1/*
2 * raid5.c : Multiple Devices driver for Linux
3 *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 *	   Copyright (C) 1999, 2000 Ingo Molnar
5 *	   Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches.  Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 *    new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 *   we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 *   batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/module.h>
47#include <linux/slab.h>
48#include <linux/highmem.h>
49#include <linux/bitops.h>
50#include <linux/kthread.h>
51#include <asm/atomic.h>
52#include "raid6.h"
53
54#include <linux/raid/bitmap.h>
55
56/*
57 * Stripe cache
58 */
59
60#define NR_STRIPES		256
61#define STRIPE_SIZE		PAGE_SIZE
62#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
63#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
64#define	IO_THRESHOLD		1
65#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
66#define HASH_MASK		(NR_HASH - 1)
67
68#define stripe_hash(conf, sect)	(&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70/* bio's attached to a stripe+device for I/O are linked together in bi_sector
71 * order without overlap.  There may be several bio's per stripe+device, and
72 * a bio could span several devices.
73 * When walking this list for a particular stripe+device, we must never proceed
74 * beyond a bio that extends past this device, as the next bio might no longer
75 * be valid.
76 * This macro is used to determine the 'next' bio in the list, given the sector
77 * of the current stripe+device
78 */
79#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80/*
81 * The following can be used to debug the driver
82 */
83#define RAID5_DEBUG	0
84#define RAID5_PARANOIA	1
85#if RAID5_PARANOIA && defined(CONFIG_SMP)
86# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87#else
88# define CHECK_DEVLOCK()
89#endif
90
91#define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92#if RAID5_DEBUG
93#define inline
94#define __inline__
95#endif
96
97#if !RAID6_USE_EMPTY_ZERO_PAGE
98/* In .bss so it's zeroed */
99const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100#endif
101
102static inline int raid6_next_disk(int disk, int raid_disks)
103{
104	disk++;
105	return (disk < raid_disks) ? disk : 0;
106}
107static void print_raid5_conf (raid5_conf_t *conf);
108
109static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
110{
111	if (atomic_dec_and_test(&sh->count)) {
112		BUG_ON(!list_empty(&sh->lru));
113		BUG_ON(atomic_read(&conf->active_stripes)==0);
114		if (test_bit(STRIPE_HANDLE, &sh->state)) {
115			if (test_bit(STRIPE_DELAYED, &sh->state)) {
116				list_add_tail(&sh->lru, &conf->delayed_list);
117				blk_plug_device(conf->mddev->queue);
118			} else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
119				   sh->bm_seq - conf->seq_write > 0) {
120				list_add_tail(&sh->lru, &conf->bitmap_list);
121				blk_plug_device(conf->mddev->queue);
122			} else {
123				clear_bit(STRIPE_BIT_DELAY, &sh->state);
124				list_add_tail(&sh->lru, &conf->handle_list);
125			}
126			md_wakeup_thread(conf->mddev->thread);
127		} else {
128			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
129				atomic_dec(&conf->preread_active_stripes);
130				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
131					md_wakeup_thread(conf->mddev->thread);
132			}
133			atomic_dec(&conf->active_stripes);
134			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
135				list_add_tail(&sh->lru, &conf->inactive_list);
136				wake_up(&conf->wait_for_stripe);
137				if (conf->retry_read_aligned)
138					md_wakeup_thread(conf->mddev->thread);
139			}
140		}
141	}
142}
143static void release_stripe(struct stripe_head *sh)
144{
145	raid5_conf_t *conf = sh->raid_conf;
146	unsigned long flags;
147
148	spin_lock_irqsave(&conf->device_lock, flags);
149	__release_stripe(conf, sh);
150	spin_unlock_irqrestore(&conf->device_lock, flags);
151}
152
153static inline void remove_hash(struct stripe_head *sh)
154{
155	PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
156
157	hlist_del_init(&sh->hash);
158}
159
160static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
161{
162	struct hlist_head *hp = stripe_hash(conf, sh->sector);
163
164	PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
165
166	CHECK_DEVLOCK();
167	hlist_add_head(&sh->hash, hp);
168}
169
170
171/* find an idle stripe, make sure it is unhashed, and return it. */
172static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
173{
174	struct stripe_head *sh = NULL;
175	struct list_head *first;
176
177	CHECK_DEVLOCK();
178	if (list_empty(&conf->inactive_list))
179		goto out;
180	first = conf->inactive_list.next;
181	sh = list_entry(first, struct stripe_head, lru);
182	list_del_init(first);
183	remove_hash(sh);
184	atomic_inc(&conf->active_stripes);
185out:
186	return sh;
187}
188
189static void shrink_buffers(struct stripe_head *sh, int num)
190{
191	struct page *p;
192	int i;
193
194	for (i=0; i<num ; i++) {
195		p = sh->dev[i].page;
196		if (!p)
197			continue;
198		sh->dev[i].page = NULL;
199		put_page(p);
200	}
201}
202
203static int grow_buffers(struct stripe_head *sh, int num)
204{
205	int i;
206
207	for (i=0; i<num; i++) {
208		struct page *page;
209
210		if (!(page = alloc_page(GFP_KERNEL))) {
211			return 1;
212		}
213		sh->dev[i].page = page;
214	}
215	return 0;
216}
217
218static void raid5_build_block (struct stripe_head *sh, int i);
219
220static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
221{
222	raid5_conf_t *conf = sh->raid_conf;
223	int i;
224
225	BUG_ON(atomic_read(&sh->count) != 0);
226	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
227
228	CHECK_DEVLOCK();
229	PRINTK("init_stripe called, stripe %llu\n",
230		(unsigned long long)sh->sector);
231
232	remove_hash(sh);
233
234	sh->sector = sector;
235	sh->pd_idx = pd_idx;
236	sh->state = 0;
237
238	sh->disks = disks;
239
240	for (i = sh->disks; i--; ) {
241		struct r5dev *dev = &sh->dev[i];
242
243		if (dev->toread || dev->towrite || dev->written ||
244		    test_bit(R5_LOCKED, &dev->flags)) {
245			printk("sector=%llx i=%d %p %p %p %d\n",
246			       (unsigned long long)sh->sector, i, dev->toread,
247			       dev->towrite, dev->written,
248			       test_bit(R5_LOCKED, &dev->flags));
249			BUG();
250		}
251		dev->flags = 0;
252		raid5_build_block(sh, i);
253	}
254	insert_hash(conf, sh);
255}
256
257static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
258{
259	struct stripe_head *sh;
