1
2/*
3 * Linux driver for Disk-On-Chip 2000 and Millennium
4 * (c) 1999 Machine Vision Holdings, Inc.
5 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
6 *
7 * $Id: doc2000.c,v 1.1.1.1 2007/08/03 18:52:43 Exp $
8 */
9
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <asm/errno.h>
13#include <asm/io.h>
14#include <asm/uaccess.h>
15#include <linux/miscdevice.h>
16#include <linux/delay.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/init.h>
20#include <linux/types.h>
21#include <linux/bitops.h>
22#include <linux/mutex.h>
23
24#include <linux/mtd/mtd.h>
25#include <linux/mtd/nand.h>
26#include <linux/mtd/doc2000.h>
27
28#define DOC_SUPPORT_2000
29#define DOC_SUPPORT_2000TSOP
30#define DOC_SUPPORT_MILLENNIUM
31
32#ifdef DOC_SUPPORT_2000
33#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
34#else
35#define DoC_is_2000(doc) (0)
36#endif
37
38#if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
39#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
40#else
41#define DoC_is_Millennium(doc) (0)
42#endif
43
44/* #define ECC_DEBUG */
45
46/* I have no idea why some DoC chips can not use memcpy_from|to_io().
47 * This may be due to the different revisions of the ASIC controller built-in or
48 * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
49 * this:
50 #undef USE_MEMCPY
51*/
52
53static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
54		    size_t *retlen, u_char *buf);
55static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
56		     size_t *retlen, const u_char *buf);
57static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
58			struct mtd_oob_ops *ops);
59static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
60			 struct mtd_oob_ops *ops);
61static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
62			 size_t *retlen, const u_char *buf);
63static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
64
65static struct mtd_info *doc2klist = NULL;
66
67/* Perform the required delay cycles by reading from the appropriate register */
68static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
69{
70	volatile char dummy;
71	int i;
72
73	for (i = 0; i < cycles; i++) {
74		if (DoC_is_Millennium(doc))
75			dummy = ReadDOC(doc->virtadr, NOP);
76		else
77			dummy = ReadDOC(doc->virtadr, DOCStatus);
78	}
79
80}
81
82/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
83static int _DoC_WaitReady(struct DiskOnChip *doc)
84{
85	void __iomem *docptr = doc->virtadr;
86	unsigned long timeo = jiffies + (HZ * 10);
87
88	DEBUG(MTD_DEBUG_LEVEL3,
89	      "_DoC_WaitReady called for out-of-line wait\n");
90
91	/* Out-of-line routine to wait for chip response */
92	while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
93		/* issue 2 read from NOP register after reading from CDSNControl register
94	   	see Software Requirement 11.4 item 2. */
95		DoC_Delay(doc, 2);
96
97		if (time_after(jiffies, timeo)) {
98			DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
99			return -EIO;
100		}
101		udelay(1);
102		cond_resched();
103	}
104
105	return 0;
106}
107
108static inline int DoC_WaitReady(struct DiskOnChip *doc)
109{
110	void __iomem *docptr = doc->virtadr;
111
112	/* This is inline, to optimise the common case, where it's ready instantly */
113	int ret = 0;
114
115	/* 4 read form NOP register should be issued in prior to the read from CDSNControl
116	   see Software Requirement 11.4 item 2. */
117	DoC_Delay(doc, 4);
118
119	if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
120		/* Call the out-of-line routine to wait */
121		ret = _DoC_WaitReady(doc);
122
123	/* issue 2 read from NOP register after reading from CDSNControl register
124	   see Software Requirement 11.4 item 2. */
125	DoC_Delay(doc, 2);
126
127	return ret;
128}
129
130/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
131   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
132   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
133
134static int DoC_Command(struct DiskOnChip *doc, unsigned char command,
135			      unsigned char xtraflags)
136{
137	void __iomem *docptr = doc->virtadr;
138
139	if (DoC_is_2000(doc))
140		xtraflags |= CDSN_CTRL_FLASH_IO;
141
142	/* Assert the CLE (Command Latch Enable) line to the flash chip */
143	WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
144	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
145
146	if (DoC_is_Millennium(doc))
147		WriteDOC(command, docptr, CDSNSlowIO);
148
149	/* Send the command */
150	WriteDOC_(command, docptr, doc->ioreg);
151	if (DoC_is_Millennium(doc))
152		WriteDOC(command, docptr, WritePipeTerm);
153
154	/* Lower the CLE line */
155	WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
156	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
157
158	/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
159	return DoC_WaitReady(doc);
160}
161
162/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
163   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
164   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
165
166static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
167		       unsigned char xtraflags1, unsigned char xtraflags2)
168{
169	int i;
170	void __iomem *docptr = doc->virtadr;
171
172	if (DoC_is_2000(doc))
173		xtraflags1 |= CDSN_CTRL_FLASH_IO;
174
175	/* Assert the ALE (Address Latch Enable) line to the flash chip */
176	WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
177
178	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
179
180	/* Send the address */
181	/* Devices with 256-byte page are addressed as:
182	   Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
183	   * there is no device on the market with page256
184	   and more than 24 bits.
