg_lock);
2703	q->netdev = netdev;
2704	t3_update_qset_coalesce(q, p);
2705
2706	/*
2707	 * We use atalk_ptr as a backpointer to a qset.  In case a device is
2708	 * associated with multiple queue sets only the first one sets
2709	 * atalk_ptr.
2710	 */
2711	if (netdev->atalk_ptr == NULL)
2712		netdev->atalk_ptr = q;
2713
2714	refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL);
2715	refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL);
2716	refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
2717
2718	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
2719		     V_NEWTIMER(q->rspq.holdoff_tmr));
2720
2721	mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2722	return 0;
2723
2724      err_unlock:
2725	spin_unlock(&adapter->sge.reg_lock);
2726      err:
2727	t3_free_qset(adapter, q);
2728	return ret;
2729}
2730
2731/**
2732 *	t3_free_sge_resources - free SGE resources
2733 *	@adap: the adapter
2734 *
2735 *	Frees resources used by the SGE queue sets.
2736 */
2737void t3_free_sge_resources(struct adapter *adap)
2738{
2739	int i;
2740
2741	for (i = 0; i < SGE_QSETS; ++i)
2742		t3_free_qset(adap, &adap->sge.qs[i]);
2743}
2744
2745/**
2746 *	t3_sge_start - enable SGE
2747 *	@adap: the adapter
2748 *
2749 *	Enables the SGE for DMAs.  This is the last step in starting packet
2750 *	transfers.
2751 */
2752void t3_sge_start(struct adapter *adap)
2753{
2754	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
2755}
2756
2757/**
2758 *	t3_sge_stop - disable SGE operation
2759 *	@adap: the adapter
2760 *
2761 *	Disables the DMA engine.  This can be called in emeregencies (e.g.,
2762 *	from error interrupts) or from normal process context.  In the latter
2763 *	case it also disables any pending queue restart tasklets.  Note that
2764 *	if it is called in interrupt context it cannot disable the restart
2765 *	tasklets as it cannot wait, however the tasklets will have no effect
2766 *	since the doorbells are disabled and the driver will call this again
2767 *	later from process context, at which time the tasklets will be stopped
2768 *	if they are still running.
2769 */
2770void t3_sge_stop(struct adapter *adap)
2771{
2772	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
2773	if (!in_interrupt()) {
2774		int i;
2775
2776		for (i = 0; i < SGE_QSETS; ++i) {
2777			struct sge_qset *qs = &adap->sge.qs[i];
2778
2779			tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
2780			tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
2781		}
2782	}
2783}
2784
2785/**
2786 *	t3_sge_init - initialize SGE
2787 *	@adap: the adapter
2788 *	@p: the SGE parameters
2789 *
2790 *	Performs SGE initialization needed every time after a chip reset.
2791 *	We do not initialize any of the queue sets here, instead the driver
2792 *	top-level must request those individually.  We also do not enable DMA
2793 *	here, that should be done after the queues have been set up.
2794 */
2795void t3_sge_init(struct adapter *adap, struct sge_params *p)
2796{
2797	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
2798
2799	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
2800	    F_CQCRDTCTRL |
2801	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
2802	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
2803#if SGE_NUM_GENBITS == 1
2804	ctrl |= F_EGRGENCTRL;
2805#endif
2806	if (adap->params.rev > 0) {
2807		if (!(adap->flags & (USING_MSIX | USING_MSI)))
2808			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
2809		ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL;
2810	}
2811	t3_write_reg(adap, A_SG_CONTROL, ctrl);
2812	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
2813		     V_LORCQDRBTHRSH(512));
2814	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
2815	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
2816		     V_TIMEOUT(200 * core_ticks_per_usec(adap)));
2817	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000);
2818	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
2819	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
2820	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
2821	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
2822	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
2823}
2824
2825/**
2826 *	t3_sge_prep - one-time SGE initialization
2827 *	@adap: the associated adapter
2828 *	@p: SGE parameters
2829 *
2830 *	Performs one-time initialization of SGE SW state.  Includes determining
2831 *	defaults for the assorted SGE parameters, which admins can change until
2832 *	they are used to initialize the SGE.
2833 */
2834void __devinit t3_sge_prep(struct adapter *adap, struct sge_params *p)
2835{
2836	int i;
2837
2838	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
2839	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2840
2841	for (i = 0; i < SGE_QSETS; ++i) {
2842		struct qset_params *q = p->qset + i;
2843
2844		q->polling = adap->params.rev > 0;
2845		q->coalesce_usecs = 5;
2846		q->rspq_size = 1024;
2847		q->fl_size = 1024;
2848		q->jumbo_size = 512;
2849		q->txq_size[TXQ_ETH] = 1024;
2850		q->txq_size[TXQ_OFLD] = 1024;
2851		q->txq_size[TXQ_CTRL] = 256;
2852		q->cong_thres = 0;
2853	}
2854
2855	spin_lock_init(&adap->sge.reg_lock);
2856}
2857
2858/**
2859 *	t3_get_desc - dump an SGE descriptor for debugging purposes
2860 *	@qs: the queue set
2861 *	@qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
2862 *	@idx: the descriptor index in the queue
2863 *	@data: where to dump the descriptor contents
2864 *
2865 *	Dumps the contents of a HW descriptor of an SGE queue.  Returns the
2866 *	size of the descriptor.
2867 */
2868int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
2869		unsigned char *data)
2870{
2871	if (qnum >= 6)
2872		return -EINVAL;
2873
2874	if (qnum < 3) {
2875		if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
2876			return -EINVAL;
2877		memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
2878		return sizeof(struct tx_desc);
2879	}
2880
2881	if (qnum == 3) {
2882		if (!qs->rspq.desc || idx >= qs->rspq.size)
2883			return -EINVAL;
2884		memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
2885		return sizeof(struct rsp_desc);
2886	}
2887
2888	qnum -= 4;
2889	if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
2890		return -EINVAL;
2891	memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
2892	return sizeof(struct rx_desc);
2893}
2894