260	struct hlist_node *hn;
261
262	CHECK_DEVLOCK();
263	PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
264	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
265		if (sh->sector == sector && sh->disks == disks)
266			return sh;
267	PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
268	return NULL;
269}
270
271static void unplug_slaves(mddev_t *mddev);
272static void raid5_unplug_device(request_queue_t *q);
273
274static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
275					     int pd_idx, int noblock)
276{
277	struct stripe_head *sh;
278
279	PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
280
281	spin_lock_irq(&conf->device_lock);
282
283	do {
284		wait_event_lock_irq(conf->wait_for_stripe,
285				    conf->quiesce == 0,
286				    conf->device_lock, /* nothing */);
287		sh = __find_stripe(conf, sector, disks);
288		if (!sh) {
289			if (!conf->inactive_blocked)
290				sh = get_free_stripe(conf);
291			if (noblock && sh == NULL)
292				break;
293			if (!sh) {
294				conf->inactive_blocked = 1;
295				wait_event_lock_irq(conf->wait_for_stripe,
296						    !list_empty(&conf->inactive_list) &&
297						    (atomic_read(&conf->active_stripes)
298						     < (conf->max_nr_stripes *3/4)
299						     || !conf->inactive_blocked),
300						    conf->device_lock,
301						    raid5_unplug_device(conf->mddev->queue)
302					);
303				conf->inactive_blocked = 0;
304			} else
305				init_stripe(sh, sector, pd_idx, disks);
306		} else {
307			if (atomic_read(&sh->count)) {
308			  BUG_ON(!list_empty(&sh->lru));
309			} else {
310				if (!test_bit(STRIPE_HANDLE, &sh->state))
311					atomic_inc(&conf->active_stripes);
312				if (list_empty(&sh->lru) &&
313				    !test_bit(STRIPE_EXPANDING, &sh->state))
314					BUG();
315				list_del_init(&sh->lru);
316			}
317		}
318	} while (sh == NULL);
319
320	if (sh)
321		atomic_inc(&sh->count);
322
323	spin_unlock_irq(&conf->device_lock);
324	return sh;
325}
326
327static int grow_one_stripe(raid5_conf_t *conf)
328{
329	struct stripe_head *sh;
330	sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
331	if (!sh)
332		return 0;
333	memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
334	sh->raid_conf = conf;
335	spin_lock_init(&sh->lock);
336
337	if (grow_buffers(sh, conf->raid_disks)) {
338		shrink_buffers(sh, conf->raid_disks);
339		kmem_cache_free(conf->slab_cache, sh);
340		return 0;
341	}
342	sh->disks = conf->raid_disks;
343	/* we just created an active stripe so... */
344	atomic_set(&sh->count, 1);
345	atomic_inc(&conf->active_stripes);
346	INIT_LIST_HEAD(&sh->lru);
347	release_stripe(sh);
348	return 1;
349}
350
351static int grow_stripes(raid5_conf_t *conf, int num)
352{
353	struct kmem_cache *sc;
354	int devs = conf->raid_disks;
355
356	sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
357	sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
358	conf->active_name = 0;
359	sc = kmem_cache_create(conf->cache_name[conf->active_name],
360			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
361			       0, 0, NULL, NULL);
362	if (!sc)
363		return 1;
364	conf->slab_cache = sc;
365	conf->pool_size = devs;
366	while (num--)
367		if (!grow_one_stripe(conf))
368			return 1;
369	return 0;
370}
371
372#ifdef CONFIG_MD_RAID5_RESHAPE
373static int resize_stripes(raid5_conf_t *conf, int newsize)
374{
375	/* Make all the stripes able to hold 'newsize' devices.
376	 * New slots in each stripe get 'page' set to a new page.
377	 *
378	 * This happens in stages:
379	 * 1/ create a new kmem_cache and allocate the required number of
380	 *    stripe_heads.
381	 * 2/ gather all the old stripe_heads and tranfer the pages across
382	 *    to the new stripe_heads.  This will have the side effect of
383	 *    freezing the array as once all stripe_heads have been collected,
384	 *    no IO will be possible.  Old stripe heads are freed once their
385	 *    pages have been transferred over, and the old kmem_cache is
386	 *    freed when all stripes are done.
387	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
388	 *    we simple return a failre status - no need to clean anything up.
389	 * 4/ allocate new pages for the new slots in the new stripe_heads.
390	 *    If this fails, we don't bother trying the shrink the
391	 *    stripe_heads down again, we just leave them as they are.
392	 *    As each stripe_head is processed the new one is released into
393	 *    active service.
394	 *
395	 * Once step2 is started, we cannot afford to wait for a write,
396	 * so we use GFP_NOIO allocations.
397	 */
398	struct stripe_head *osh, *nsh;
399	LIST_HEAD(newstripes);
400	struct disk_info *ndisks;
401	int err = 0;
402	struct kmem_cache *sc;
403	int i;
404
405	if (newsize <= conf->pool_size)
406		return 0; /* never bother to shrink */
407
408	md_allow_write(conf->mddev);
409
410	/* Step 1 */
411	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
412			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
413			       0, 0, NULL, NULL);
414	if (!sc)
415		return -ENOMEM;
416
417	for (i = conf->max_nr_stripes; i; i--) {
418		nsh = kmem_cache_alloc(sc, GFP_KERNEL);
419		if (!nsh)
420			break;
421
422		memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
423
424		nsh->raid_conf = conf;
425		spin_lock_init(&nsh->lock);
426
427		list_add(&nsh->lru, &newstripes);
428	}
429	if (i) {
430		/* didn't get enough, give up */
431		while (!list_empty(&newstripes)) {
432			nsh = list_entry(newstripes.next, struct stripe_head, lru);
433			list_del(&nsh->lru);
434			kmem_cache_free(sc, nsh);
435		}
436		kmem_cache_destroy(sc);
437		return -ENOMEM;
438	}
439	/* Step 2 - Must use GFP_NOIO now.
440	 * OK, we have enough stripes, start collecting inactive
441	 * stripes and copying them over
442	 */
443	list_for_each_entry(nsh, &newstripes, lru) {
444		spin_lock_irq(&conf->device_lock);
445		wait_event_lock_irq(conf->wait_for_stripe,
446				    !list_empty(&conf->inactive_list),
447				    conf->device_lock,
448				    unplug_slaves(conf->mddev)
449			);
450		osh = get_free_stripe(conf);
451		spin_unlock_irq(&conf->device_lock);
452		atomic_set(&nsh->count, 1);
453		for(i=0; i<conf->pool_size; i++)
454			nsh->dev[i].page = osh->dev[i].page;
455		for( ; i<newsize; i++)
456			nsh->dev[i].page = NULL;
457		kmem_cache_free(conf->slab_cache, osh);
458	}
459	kmem_cache_destroy(conf->slab_cache);
460
461	/* Step 3.
462	 * At this point, we are holding all the stripes so the array
463	 * is completely stalled, so now is a good time to resize
464	 * conf->disks.