185	   Devices with 512-byte page are addressed as:
186	   Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
187	   * 25-31 is sent only if the chip support it.
188	   * bit 8 changes the read command to be sent
189	   (NAND_CMD_READ0 or NAND_CMD_READ1).
190	 */
191
192	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
193		if (DoC_is_Millennium(doc))
194			WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
195		WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
196	}
197
198	if (doc->page256) {
199		ofs = ofs >> 8;
200	} else {
201		ofs = ofs >> 9;
202	}
203
204	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
205		for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
206			if (DoC_is_Millennium(doc))
207				WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
208			WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
209		}
210	}
211
212	if (DoC_is_Millennium(doc))
213		WriteDOC(ofs & 0xff, docptr, WritePipeTerm);
214
215	DoC_Delay(doc, 2);	/* Needed for some slow flash chips. mf. */
216
217
218	/* Lower the ALE line */
219	WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
220		 CDSNControl);
221
222	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
223
224	/* Wait for the chip to respond - Software requirement 11.4.1 */
225	return DoC_WaitReady(doc);
226}
227
228/* Read a buffer from DoC, taking care of Millennium odditys */
229static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
230{
231	volatile int dummy;
232	int modulus = 0xffff;
233	void __iomem *docptr = doc->virtadr;
234	int i;
235
236	if (len <= 0)
237		return;
238
239	if (DoC_is_Millennium(doc)) {
240		/* Read the data via the internal pipeline through CDSN IO register,
241		   see Pipelined Read Operations 11.3 */
242		dummy = ReadDOC(docptr, ReadPipeInit);
243
244		/* Millennium should use the LastDataRead register - Pipeline Reads */
245		len--;
246
247		/* This is needed for correctly ECC calculation */
248		modulus = 0xff;
249	}
250
251	for (i = 0; i < len; i++)
252		buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
253
254	if (DoC_is_Millennium(doc)) {
255		buf[i] = ReadDOC(docptr, LastDataRead);
256	}
257}
258
259/* Write a buffer to DoC, taking care of Millennium odditys */
260static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
261{
262	void __iomem *docptr = doc->virtadr;
263	int i;
264
265	if (len <= 0)
266		return;
267
268	for (i = 0; i < len; i++)
269		WriteDOC_(buf[i], docptr, doc->ioreg + i);
270
271	if (DoC_is_Millennium(doc)) {
272		WriteDOC(0x00, docptr, WritePipeTerm);
273	}
274}
275
276
277/* DoC_SelectChip: Select a given flash chip within the current floor */
278
279static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
280{
281	void __iomem *docptr = doc->virtadr;
282
283	/* Software requirement 11.4.4 before writing DeviceSelect */
284	/* Deassert the CE line to eliminate glitches on the FCE# outputs */
285	WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
286	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
287
288	/* Select the individual flash chip requested */
289	WriteDOC(chip, docptr, CDSNDeviceSelect);
290	DoC_Delay(doc, 4);
291
292	/* Reassert the CE line */
293	WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
294		 CDSNControl);
295	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
296
297	/* Wait for it to be ready */
298	return DoC_WaitReady(doc);
299}
300
301/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
302
303static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
304{
305	void __iomem *docptr = doc->virtadr;
306
307	/* Select the floor (bank) of chips required */
308	WriteDOC(floor, docptr, FloorSelect);
309
310	/* Wait for the chip to be ready */
311	return DoC_WaitReady(doc);
312}
313
314/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
315
316static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
317{
318	int mfr, id, i, j;
319	volatile char dummy;
320
321	/* Page in the required floor/chip */
322	DoC_SelectFloor(doc, floor);
323	DoC_SelectChip(doc, chip);
324
325	/* Reset the chip */
326	if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
327		DEBUG(MTD_DEBUG_LEVEL2,
328		      "DoC_Command (reset) for %d,%d returned true\n",
329		      floor, chip);
330		return 0;
331	}
332
333