465	 */
466	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
467	if (ndisks) {
468		for (i=0; i<conf->raid_disks; i++)
469			ndisks[i] = conf->disks[i];
470		kfree(conf->disks);
471		conf->disks = ndisks;
472	} else
473		err = -ENOMEM;
474
475	/* Step 4, return new stripes to service */
476	while(!list_empty(&newstripes)) {
477		nsh = list_entry(newstripes.next, struct stripe_head, lru);
478		list_del_init(&nsh->lru);
479		for (i=conf->raid_disks; i < newsize; i++)
480			if (nsh->dev[i].page == NULL) {
481				struct page *p = alloc_page(GFP_NOIO);
482				nsh->dev[i].page = p;
483				if (!p)
484					err = -ENOMEM;
485			}
486		release_stripe(nsh);
487	}
488	/* critical section pass, GFP_NOIO no longer needed */
489
490	conf->slab_cache = sc;
491	conf->active_name = 1-conf->active_name;
492	conf->pool_size = newsize;
493	return err;
494}
495#endif
496
497static int drop_one_stripe(raid5_conf_t *conf)
498{
499	struct stripe_head *sh;
500
501	spin_lock_irq(&conf->device_lock);
502	sh = get_free_stripe(conf);
503	spin_unlock_irq(&conf->device_lock);
504	if (!sh)
505		return 0;
506	BUG_ON(atomic_read(&sh->count));
507	shrink_buffers(sh, conf->pool_size);
508	kmem_cache_free(conf->slab_cache, sh);
509	atomic_dec(&conf->active_stripes);
510	return 1;
511}
512
513static void shrink_stripes(raid5_conf_t *conf)
514{
515	while (drop_one_stripe(conf))
516		;
517
518	if (conf->slab_cache)
519		kmem_cache_destroy(conf->slab_cache);
520	conf->slab_cache = NULL;
521}
522
523static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
524				   int error)
525{
526 	struct stripe_head *sh = bi->bi_private;
527	raid5_conf_t *conf = sh->raid_conf;
528	int disks = sh->disks, i;
529	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
530	char b[BDEVNAME_SIZE];
531	mdk_rdev_t *rdev;
532
533	if (bi->bi_size)
534		return 1;
535
536	for (i=0 ; i<disks; i++)
537		if (bi == &sh->dev[i].req)
538			break;
539
540	PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n",
541		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
542		uptodate);
543	if (i == disks) {
544		BUG();
545		return 0;
546	}
547
548	if (uptodate) {
549		set_bit(R5_UPTODATE, &sh->dev[i].flags);
550		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
551			rdev = conf->disks[i].rdev;
552			printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
553			       mdname(conf->mddev), STRIPE_SECTORS,
554			       (unsigned long long)sh->sector + rdev->data_offset,
555			       bdevname(rdev->bdev, b));
556			clear_bit(R5_ReadError, &sh->dev[i].flags);
557			clear_bit(R5_ReWrite, &sh->dev[i].flags);
558		}
559		if (atomic_read(&conf->disks[i].rdev->read_errors))
560			atomic_set(&conf->disks[i].rdev->read_errors, 0);
561	} else {
562		const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
563		int retry = 0;
564		rdev = conf->disks[i].rdev;
565
566		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
567		atomic_inc(&rdev->read_errors);
568		if (conf->mddev->degraded)
569			printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
570			       mdname(conf->mddev),
571			       (unsigned long long)sh->sector + rdev->data_offset,
572			       bdn);
573		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
574			/* Oh, no!!! */
575			printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
576			       mdname(conf->mddev),
577			       (unsigned long long)sh->sector + rdev->data_offset,
578			       bdn);
579		else if (atomic_read(&rdev->read_errors)
580			 > conf->max_nr_stripes)
581			printk(KERN_WARNING
582			       "raid5:%s: Too many read errors, failing device %s.\n",
583			       mdname(conf->mddev), bdn);
584		else
585			retry = 1;
586		if (retry)
587			set_bit(R5_ReadError, &sh->dev[i].flags);
588		else {
589			clear_bit(R5_ReadError, &sh->dev[i].flags);
590			clear_bit(R5_ReWrite, &sh->dev[i].flags);
591			md_error(conf->mddev, rdev);
592		}
593	}
594	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
595	clear_bit(R5_LOCKED, &sh->dev[i].flags);
596	set_bit(STRIPE_HANDLE, &sh->state);
597	release_stripe(sh);
598	return 0;
599}
600
601static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
602				    int error)
603{
604 	struct stripe_head *sh = bi->bi_private;
605	raid5_conf_t *conf = sh->raid_conf;
606	int disks = sh->disks, i;
607	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
608
609	if (bi->bi_size)
610		return 1;
611
612	for (i=0 ; i<disks; i++)
613		if (bi == &sh->dev[i].req)
614			break;
615
616	PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n",
617		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
618		uptodate);
619	if (i == disks) {
620		BUG();
621		return 0;
622	}
623
624	if (!uptodate)
625		md_error(conf->mddev, conf->disks[i].rdev);
626
627	rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
628
629	clear_bit(R5_LOCKED, &sh->dev[i].flags);
630	set_bit(STRIPE_HANDLE, &sh->state);
631	release_stripe(sh);
632	return 0;
633}
634
635
636static sector_t compute_blocknr(struct stripe_head *sh, int i);
637
638static void raid5_build_block (struct stripe_head *sh, int i)
639{
640	struct r5dev *dev = &sh->dev[i];
641
642	bio_init(&dev->req);
643	dev->req.bi_io_vec = &dev->vec;
644	dev->req.bi_vcnt++;
645	dev->req.bi_max_vecs++;
646	dev->vec.bv_page = dev->page;
647	dev->vec.bv_len = STRIPE_SIZE;
648	dev->vec.bv_offset = 0;
649
650	dev->req.bi_sector = sh->sector;
651	dev->req.bi_private = sh;
652
653	dev->flags = 0;
654	dev->sector = compute_blocknr(sh, i);
655}
656
657static void error(mddev_t *mddev, mdk_rdev_t *rdev)
658{
659	char b[BDEVNAME_SIZE];
660	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
661	PRINTK("raid5: error called\n");
662
663	if (!test_bit(Faulty, &rdev->flags)) {
664		set_bit(MD_CHANGE_DEVS, &mddev->flags);
665		if (test_and_clear_bit(In_sync, &rdev->flags)) {
666			unsigned long flags;
667			spin_lock_irqsave(&conf->device_lock, flags);
668			mddev->degraded++;
669			spin_unlock_irqrestore(&conf->device_lock, flags);
670			/*
671			 * if recovery was running, make sure it aborts.
672			 */
673			set_bit(MD_RECOVERY_ERR, &mddev->recovery);
674		}
675		set_bit(Faulty, &rdev->flags);
676		printk (KERN_ALERT
677			"raid5: Disk failure on %s, disabling device."
678			" Operation continuing on %d devices\n",
679			bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
680	}
681}
682
683/*
684 * Input: a 'big' sector number,
685 * Output: index of the data and parity disk, and the sector # in them.
686 */
687static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
688			unsigned int data_disks, unsigned int * dd_idx,
689			unsigned int * pd_idx, raid5_conf_t *conf)
690{
691	long stripe;
692	unsigned long chunk_number;
693	unsigned int chunk_offset;
694	sector_t new_sector;
695	int sectors_per_chunk = conf->chunk_size >> 9;
696
697	/* First compute the information on this sector */
698
699	/*
700	 * Compute the chunk number and the sector offset inside the chunk
701	 */
702	chunk_offset = sector_div(r_sector, sectors_per_chunk);
703	chunk_number = r_sector;
704	BUG_ON(r_sector != chunk_number);
705
706	/*
707	 * Compute the stripe number
708	 */
709	stripe = chunk_number / data_disks;
710
711	/*
712	 * Compute the data disk and parity disk indexes inside the stripe
713	 */
714	*dd_idx = chunk_number % data_disks;
715
716	/*
717	 * Select the parity disk based on the user selected algorithm.
718	 */
719	switch(conf->level) {
720	case 4:
721		*pd_idx = data_disks;
722		break;
723	case 5:
724		switch (conf->algorithm) {
725		case ALGORITHM_LEFT_ASYMMETRIC:
726			*pd_idx = data_disks - stripe % raid_disks;
727			if (*dd_idx >= *pd_idx)
728				(*dd_idx)++;
729			break;
730		case ALGORITHM_RIGHT_ASYMMETRIC:
731			*pd_idx = stripe % raid_disks;
732			if (*dd_idx >= *pd_idx)
733				(*dd_idx)++;
734			break;
735		case ALGORITHM_LEFT_SYMMETRIC:
736			*pd_idx = data_disks - stripe % raid_disks;
737			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
738			break;
739		case ALGORITHM_RIGHT_SYMMETRIC:
740			*pd_idx = stripe % raid_disks;
741			*dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
742			break;
743		default:
744			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
745				conf->algorithm);
746		}
747		break;
748	case 6:
749
750		/**** FIX THIS ****/
751		switch (conf->algorithm) {
752		case ALGORITHM_LEFT_ASYMMETRIC:
753			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
754			if (*pd_idx == raid_disks-1)
755				(*dd_idx)++; 	/* Q D D D P */
756			else if (*dd_idx >= *pd_idx)
757				(*dd_idx) += 2; /* D D P Q D */
758			break;
759		case ALGORITHM_RIGHT_ASYMMETRIC:
760			*pd_idx = stripe % raid_disks;
761			if (*pd_idx == raid_disks-1)
762				(*dd_idx)++; 	/* Q D D D P */
763			else if (*dd_idx >= *pd_idx)
764				(*dd_idx) += 2; /* D D P Q D */
765			break;
766		case ALGORITHM_LEFT_SYMMETRIC:
767			*pd_idx = raid_disks - 1 - (stripe % raid_disks);
768			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
769			break;
770		case ALGORITHM_RIGHT_SYMMETRIC:
771			*pd_idx = stripe % raid_disks;
772			*dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
773			break;
774		default:
775			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
776				conf->algorithm);
777		}
778		break;
779	}
780
781	/*
782	 * Finally, compute the new sector number
783	 */
784	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
785	return new_sector;
786}
787
788
789static sector_t compute_blocknr(struct stripe_head *sh, int i)
790{
791	raid5_conf_t *conf = sh->raid_conf;
792	int raid_disks = sh->disks;
793	int data_disks = raid_disks - conf->max_degraded;
794	sector_t new_sector = sh->sector, check;
795	int sectors_per_chunk = conf->chunk_size >> 9;
796	sector_t stripe;
797	int chunk_offset;
798	int chunk_number, dummy1, dummy2, dd_idx = i;
799	sector_t r_sector;
800
801
802	chunk_offset = sector_div(new_sector, sectors_per_chunk);
803	stripe = new_sector;
804	BUG_ON(new_sector != stripe);
805
806	if (i == sh->pd_idx)
807		return 0;
808	switch(conf->level) {
809	case 4: break;
810	case 5:
811		switch (conf->algorithm) {
812		case ALGORITHM_LEFT_ASYMMETRIC:
813		case ALGORITHM_RIGHT_ASYMMETRIC:
814			if (i > sh->pd_idx)
815				i--;
816			break;
817		case ALGORITHM_LEFT_SYMMETRIC:
818		case ALGORITHM_RIGHT_SYMMETRIC:
819			if (i < sh->pd_idx)
820				i += raid_disks;
821			i -= (sh->pd_idx + 1);
822			break;
823		default:
824			printk(KERN_ERR "raid5: unsupported algorithm %d\n",
825			       conf->algorithm);
826		}
827		break;
828	case 6:
829		if (i == raid6_next_disk(sh->pd_idx, raid_disks))
830			return 0; /* It is the Q disk */
831		switch (conf->algorithm) {
832		case ALGORITHM_LEFT_ASYMMETRIC:
833		case ALGORITHM_RIGHT_ASYMMETRIC:
834		  	if (sh->pd_idx == raid_disks-1)
835				i--; 	/* Q D D D P */
836			else if (i > sh->pd_idx)
837				i -= 2; /* D D P Q D */
838			break;
839		case ALGORITHM_LEFT_SYMMETRIC:
840		case ALGORITHM_RIGHT_SYMMETRIC:
841			if (sh->pd_idx == raid_disks-1)
842				i--; /* Q D D D P */
843			else {
844				/* D D P Q D */
845				if (i < sh->pd_idx)
846					i += raid_disks;
847				i -= (sh->pd_idx + 2);
848			}
849			break;
850		default:
851			printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
852				conf->algorithm);
853		}
854		break;
855	}
856
857	chunk_number = stripe * data_disks + i;
858	r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
859
860	check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
861	if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
862		printk(KERN_ERR "compute_blocknr: map not correct\n");
863		return 0;
864	}
865	return r_sector;
866}
867
868
869
870/*
871 * Copy data between a page in the stripe cache, and one or more bion
872 * The page could align with the middle of the bio, or there could be
873 * several bion, each with several bio_vecs, which cover part of the page
874 * Multiple bion are linked together on bi_next.  There may be extras
875 * at the end of this list.  We ignore them.
876 */
877static void copy_data(int frombio, struct bio *bio,
878		     struct page *page,
879		     sector_t sector)
880{
881	char *pa = page_address(page);
882	struct bio_vec *bvl;
883	int i;
884	int page_offset;
885
886	if (bio->bi_sector >= sector)
887		page_offset = (signed)(bio->bi_sector - sector) * 512;
888	else
889		page_offset = (signed)(sector - bio->bi_sector) * -512;
890	bio_for_each_segment(bvl, bio, i) {
891		int len = bio_iovec_idx(bio,i)->bv_len;
892		int clen;
893		int b_offset = 0;
894
895		if (page_offset < 0) {
896			b_offset = -page_offset;
897			page_offset += b_offset;
898			len -= b_offset;
899		}
900
901		if (len > 0 && page_offset + len > STRIPE_SIZE)
902			clen = STRIPE_SIZE - page_offset;
903		else clen = len;
904
905		if (clen > 0) {
906			char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
907			if (frombio)
908				memcpy(pa+page_offset, ba+b_offset, clen);
909			else
910				memcpy(ba+b_offset, pa+page_offset, clen);
911			__bio_kunmap_atomic(ba, KM_USER0);
912		}
913		if (clen < len) /* hit end of page */
914			break;
915		page_offset +=  len;
916	}
917}
918
919#define check_xor() 	do { 						\
920			   if (count == MAX_XOR_BLOCKS) {		\
921				xor_block(count, STRIPE_SIZE, ptr);	\
922				count = 1;				\
923			   }						\
924			} while(0)
925
926
927static void compute_block(struct stripe_head *sh, int dd_idx)
928{
929	int i, count, disks = sh->disks;
930	void *ptr[MAX_XOR_BLOCKS], *p;
931
932	PRINTK("compute_block, stripe %llu, idx %d\n",
933		(unsigned long long)sh->sector, dd_idx);
934
935	ptr[0] = page_address(sh->dev[dd_idx].page);
936	memset(ptr[0], 0, STRIPE_SIZE);
937	count = 1;
938	for (i = disks ; i--; ) {
939		if (i == dd_idx)
940			continue;
941		p = page_address(sh->dev[i].page);
942		if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
943			ptr[count++] = p;
944		else
945			printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
946				" not present\n", dd_idx,
947				(unsigned long long)sh->sector, i);
948
949		check_xor();
950	}
951	if (count != 1)
952		xor_block(count, STRIPE_SIZE, ptr);
953	set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
954}
955
956static void compute_parity5(struct stripe_head *sh, int method)
957{
958	raid5_conf_t *conf = sh->raid_conf;
959	int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
960	void *ptr[MAX_XOR_BLOCKS];
961	struct bio *chosen;
962
963	PRINTK("compute_parity5, stripe %llu, method %d\n",
964		(unsigned long long)sh->sector, method);
965
966	count = 1;
967	ptr[0] = page_address(sh->dev[pd_idx].page);
968	switch(method) {
969	case READ_MODIFY_WRITE:
970		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
971		for (i=disks ; i-- ;) {
972			if (i==pd_idx)
973				continue;
974			if (sh->dev[i].towrite &&
975			    test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
976				ptr[count++] = page_address(sh->dev[i].page);
977				chosen = sh->dev[i].towrite;
978				sh->dev[i].towrite = NULL;
979
980				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
981					wake_up(&conf->wait_for_overlap);
982
983				BUG_ON(sh->dev[i].written);
984				sh->dev[i].written = chosen;
985				check_xor();
986			}
987		}
988		break;
989	case RECONSTRUCT_WRITE:
990		memset(ptr[0], 0, STRIPE_SIZE);
991		for (i= disks; i-- ;)
992			if (i!=pd_idx && sh->dev[i].towrite) {
993				chosen = sh->dev[i].towrite;
994				sh->dev[i].towrite = NULL;
995
996				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
997					wake_up(&conf->wait_for_overlap);
998
999				BUG_ON(sh->dev[i].written);
1000				sh->dev[i].written = chosen;
1001			}
1002		break;
1003	case CHECK_PARITY:
1004		break;
1005	}
1006	if (count>1) {
1007		xor_block(count, STRIPE_SIZE, ptr);
1008		count = 1;
1009	}
1010
1011	for (i = disks; i--;)
1012		if (sh->dev[i].written) {
1013			sector_t sector = sh->dev[i].sector;
1014			struct bio *wbi = sh->dev[i].written;
1015			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1016				copy_data(1, wbi, sh->dev[i].page, sector);
1017				wbi = r5_next_bio(wbi, sector);
1018			}
1019
1020			set_bit(R5_LOCKED, &sh->dev[i].flags);
1021			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1022		}
1023
1024	switch(method) {
1025	case RECONSTRUCT_WRITE:
1026	case CHECK_PARITY:
1027		for (i=disks; i--;)
1028			if (i != pd_idx) {
1029				ptr[count++] = page_address(sh->dev[i].page);
1030				check_xor();
1031			}
1032		break;
1033	case READ_MODIFY_WRITE:
1034		for (i = disks; i--;)
1035			if (sh->dev[i].written) {
1036				ptr[count++] = page_address(sh->dev[i].page);
1037				check_xor();
1038			}
1039	}
1040	if (count != 1)
1041		xor_block(count, STRIPE_SIZE, ptr);
1042
1043	if (method != CHECK_PARITY) {
1044		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1045		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1046	} else
1047		clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1048}
1049
1050static void compute_parity6(struct stripe_head *sh, int method)
1051{
1052	raid6_conf_t *conf = sh->raid_conf;
1053	int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1054	struct bio *chosen;
1055	/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1056	void *ptrs[disks];
1057
1058	qd_idx = raid6_next_disk(pd_idx, disks);
1059	d0_idx = raid6_next_disk(qd_idx, disks);
1060
1061	PRINTK("compute_parity, stripe %llu, method %d\n",
1062		(unsigned long long)sh->sector, method);
1063
1064	switch(method) {
1065	case READ_MODIFY_WRITE:
1066		BUG();		/* READ_MODIFY_WRITE N/A for RAID-6 */
1067	case RECONSTRUCT_WRITE:
1068		for (i= disks; i-- ;)
1069			if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1070				chosen = sh->dev[i].towrite;
1071				sh->dev[i].towrite = NULL;
1072
1073				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1074					wake_up(&conf->wait_for_overlap);
1075
1076				BUG_ON(sh->dev[i].written);
1077				sh->dev[i].written = chosen;
1078			}
1079		break;
1080	case CHECK_PARITY:
1081		BUG();		/* Not implemented yet */
1082	}
1083
1084	for (i = disks; i--;)
1085		if (sh->dev[i].written) {
1086			sector_t sector = sh->dev[i].sector;
1087			struct bio *wbi = sh->dev[i].written;
1088			while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1089				copy_data(1, wbi, sh->dev[i].page, sector);
1090				wbi = r5_next_bio(wbi, sector);
1091			}
1092
1093			set_bit(R5_LOCKED, &sh->dev[i].flags);
1094			set_bit(R5_UPTODATE, &sh->dev[i].flags);
1095		}
1096
1097//	switch(method) {
1098//	case RECONSTRUCT_WRITE:
1099//	case CHECK_PARITY:
1100//	case UPDATE_PARITY:
1101		/* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1102		/* FIX: Is this ordering of drives even remotely optimal? */
1103		count = 0;
1104		i = d0_idx;
1105		do {
1106			ptrs[count++] = page_address(sh->dev[i].page);
1107			if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1108				printk("block %d/%d not uptodate on parity calc\n", i,count);
1109			i = raid6_next_disk(i, disks);
1110		} while ( i != d0_idx );
1111//		break;
1112//	}
1113
1114	raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1115
1116	switch(method) {
1117	case RECONSTRUCT_WRITE:
1118		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1119		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1120		set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1121		set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1122		break;
1123	case UPDATE_PARITY:
1124		set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1125		set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1126		break;
1127	}
1128}
1129
1130
1131/* Compute one missing block */
1132static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1133{
1134	int i, count, disks = sh->disks;
1135	void *ptr[MAX_XOR_BLOCKS], *p;
1136	int pd_idx = sh->pd_idx;
1137	int qd_idx = raid6_next_disk(pd_idx, disks);
1138
1139	PRINTK("compute_block_1, stripe %llu, idx %d\n",
1140		(unsigned long long)sh->sector, dd_idx);
1141
1142	if ( dd_idx == qd_idx ) {
1143		/* We're actually computing the Q drive */
1144		compute_parity6(sh, UPDATE_PARITY);
1145	} else {
1146		ptr[0] = page_address(sh->dev[dd_idx].page);
1147		if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1148		count = 1;
1149		for (i = disks ; i--; ) {
1150			if (i == dd_idx || i == qd_idx)
1151				continue;
1152			p = page_address(sh->dev[i].page);
1153			if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1154				ptr[count++] = p;
1155			else
1156				printk("compute_block() %d, stripe %llu, %d"
1157				       " not present\n", dd_idx,
1158				       (unsigned long long)sh->sector, i);
1159
1160			check_xor();
1161		}
1162		if (count != 1)
1163			xor_block(count, STRIPE_SIZE, ptr);
1164		if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1165		else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1166	}
1167}
1168
1169/* Compute two missing blocks */
1170static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1171{
1172	int i, count, disks = sh->disks;
1173	int pd_idx = sh->pd_idx;
1174	int qd_idx = raid6_next_disk(pd_idx, disks);
1175	int d0_idx = raid6_next_disk(qd_idx, disks);
1176	int faila, failb;
1177
1178	/* faila and failb are disk numbers relative to d0_idx */
1179	/* pd_idx become disks-2 and qd_idx become disks-1 */
1180	faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1181	failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1182
1183	BUG_ON(faila == failb);
1184	if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1185
1186	PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1187	       (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1188
1189	if ( failb == disks-1 ) {
1190		/* Q disk is one of the missing disks */
1191		if ( faila == disks-2 ) {
1192			/* Missing P+Q, just recompute */
1193			compute_parity6(sh, UPDATE_PARITY);
1194			return;
1195		} else {
1196			/* We're missing D+Q; recompute D from P */
1197			compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1198			compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1199			return;
1200		}
1201	}
1202
1203	/* We're missing D+P or D+D; build pointer table */
1204	{
1205		/**** FIX THIS: This could be very bad if disks is close to 256 ****/
1206		void *ptrs[disks];
1207
1208		count = 0;
1209		i = d0_idx;
1210		do {
1211			ptrs[count++] = page_address(sh->dev[i].page);
1212			i = raid6_next_disk(i, disks);
1213			if (i != dd_idx1 && i != dd_idx2 &&
1214			    !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1215				printk("compute_2 with missing block %d/%d\n", count, i);
1216		} while ( i != d0_idx );
1217
1218		if ( failb == disks-2 ) {
1219			/* We're missing D+P. */
1220			raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1221		} else {
1222			/* We're missing D+D. */
1223			raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1224		}
1225
1226		/* Both the above update both missing blocks */
1227		set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1228		set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1229	}
1230}
1231
1232
1233
1234/*
1235 * Each stripe/dev can have one or more bion attached.