334	/* Read the NAND chip ID: 1. Send ReadID command */
335	if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
336		DEBUG(MTD_DEBUG_LEVEL2,
337		      "DoC_Command (ReadID) for %d,%d returned true\n",
338		      floor, chip);
339		return 0;
340	}
341
342	/* Read the NAND chip ID: 2. Send address byte zero */
343	DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
344
345	/* Read the manufacturer and device id codes from the device */
346
347	if (DoC_is_Millennium(doc)) {
348		DoC_Delay(doc, 2);
349		dummy = ReadDOC(doc->virtadr, ReadPipeInit);
350		mfr = ReadDOC(doc->virtadr, LastDataRead);
351
352		DoC_Delay(doc, 2);
353		dummy = ReadDOC(doc->virtadr, ReadPipeInit);
354		id = ReadDOC(doc->virtadr, LastDataRead);
355	} else {
356		/* CDSN Slow IO register see Software Req 11.4 item 5. */
357		dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
358		DoC_Delay(doc, 2);
359		mfr = ReadDOC_(doc->virtadr, doc->ioreg);
360
361		/* CDSN Slow IO register see Software Req 11.4 item 5. */
362		dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
363		DoC_Delay(doc, 2);
364		id = ReadDOC_(doc->virtadr, doc->ioreg);
365	}
366
367	/* No response - return failure */
368	if (mfr == 0xff || mfr == 0)
369		return 0;
370
371	/* Check it's the same as the first chip we identified.
372	 * M-Systems say that any given DiskOnChip device should only
373	 * contain _one_ type of flash part, although that's not a
374	 * hardware restriction. */
375	if (doc->mfr) {
376		if (doc->mfr == mfr && doc->id == id)
377			return 1;	/* This is another the same the first */
378		else
379			printk(KERN_WARNING
380			       "Flash chip at floor %d, chip %d is different:\n",
381			       floor, chip);
382	}
383
384	/* Print and store the manufacturer and ID codes. */
385	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
386		if (id == nand_flash_ids[i].id) {
387			/* Try to identify manufacturer */
388			for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
389				if (nand_manuf_ids[j].id == mfr)
390					break;
391			}
392			printk(KERN_INFO
393			       "Flash chip found: Manufacturer ID: %2.2X, "
394			       "Chip ID: %2.2X (%s:%s)\n", mfr, id,
395			       nand_manuf_ids[j].name, nand_flash_ids[i].name);
396			if (!doc->mfr) {
397				doc->mfr = mfr;
398				doc->id = id;
399				doc->chipshift =
400					ffs((nand_flash_ids[i].chipsize << 20)) - 1;
401				doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
402				doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
403				doc->erasesize =
404				    nand_flash_ids[i].erasesize;
405				return 1;
406			}
407			return 0;
408		}
409	}
410
411
412	/* We haven't fully identified the chip. Print as much as we know. */
413	printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
414	       id, mfr);
415
416	printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
417	return 0;
418}
419
420/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
421
422static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
423{
424	int floor, chip;
425	int numchips[MAX_FLOORS];
426	int ret = 1;
427
428	this->numchips = 0;
429	this->mfr = 0;
430	this->id = 0;
431
432	/* For each floor, find the number of valid chips it contains */
433	for (floor = 0; floor < MAX_FLOORS; floor++) {
434		ret = 1;
435		numchips[floor] = 0;
436		for (chip = 0; chip < maxchips && ret != 0; chip++) {
437
438			ret = DoC_IdentChip(this, floor, chip);
439			if (ret) {
440				numchips[floor]++;
441				this->numchips++;
442			}
443		}
444	}
445
446	/* If there are none at all that we recognise, bail */
447	if (!this->numchips) {
448		printk(KERN_NOTICE "No flash chips recognised.\n");
449		return;
450	}
451
452	/* Allocate an array to hold the information for each chip */
453	this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
454	if (!this->chips) {
455		printk(KERN_NOTICE "No memory for allocating chip info structures\n");
456		return;
457	}
458
459	ret = 0;
460
461	/* Fill out the chip array with {floor, chipno} for each
462	 * detected chip in the device. */
463	for (floor = 0; floor < MAX_FLOORS; floor++) {
464		for (chip = 0; chip < numchips[floor]; chip++) {
465			this->chips[ret].floor = floor;
466			this->chips[ret].chip = chip;
467			this->chips[ret].curadr = 0;
468			this->chips[ret].curmode = 0x50;
469			ret++;