1236 * toread/towrite point to the first in a chain.
1237 * The bi_next chain must be in order.
1238 */
1239static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1240{
1241	struct bio **bip;
1242	raid5_conf_t *conf = sh->raid_conf;
1243	int firstwrite=0;
1244
1245	PRINTK("adding bh b#%llu to stripe s#%llu\n",
1246		(unsigned long long)bi->bi_sector,
1247		(unsigned long long)sh->sector);
1248
1249
1250	spin_lock(&sh->lock);
1251	spin_lock_irq(&conf->device_lock);
1252	if (forwrite) {
1253		bip = &sh->dev[dd_idx].towrite;
1254		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1255			firstwrite = 1;
1256	} else
1257		bip = &sh->dev[dd_idx].toread;
1258	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1259		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1260			goto overlap;
1261		bip = & (*bip)->bi_next;
1262	}
1263	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1264		goto overlap;
1265
1266	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1267	if (*bip)
1268		bi->bi_next = *bip;
1269	*bip = bi;
1270	bi->bi_phys_segments ++;
1271	spin_unlock_irq(&conf->device_lock);
1272	spin_unlock(&sh->lock);
1273
1274	PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1275		(unsigned long long)bi->bi_sector,
1276		(unsigned long long)sh->sector, dd_idx);
1277
1278	if (conf->mddev->bitmap && firstwrite) {
1279		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1280				  STRIPE_SECTORS, 0);
1281		sh->bm_seq = conf->seq_flush+1;
1282		set_bit(STRIPE_BIT_DELAY, &sh->state);
1283	}
1284
1285	if (forwrite) {
1286		/* check if page is covered */
1287		sector_t sector = sh->dev[dd_idx].sector;
1288		for (bi=sh->dev[dd_idx].towrite;
1289		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1290			     bi && bi->bi_sector <= sector;
1291		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1292			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1293				sector = bi->bi_sector + (bi->bi_size>>9);
1294		}
1295		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1296			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1297	}
1298	return 1;
1299
1300 overlap:
1301	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1302	spin_unlock_irq(&conf->device_lock);
1303	spin_unlock(&sh->lock);
1304	return 0;
1305}
1306
1307static void end_reshape(raid5_conf_t *conf);
1308
1309static int page_is_zero(struct page *p)
1310{
1311	char *a = page_address(p);
1312	return ((*(u32*)a) == 0 &&
1313		memcmp(a, a+4, STRIPE_SIZE-4)==0);
1314}
1315
1316static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1317{
1318	int sectors_per_chunk = conf->chunk_size >> 9;
1319	int pd_idx, dd_idx;
1320	int chunk_offset = sector_div(stripe, sectors_per_chunk);
1321
1322	raid5_compute_sector(stripe * (disks - conf->max_degraded)
1323			     *sectors_per_chunk + chunk_offset,
1324			     disks, disks - conf->max_degraded,
1325			     &dd_idx, &pd_idx, conf);
1326	return pd_idx;
1327}
1328
1329
1330/*
1331 * handle_stripe - do things to a stripe.
1332 *
1333 * We lock the stripe and then examine the state of various bits
1334 * to see what needs to be done.
1335 * Possible results:
1336 *    return some read request which now have data
1337 *    return some write requests which are safely on disc
1338 *    schedule a read on some buffers
1339 *    schedule a write of some buffers
1340 *    return confirmation of parity correctness
1341 *
1342 * Parity calculations are done inside the stripe lock
1343 * buffers are taken off read_list or write_list, and bh_cache buffers
1344 * get BH_Lock set before the stripe lock is released.
1345 *
1346 */
1347
1348static void handle_stripe5(struct stripe_head *sh)
1349{
1350	raid5_conf_t *conf = sh->raid_conf;
1351	int disks = sh->disks;
1352	struct bio *return_bi= NULL;
1353	struct bio *bi;
1354	int i;
1355	int syncing, expanding, expanded;
1356	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1357	int non_overwrite = 0;
1358	int failed_num=0;
1359	struct r5dev *dev;
1360
1361	PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1362		(unsigned long long)sh->sector, atomic_read(&sh->count),
1363		sh->pd_idx);
1364
1365	spin_lock(&sh->lock);
1366	clear_bit(STRIPE_HANDLE, &sh->state);
1367	clear_bit(STRIPE_DELAYED, &sh->state);
1368
1369	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1370	expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1371	expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1372	/* Now to look around and see what can be done */
1373
1374	rcu_read_lock();
1375	for (i=disks; i--; ) {
1376		mdk_rdev_t *rdev;
1377		dev = &sh->dev[i];
1378		clear_bit(R5_Insync, &dev->flags);
1379
1380		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1381			i, dev->flags, dev->toread, dev->towrite, dev->written);
1382		/* maybe we can reply to a read */
1383		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1384			struct bio *rbi, *rbi2;
1385			PRINTK("Return read for disc %d\n", i);
1386			spin_lock_irq(&conf->device_lock);
1387			rbi = dev->toread;
1388			dev->toread = NULL;
1389			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1390				wake_up(&conf->wait_for_overlap);
1391			spin_unlock_irq(&conf->device_lock);
1392			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1393				copy_data(0, rbi, dev->page, dev->sector);
1394				rbi2 = r5_next_bio(rbi, dev->sector);
1395				spin_lock_irq(&conf->device_lock);
1396				if (--rbi->bi_phys_segments == 0) {
1397					rbi->bi_next = return_bi;
1398					return_bi = rbi;
1399				}
1400				spin_unlock_irq(&conf->device_lock);
1401				rbi = rbi2;
1402			}
1403		}
1404
1405		/* now count some things */
1406		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1407		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1408
1409
1410		if (dev->toread) to_read++;
1411		if (dev->towrite) {
1412			to_write++;
1413			if (!test_bit(R5_OVERWRITE, &dev->flags))
1414				non_overwrite++;
1415		}
1416		if (dev->written) written++;
1417		rdev = rcu_dereference(conf->disks[i].rdev);
1418		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1419			/* The ReadError flag will just be confusing now */
1420			clear_bit(R5_ReadError, &dev->flags);
1421			clear_bit(R5_ReWrite, &dev->flags);
1422		}
1423		if (!rdev || !test_bit(In_sync, &rdev->flags)
1424		    || test_bit(R5_ReadError, &dev->flags)) {
1425			failed++;
1426			failed_num = i;
1427		} else
1428			set_bit(R5_Insync, &dev->flags);
1429	}
1430	rcu_read_unlock();
1431	PRINTK("locked=%d uptodate=%d to_read=%d"
1432		" to_write=%d failed=%d failed_num=%d\n",
1433		locked, uptodate, to_read, to_write, failed, failed_num);
1434	/* check if the array has lost two devices and, if so, some requests might
1435	 * need to be failed
1436	 */
1437	if (failed > 1 && to_read+to_write+written) {
1438		for (i=disks; i--; ) {
1439			int bitmap_end = 0;
1440
1441			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1442				mdk_rdev_t *rdev;
1443				rcu_read_lock();
1444				rdev = rcu_dereference(conf->disks[i].rdev);