470		}
471	}
472
473	/* Calculate and print the total size of the device */
474	this->totlen = this->numchips * (1 << this->chipshift);
475
476	printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
477	       this->numchips, this->totlen >> 20);
478}
479
480static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
481{
482	int tmp1, tmp2, retval;
483	if (doc1->physadr == doc2->physadr)
484		return 1;
485
486	/* Use the alias resolution register which was set aside for this
487	 * purpose. If it's value is the same on both chips, they might
488	 * be the same chip, and we write to one and check for a change in
489	 * the other. It's unclear if this register is usuable in the
490	 * DoC 2000 (it's in the Millennium docs), but it seems to work. */
491	tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
492	tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
493	if (tmp1 != tmp2)
494		return 0;
495
496	WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
497	tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
498	if (tmp2 == (tmp1 + 1) % 0xff)
499		retval = 1;
500	else
501		retval = 0;
502
503	/* Restore register contents.  May not be necessary, but do it just to
504	 * be safe. */
505	WriteDOC(tmp1, doc1->virtadr, AliasResolution);
506
507	return retval;
508}
509
510/* This routine is found from the docprobe code by symbol_get(),
511 * which will bump the use count of this module. */
512void DoC2k_init(struct mtd_info *mtd)
513{
514	struct DiskOnChip *this = mtd->priv;
515	struct DiskOnChip *old = NULL;
516	int maxchips;
517
518	/* We must avoid being called twice for the same device. */
519
520	if (doc2klist)
521		old = doc2klist->priv;
522
523	while (old) {
524		if (DoC2k_is_alias(old, this)) {
525			printk(KERN_NOTICE
526			       "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
527			       this->physadr);
528			iounmap(this->virtadr);
529			kfree(mtd);
530			return;
531		}
532		if (old->nextdoc)
533			old = old->nextdoc->priv;
534		else
535			old = NULL;
536	}
537
538
539	switch (this->ChipID) {
540	case DOC_ChipID_Doc2kTSOP:
541		mtd->name = "DiskOnChip 2000 TSOP";
542		this->ioreg = DoC_Mil_CDSN_IO;
543		/* Pretend it's a Millennium */
544		this->ChipID = DOC_ChipID_DocMil;
545		maxchips = MAX_CHIPS;
546		break;
547	case DOC_ChipID_Doc2k:
548		mtd->name = "DiskOnChip 2000";
549		this->ioreg = DoC_2k_CDSN_IO;
550		maxchips = MAX_CHIPS;
551		break;
552	case DOC_ChipID_DocMil:
553		mtd->name = "DiskOnChip Millennium";
554		this->ioreg = DoC_Mil_CDSN_IO;
555		maxchips = MAX_CHIPS_MIL;
556		break;
557	default:
558		printk("Unknown ChipID 0x%02x\n", this->ChipID);
559		kfree(mtd);
560		iounmap(this->virtadr);
561		return;
562	}
563
564	printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
565	       this->physadr);
566
567	mtd->type = MTD_NANDFLASH;
568	mtd->flags = MTD_CAP_NANDFLASH;
569	mtd->size = 0;
570	mtd->erasesize = 0;
571	mtd->writesize = 512;
572	mtd->oobsize = 16;
573	mtd->owner = THIS_MODULE;
574	mtd->erase = doc_erase;
575	mtd->point = NULL;
576	mtd->unpoint = NULL;
577	mtd->read = doc_read;
578	mtd->write = doc_write;
579	mtd->read_oob = doc_read_oob;
580	mtd->write_oob = doc_write_oob;
581	mtd->sync = NULL;
582
583	this->totlen = 0;
584	this->numchips = 0;
585
586	this->curfloor = -1;
587	this->curchip = -1;
588	mutex_init(&this->lock);
589
590	/* Ident all the chips present. */
591	DoC_ScanChips(this, maxchips);
592
593	if (!this->totlen) {
594		kfree(mtd);
595		iounmap(this->virtadr);
596	} else {
597		this->nextdoc = doc2klist;
598		doc2klist = mtd;
599		mtd->size = this->totlen;
600		mtd->erasesize = this->erasesize;
601		add_mtd_device(mtd);
602		return;
603	}
604}
605EXPORT_SYMBOL_GPL(DoC2k_init);
606
607static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
608		    size_t * retlen, u_char * buf)
609{
610	struct DiskOnChip *this = mtd->priv;
611	void __iomem *docptr = this->virtadr;
612	struct Nand *mychip;
613	unsigned char syndrome[6], eccbuf[6];
614	volatile char dummy;
615	int i, len256 = 0, ret=0;
616	size_t left = len;
617
618	/* Don't allow read past end of device */
619	if (from >= this->totlen)
620		return -EINVAL;
621
622	mutex_lock(&this->lock);
623
624	*retlen = 0;
625	while (left) {
626		len = left;
627
628		/* Don't allow a single read to cross a 512-byte block boundary */
629		if (from + len > ((from | 0x1ff) + 1))
630			len = ((from | 0x1ff) + 1) - from;
631
632		/* The ECC will not be calculated correctly if less than 512 is read */
633		if (len != 0x200 && eccbuf)
634			printk(KERN_WARNING
635			       "ECC needs a full sector read (adr: %lx size %lx)\n",
636			       (long) from, (long) len);
637
638		/* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
639
640
641		/* Find the chip which is to be used and select it */
642		mychip = &this->chips[from >> (this->chipshift)];
643
644		if (this->curfloor != mychip->floor) {
645			DoC_SelectFloor(this, mychip->floor);
646			DoC_SelectChip(this, mychip->chip);
647		} else if (this->curchip != mychip->chip) {
648			DoC_SelectChip(this, mychip->chip);
649		}
650
651		this->curfloor = mychip->floor;
652		this->curchip = mychip->chip;
653
654		DoC_Command(this,
655			    (!this->page256
656			     && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
657			    CDSN_CTRL_WP);
658		DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
659			    CDSN_CTRL_ECC_IO);
660
661		/* Prime the ECC engine */
662		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
663		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
664
665		/* treat crossing 256-byte sector for 2M x 8bits devices */
666		if (this->page256 && from + len > (from | 0xff) + 1) {
667			len256 = (from | 0xff) + 1 - from;
668			DoC_ReadBuf(this, buf, len256);
669
670			DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
671			DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
672				    CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
673		}
674
675		DoC_ReadBuf(this, &buf[len256], len - len256);
676
677		/* Let the caller know we completed it */
678		*retlen += len;
679
680		/* Read the ECC data through the DiskOnChip ECC logic */
681		/* Note: this will work even with 2M x 8bit devices as   */
682		/*       they have 8 bytes of OOB per 256 page. mf.      */
683		DoC_ReadBuf(this, eccbuf, 6);
684
685		/* Flush the pipeline */
686		if (DoC_is_Millennium(this)) {
687			dummy = ReadDOC(docptr, ECCConf);
688			dummy = ReadDOC(docptr, ECCConf);
689			i = ReadDOC(docptr, ECCConf);
690		} else {
691			dummy = ReadDOC(docptr, 2k_ECCStatus);
692			dummy = ReadDOC(docptr, 2k_ECCStatus);
693			i = ReadDOC(docptr, 2k_ECCStatus);
694		}
695
696		/* Check the ECC Status */
697		if (i & 0x80) {
698			int nb_errors;
699			/* There was an ECC error */
700#ifdef ECC_DEBUG
701			printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
702#endif
703			/* Read the ECC syndrom through the DiskOnChip ECC
704			   logic.  These syndrome will be all ZERO when there
705			   is no error */
706			for (i = 0; i < 6; i++) {
707				syndrome[i] =
708					ReadDOC(docptr, ECCSyndrome0 + i);
709			}
710			nb_errors = doc_decode_ecc(buf, syndrome);
711
712#ifdef ECC_DEBUG
713			printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
714#endif
715			if (nb_errors < 0) {
716				/* We return error, but have actually done the
717				   read. Not that this can be told to
718				   user-space, via sys_read(), but at least
719				   MTD-aware stuff can know about it by
720				   checking *retlen */
721				ret = -EIO;
722			}
723		}
724
725#ifdef PSYCHO_DEBUG
726		printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
727		       (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
728		       eccbuf[3], eccbuf[4], eccbuf[5]);
729#endif
730
731		/* disable the ECC engine */
732		WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
733
734		/* according to 11.4.1, we need to wait for the busy line
735	         * drop if we read to the end of the page.  */
736		if(0 == ((from + len) & 0x1ff))
737		{
738		    DoC_WaitReady(this);
739		}
740
741		from += len;
742		left -= len;
743		buf += len;
744	}
745
746	mutex_unlock(&this->lock);
747
748	return ret;
749}
750
751static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
752		     size_t * retlen, const u_char * buf)
753{
754	struct DiskOnChip *this = mtd->priv;
755	int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
756	void __iomem *docptr = this->virtadr;
757	unsigned char eccbuf[6];
758	volatile char dummy;
759	int len256 = 0;
760	struct Nand *mychip;
761	size_t left = len;
762	int status;