1445				if (rdev && test_bit(In_sync, &rdev->flags))
1446					/* multiple read failures in one stripe */
1447					md_error(conf->mddev, rdev);
1448				rcu_read_unlock();
1449			}
1450
1451			spin_lock_irq(&conf->device_lock);
1452			/* fail all writes first */
1453			bi = sh->dev[i].towrite;
1454			sh->dev[i].towrite = NULL;
1455			if (bi) { to_write--; bitmap_end = 1; }
1456
1457			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1458				wake_up(&conf->wait_for_overlap);
1459
1460			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1461				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1462				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1463				if (--bi->bi_phys_segments == 0) {
1464					md_write_end(conf->mddev);
1465					bi->bi_next = return_bi;
1466					return_bi = bi;
1467				}
1468				bi = nextbi;
1469			}
1470			/* and fail all 'written' */
1471			bi = sh->dev[i].written;
1472			sh->dev[i].written = NULL;
1473			if (bi) bitmap_end = 1;
1474			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1475				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1476				clear_bit(BIO_UPTODATE, &bi->bi_flags);
1477				if (--bi->bi_phys_segments == 0) {
1478					md_write_end(conf->mddev);
1479					bi->bi_next = return_bi;
1480					return_bi = bi;
1481				}
1482				bi = bi2;
1483			}
1484
1485			/* fail any reads if this device is non-operational */
1486			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1487			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
1488				bi = sh->dev[i].toread;
1489				sh->dev[i].toread = NULL;
1490				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1491					wake_up(&conf->wait_for_overlap);
1492				if (bi) to_read--;
1493				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1494					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1495					clear_bit(BIO_UPTODATE, &bi->bi_flags);
1496					if (--bi->bi_phys_segments == 0) {
1497						bi->bi_next = return_bi;
1498						return_bi = bi;
1499					}
1500					bi = nextbi;
1501				}
1502			}
1503			spin_unlock_irq(&conf->device_lock);
1504			if (bitmap_end)
1505				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1506						STRIPE_SECTORS, 0, 0);
1507		}
1508	}
1509	if (failed > 1 && syncing) {
1510		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1511		clear_bit(STRIPE_SYNCING, &sh->state);
1512		syncing = 0;
1513	}
1514
1515	/* might be able to return some write requests if the parity block
1516	 * is safe, or on a failed drive
1517	 */
1518	dev = &sh->dev[sh->pd_idx];
1519	if ( written &&
1520	     ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1521		test_bit(R5_UPTODATE, &dev->flags))
1522	       || (failed == 1 && failed_num == sh->pd_idx))
1523	    ) {
1524	    /* any written block on an uptodate or failed drive can be returned.
1525	     * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
1526	     * never LOCKED, so we don't need to test 'failed' directly.
1527	     */
1528	    for (i=disks; i--; )
1529		if (sh->dev[i].written) {
1530		    dev = &sh->dev[i];
1531		    if (!test_bit(R5_LOCKED, &dev->flags) &&
1532			 test_bit(R5_UPTODATE, &dev->flags) ) {
1533			/* We can return any write requests */
1534			    struct bio *wbi, *wbi2;
1535			    int bitmap_end = 0;
1536			    PRINTK("Return write for disc %d\n", i);
1537			    spin_lock_irq(&conf->device_lock);
1538			    wbi = dev->written;
1539			    dev->written = NULL;
1540			    while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1541				    wbi2 = r5_next_bio(wbi, dev->sector);
1542				    if (--wbi->bi_phys_segments == 0) {
1543					    md_write_end(conf->mddev);
1544					    wbi->bi_next = return_bi;
1545					    return_bi = wbi;
1546				    }
1547				    wbi = wbi2;
1548			    }
1549			    if (dev->towrite == NULL)
1550				    bitmap_end = 1;
1551			    spin_unlock_irq(&conf->device_lock);
1552			    if (bitmap_end)
1553				    bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1554						    STRIPE_SECTORS,
1555						    !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1556		    }
1557		}
1558	}
1559
1560	/* Now we might consider reading some blocks, either to check/generate
1561	 * parity, or to satisfy requests
1562	 * or to load a block that is being partially written.
1563	 */
1564	if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1565		for (i=disks; i--;) {
1566			dev = &sh->dev[i];
1567			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1568			    (dev->toread ||
1569			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1570			     syncing ||
1571			     expanding ||
1572			     (failed && (sh->dev[failed_num].toread ||
1573					 (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1574				    )
1575				) {
1576				/* we would like to get this block, possibly
1577				 * by computing it, but we might not be able to
1578				 */
1579				if (uptodate == disks-1) {
1580					PRINTK("Computing block %d\n", i);
1581					compute_block(sh, i);
1582					uptodate++;
1583				} else if (test_bit(R5_Insync, &dev->flags)) {
1584					set_bit(R5_LOCKED, &dev->flags);
1585					set_bit(R5_Wantread, &dev->flags);
1586					locked++;
1587					PRINTK("Reading block %d (sync=%d)\n",
1588						i, syncing);
1589				}
1590			}
1591		}
1592		set_bit(STRIPE_HANDLE, &sh->state);
1593	}
1594
1595	/* now to consider writing and what else, if anything should be read */
1596	if (to_write) {
1597		int rmw=0, rcw=0;
1598		for (i=disks ; i--;) {
1599			/* would I have to read this buffer for read_modify_write */
1600			dev = &sh->dev[i];
1601			if ((dev->towrite || i == sh->pd_idx) &&
1602			    (!test_bit(R5_LOCKED, &dev->flags)
1603				    ) &&
1604			    !test_bit(R5_UPTODATE, &dev->flags)) {
1605				if (test_bit(R5_Insync, &dev->flags)
1606/*				    && !(!mddev->insync && i == sh->pd_idx) */
1607					)
1608					rmw++;
1609				else rmw += 2*disks;  /* cannot read it */
1610			}
1611			/* Would I have to read this buffer for reconstruct_write */
1612			if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1613			    (!test_bit(R5_LOCKED, &dev->flags)
1614				    ) &&
1615			    !test_bit(R5_UPTODATE, &dev->flags)) {
1616				if (test_bit(R5_Insync, &dev->flags)) rcw++;
1617				else rcw += 2*disks;
1618			}
1619		}
1620		PRINTK("for sector %llu, rmw=%d rcw=%d\n",
1621			(unsigned long long)sh->sector, rmw, rcw);
1622		set_bit(STRIPE_HANDLE, &sh->state);
1623		if (rmw < rcw && rmw > 0)
1624			/* prefer read-modify-write, but need to get some data */
1625			for (i=disks; i--;) {
1626				dev = &sh->dev[i];
1627				if ((dev->towrite || i == sh->pd_idx) &&
1628				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1629				    test_bit(R5_Insync, &dev->flags)) {
1630					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1631					{
1632						PRINTK("Read_old block %d for r-m-w\n", i);
1633						set_bit(R5_LOCKED, &dev->flags);
1634						set_bit(R5_Wantread, &dev->flags);
1635						locked++;
1636					} else {