763
764	/* Don't allow write past end of device */
765	if (to >= this->totlen)
766		return -EINVAL;
767
768	mutex_lock(&this->lock);
769
770	*retlen = 0;
771	while (left) {
772		len = left;
773
774		/* Don't allow a single write to cross a 512-byte block boundary */
775		if (to + len > ((to | 0x1ff) + 1))
776			len = ((to | 0x1ff) + 1) - to;
777
778		/* The ECC will not be calculated correctly if less than 512 is written */
779/* DBB-
780		if (len != 0x200 && eccbuf)
781			printk(KERN_WARNING
782			       "ECC needs a full sector write (adr: %lx size %lx)\n",
783			       (long) to, (long) len);
784   -DBB */
785
786		/* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
787
788		/* Find the chip which is to be used and select it */
789		mychip = &this->chips[to >> (this->chipshift)];
790
791		if (this->curfloor != mychip->floor) {
792			DoC_SelectFloor(this, mychip->floor);
793			DoC_SelectChip(this, mychip->chip);
794		} else if (this->curchip != mychip->chip) {
795			DoC_SelectChip(this, mychip->chip);
796		}
797
798		this->curfloor = mychip->floor;
799		this->curchip = mychip->chip;
800
801		/* Set device to main plane of flash */
802		DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
803		DoC_Command(this,
804			    (!this->page256
805			     && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
806			    CDSN_CTRL_WP);
807
808		DoC_Command(this, NAND_CMD_SEQIN, 0);
809		DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
810
811		/* Prime the ECC engine */
812		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
813		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
814
815		/* treat crossing 256-byte sector for 2M x 8bits devices */
816		if (this->page256 && to + len > (to | 0xff) + 1) {
817			len256 = (to | 0xff) + 1 - to;
818			DoC_WriteBuf(this, buf, len256);
819
820			DoC_Command(this, NAND_CMD_PAGEPROG, 0);
821
822			DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
823			/* There's an implicit DoC_WaitReady() in DoC_Command */
824
825			dummy = ReadDOC(docptr, CDSNSlowIO);
826			DoC_Delay(this, 2);
827
828			if (ReadDOC_(docptr, this->ioreg) & 1) {
829				printk(KERN_ERR "Error programming flash\n");
830				/* Error in programming */
831				*retlen = 0;
832				mutex_unlock(&this->lock);
833				return -EIO;
834			}
835
836			DoC_Command(this, NAND_CMD_SEQIN, 0);
837			DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
838				    CDSN_CTRL_ECC_IO);
839		}
840
841		DoC_WriteBuf(this, &buf[len256], len - len256);
842
843		WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl);
844
845		if (DoC_is_Millennium(this)) {
846			WriteDOC(0, docptr, NOP);
847			WriteDOC(0, docptr, NOP);
848			WriteDOC(0, docptr, NOP);
849		} else {
850			WriteDOC_(0, docptr, this->ioreg);
851			WriteDOC_(0, docptr, this->ioreg);
852			WriteDOC_(0, docptr, this->ioreg);
853		}
854
855		WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr,
856			 CDSNControl);
857
858		/* Read the ECC data through the DiskOnChip ECC logic */
859		for (di = 0; di < 6; di++) {
860			eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
861		}
862
863		/* Reset the ECC engine */
864		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
865
866#ifdef PSYCHO_DEBUG
867		printk
868			("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
869			 (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
870			 eccbuf[4], eccbuf[5]);
871#endif
872		DoC_Command(this, NAND_CMD_PAGEPROG, 0);
873
874		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
875		/* There's an implicit DoC_WaitReady() in DoC_Command */
876
877		if (DoC_is_Millennium(this)) {
878			ReadDOC(docptr, ReadPipeInit);
879			status = ReadDOC(docptr, LastDataRead);
880		} else {
881			dummy = ReadDOC(docptr, CDSNSlowIO);
882			DoC_Delay(this, 2);
883			status = ReadDOC_(docptr, this->ioreg);
884		}
885
886		if (status & 1) {
887			printk(KERN_ERR "Error programming flash\n");
888			/* Error in programming */
889			*retlen = 0;
890			mutex_unlock(&this->lock);
891			return -EIO;
892		}
893
894		/* Let the caller know we completed it */
895		*retlen += len;
896
897		if (eccbuf) {
898			unsigned char x[8];
899			size_t dummy;
900			int ret;
901
902			/* Write the ECC data to flash */
903			for (di=0; di<6; di++)
904				x[di] = eccbuf[di];
905
906			x[6]=0x55;
907			x[7]=0x55;
908
909			ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
910			if (ret) {
911				mutex_unlock(&this->lock);
912				return ret;
913			}
914		}
915
916		to += len;
917		left -= len;
918		buf += len;
919	}
920
921	mutex_unlock(&this->lock);
922	return 0;
923}
924
925static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
926			struct mtd_oob_ops *ops)
927{
928	struct DiskOnChip *this = mtd->priv;
929	int len256 = 0, ret;
930	struct Nand *mychip;
931	uint8_t *buf = ops->oobbuf;
932	size_t len = ops->len;
933
934	BUG_ON(ops->mode != MTD_OOB_PLACE);
935
936	ofs += ops->ooboffs;
937
938	mutex_lock(&this->lock);
939
940	mychip = &this->chips[ofs >> this->chipshift];
941
942	if (this->curfloor != mychip->floor) {
943		DoC_SelectFloor(this, mychip->floor);
944		DoC_SelectChip(this, mychip->chip);
945	} else if (this->curchip != mychip->chip) {
946		DoC_SelectChip(this, mychip->chip);
947	}
948	this->curfloor = mychip->floor;
949	this->curchip = mychip->chip;
950
951	/* update address for 2M x 8bit devices. OOB starts on the second */
952	/* page to maintain compatibility with doc_read_ecc. */
953	if (this->page256) {
954		if (!(ofs & 0x8))
955			ofs += 0x100;
956		else
957			ofs -= 0x8;
958	}
959
960	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
961	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
962
963	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
964	/* Note: datasheet says it should automaticaly wrap to the */
965	/*       next OOB block, but it didn't work here. mf.      */
966	if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
967		len256 = (ofs | 0x7) + 1 - ofs;
968		DoC_ReadBuf(this, buf, len256);
969
970		DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
971		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
972			    CDSN_CTRL_WP, 0);
973	}
974
975	DoC_ReadBuf(this, &buf[len256], len - len256);
976
977	ops->retlen = len;
978	/* Reading the full OOB data drops us off of the end of the page,
979         * causing the flash device to go into busy mode, so we need
980         * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
981
982	ret = DoC_WaitReady(this);
983
984	mutex_unlock(&this->lock);
985	return ret;
986
987}
988
989static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
990				size_t * retlen, const u_char * buf)
991{
992	struct DiskOnChip *this = mtd->priv;
993	int len256 = 0;
994	void __iomem *docptr = this->virtadr;
995	struct Nand *mychip = &this->chips[ofs >> this->chipshift];
996	volatile int dummy;
997	int status;
998
999	//      printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
1000	//   buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
1001
1002	/* Find the chip which is to be used and select it */
1003	if (this->curfloor != mychip->floor) {
1004		DoC_SelectFloor(this, mychip->floor);
1005		DoC_SelectChip(this, mychip->chip);
1006	} else if (this->curchip != mychip->chip) {
1007		DoC_SelectChip(this, mychip->chip);
1008	}
1009	this->curfloor = mychip->floor;
1010	this->curchip = mychip->chip;
1011
1012	/* disable the ECC engine */
1013	WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
1014	WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
1015
1016	/* Reset the chip, see Software Requirement 11.4 item 1. */
1017	DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
1018
1019	/* issue the Read2 command to set the pointer to the Spare Data Area. */
1020	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
1021
1022	/* update address for 2M x 8bit devices. OOB starts on the second */
1023	/* page to maintain compatibility with doc_read_ecc. */
1024	if (this->page256) {
1025		if (!(ofs & 0x8))
1026			ofs += 0x100;
1027		else
1028			ofs -= 0x8;
1029	}
1030
1031	/* issue the Serial Data In command to initial the Page Program process */
1032	DoC_Command(this, NAND_CMD_SEQIN, 0);
1033	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
1034
1035	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
1036	/* Note: datasheet says it should automaticaly wrap to the */
1037	/*       next OOB block, but it didn't work here. mf.      */
1038	if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
1039		len256 = (ofs | 0x7) + 1 - ofs;
1040		DoC_WriteBuf(this, buf, len256);
1041
1042		DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1043		DoC_Command(this, NAND_CMD_STATUS, 0);
1044		/* DoC_WaitReady() is implicit in DoC_Command */
1045
1046		if (DoC_is_Millennium(this)) {
1047			ReadDOC(docptr, ReadPipeInit);
1048			status = ReadDOC(docptr, LastDataRead);
1049		} else {
1050			dummy = ReadDOC(docptr, CDSNSlowIO);
1051			DoC_Delay(this, 2);
1052			status = ReadDOC_(docptr, this->ioreg);
1053		}
1054
1055		if (status & 1) {
1056			printk(KERN_ERR "Error programming oob data\n");
1057			/* There was an error */
1058			*retlen = 0;
1059			return -EIO;
1060		}
1061		DoC_Command(this, NAND_CMD_SEQIN, 0);
1062		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
1063	}
1064
1065	DoC_WriteBuf(this, &buf[len256], len - len256);
1066
1067	DoC_Command(this, NAND_CMD_PAGEPROG, 0);
1068	DoC_Command(this, NAND_CMD_STATUS, 0);
1069	/* DoC_WaitReady() is implicit in DoC_Command */
1070
1071	if (DoC_is_Millennium(this)) {
1072		ReadDOC(docptr, ReadPipeInit);
1073		status = ReadDOC(docptr, LastDataRead);
1074	} else {
1075		dummy = ReadDOC(docptr, CDSNSlowIO);
1076		DoC_Delay(this, 2);
1077		status = ReadDOC_(docptr, this->ioreg);
1078	}
1079
1080	if (status & 1) {
1081		printk(KERN_ERR "Error programming oob data\n");
1082		/* There was an error */
1083		*retlen = 0;
1084		return -EIO;
1085	}
1086
1087	*retlen = len;
1088	return 0;
1089
1090}
1091
1092static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
1093			 struct mtd_oob_ops *ops)
1094{
1095	struct DiskOnChip *this = mtd->priv;
1096	int ret;
1097
1098	BUG_ON(ops->mode != MTD_OOB_PLACE);
1099
1100	mutex_lock(&this->lock);
1101	ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len,
1102				   &ops->retlen, ops->oobbuf);
1103
1104	mutex_unlock(&this->lock);
1105	return ret;
1106}
1107
1108static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
1109{
1110	struct DiskOnChip *this = mtd->priv;
1111	__u32 ofs = instr->addr;
1112	__u32 len = instr->len;
1113	volatile int dummy;
1114	void __iomem *docptr = this->virtadr;
1115	struct Nand *mychip;
1116	int status;
1117
1118 	mutex_lock(&this->lock);
1119
1120	if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
1121		mutex_unlock(&this->lock);
1122		return -EINVAL;
1123	}
1124
1125	instr->state = MTD_ERASING;
1126
1127	while(len) {
1128		mychip = &this->chips[ofs >> this->chipshift];
1129
1130		if (this->curfloor != mychip->floor) {
1131			DoC_SelectFloor(this, mychip->floor);
1132			DoC_SelectChip(this, mychip->chip);
1133		} else if (this->curchip != mychip->chip) {
1134			DoC_SelectChip(this, mychip->chip);
1135		}
1136		this->curfloor = mychip->floor;
1137		this->curchip = mychip->chip;
1138
1139		DoC_Command(this, NAND_CMD_ERASE1, 0);
1140		DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
1141		DoC_Command(this, NAND_CMD_ERASE2, 0);
1142
1143		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
1144
1145		if (DoC_is_Millennium(this)) {
1146			ReadDOC(docptr, ReadPipeInit);
1147			status = ReadDOC(docptr, LastDataRead);
1148		} else {
1149			dummy = ReadDOC(docptr, CDSNSlowIO);
1150			DoC_Delay(this, 2);
1151			status = ReadDOC_(docptr, this->ioreg);
1152		}
1153
1154		if (status & 1) {
1155			printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
1156			/* There was an error */
1157			instr->state = MTD_ERASE_FAILED;
1158			goto callback;
1159		}
1160		ofs += mtd->erasesize;
1161		len -= mtd->erasesize;
1162	}
1163	instr->state = MTD_ERASE_DONE;
1164
1165 callback:
1166	mtd_erase_callback(instr);
1167
1168	mutex_unlock(&this->lock);
1169	return 0;
1170}
1171
1172
1173/****************************************************************************
1174 *
1175 * Module stuff
1176 *
1177 ****************************************************************************/
1178
1179static void __exit cleanup_doc2000(void)
1180{
1181	struct mtd_info *mtd;
1182	struct DiskOnChip *this;
1183
1184	while ((mtd = doc2klist)) {
1185		this = mtd->priv;
1186		doc2klist = this->nextdoc;
1187
1188		del_mtd_device(mtd);
1189
1190		iounmap(this->virtadr);
1191		kfree(this->chips);
1192		kfree(mtd);
1193	}
1194}
1195
1196module_exit(cleanup_doc2000);
1197
1198MODULE_LICENSE("GPL");
1199MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
1200MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
1201