1637						set_bit(STRIPE_DELAYED, &sh->state);
1638						set_bit(STRIPE_HANDLE, &sh->state);
1639					}
1640				}
1641			}
1642		if (rcw <= rmw && rcw > 0)
1643			/* want reconstruct write, but need to get some data */
1644			for (i=disks; i--;) {
1645				dev = &sh->dev[i];
1646				if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1647				    !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1648				    test_bit(R5_Insync, &dev->flags)) {
1649					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1650					{
1651						PRINTK("Read_old block %d for Reconstruct\n", i);
1652						set_bit(R5_LOCKED, &dev->flags);
1653						set_bit(R5_Wantread, &dev->flags);
1654						locked++;
1655					} else {
1656						set_bit(STRIPE_DELAYED, &sh->state);
1657						set_bit(STRIPE_HANDLE, &sh->state);
1658					}
1659				}
1660			}
1661		/* now if nothing is locked, and if we have enough data, we can start a write request */
1662		if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1663		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1664			PRINTK("Computing parity...\n");
1665			compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1666			/* now every locked buffer is ready to be written */
1667			for (i=disks; i--;)
1668				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1669					PRINTK("Writing block %d\n", i);
1670					locked++;
1671					set_bit(R5_Wantwrite, &sh->dev[i].flags);
1672					if (!test_bit(R5_Insync, &sh->dev[i].flags)
1673					    || (i==sh->pd_idx && failed == 0))
1674						set_bit(STRIPE_INSYNC, &sh->state);
1675				}
1676			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1677				atomic_dec(&conf->preread_active_stripes);
1678				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1679					md_wakeup_thread(conf->mddev->thread);
1680			}
1681		}
1682	}
1683
1684	/* maybe we need to check and possibly fix the parity for this stripe
1685	 * Any reads will already have been scheduled, so we just see if enough data
1686	 * is available
1687	 */
1688	if (syncing && locked == 0 &&
1689	    !test_bit(STRIPE_INSYNC, &sh->state)) {
1690		set_bit(STRIPE_HANDLE, &sh->state);
1691		if (failed == 0) {
1692			BUG_ON(uptodate != disks);
1693			compute_parity5(sh, CHECK_PARITY);
1694			uptodate--;
1695			if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1696				/* parity is correct (on disc, not in buffer any more) */
1697				set_bit(STRIPE_INSYNC, &sh->state);
1698			} else {
1699				conf->mddev->resync_mismatches += STRIPE_SECTORS;
1700				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1701					/* don't try to repair!! */
1702					set_bit(STRIPE_INSYNC, &sh->state);
1703				else {
1704					compute_block(sh, sh->pd_idx);
1705					uptodate++;
1706				}
1707			}
1708		}
1709		if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1710			/* either failed parity check, or recovery is happening */
1711			if (failed==0)
1712				failed_num = sh->pd_idx;
1713			dev = &sh->dev[failed_num];
1714			BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1715			BUG_ON(uptodate != disks);
1716
1717			set_bit(R5_LOCKED, &dev->flags);
1718			set_bit(R5_Wantwrite, &dev->flags);
1719			clear_bit(STRIPE_DEGRADED, &sh->state);
1720			locked++;
1721			set_bit(STRIPE_INSYNC, &sh->state);
1722		}
1723	}
1724	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1725		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1726		clear_bit(STRIPE_SYNCING, &sh->state);
1727	}
1728
1729	/* If the failed drive is just a ReadError, then we might need to progress
1730	 * the repair/check process
1731	 */
1732	if (failed == 1 && ! conf->mddev->ro &&
1733	    test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1734	    && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1735	    && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1736		) {
1737		dev = &sh->dev[failed_num];
1738		if (!test_bit(R5_ReWrite, &dev->flags)) {
1739			set_bit(R5_Wantwrite, &dev->flags);
1740			set_bit(R5_ReWrite, &dev->flags);
1741			set_bit(R5_LOCKED, &dev->flags);
1742			locked++;
1743		} else {
1744			/* let's read it back */
1745			set_bit(R5_Wantread, &dev->flags);
1746			set_bit(R5_LOCKED, &dev->flags);
1747			locked++;
1748		}
1749	}
1750
1751	if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1752		/* Need to write out all blocks after computing parity */
1753		sh->disks = conf->raid_disks;
1754		sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1755		compute_parity5(sh, RECONSTRUCT_WRITE);
1756		for (i= conf->raid_disks; i--;) {
1757			set_bit(R5_LOCKED, &sh->dev[i].flags);
1758			locked++;
1759			set_bit(R5_Wantwrite, &sh->dev[i].flags);
1760		}
1761		clear_bit(STRIPE_EXPANDING, &sh->state);
1762	} else if (expanded) {
1763		clear_bit(STRIPE_EXPAND_READY, &sh->state);
1764		atomic_dec(&conf->reshape_stripes);
1765		wake_up(&conf->wait_for_overlap);
1766		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1767	}
1768
1769	if (expanding && locked == 0) {
1770		/* We have read all the blocks in this stripe and now we need to
1771		 * copy some of them into a target stripe for expand.
1772		 */
1773		clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1774		for (i=0; i< sh->disks; i++)
1775			if (i != sh->pd_idx) {
1776				int dd_idx, pd_idx, j;
1777				struct stripe_head *sh2;
1778
1779				sector_t bn = compute_blocknr(sh, i);
1780				sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1781								  conf->raid_disks-1,
1782								  &dd_idx, &pd_idx, conf);
1783				sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1784				if (sh2 == NULL)
1785					/* so far only the early blocks of this stripe
1786					 * have been requested.  When later blocks
1787					 * get requested, we will try again
1788					 */
1789					continue;
1790				if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1791				   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1792					/* must have already done this block */
1793					release_stripe(sh2);
1794					continue;
1795				}
1796				memcpy(page_address(sh2->dev[dd_idx].page),
1797				       page_address(sh->dev[i].page),
1798				       STRIPE_SIZE);
1799				set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1800				set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1801				for (j=0; j<conf->raid_disks; j++)
1802					if (j != sh2->pd_idx &&
1803					    !test_bit(R5_Expanded, &sh2->dev[j].flags))
1804						break;
1805				if (j == conf->raid_disks) {
1806					set_bit(STRIPE_EXPAND_READY, &sh2->state);
1807					set_bit(STRIPE_HANDLE, &sh2->state);
1808				}
1809				release_stripe(sh2);
1810			}
1811	}
1812
1813	spin_unlock(&sh->lock);
1814
1815	while ((bi=return_bi)) {
1816		int bytes = bi->bi_size;
1817
1818		return_bi = bi->bi_next;
1819		bi->bi_next = NULL;
1820		bi->bi_size = 0;
1821		bi->bi_end_io(bi, bytes,
1822			      test_bit(BIO_UPTODATE, &bi->bi_flags)
1823			        ? 0 : -EIO);
1824	}
1825	for (i=disks; i-- ;) {
1826		int rw;
1827		struct bio *bi;
1828		mdk_rdev_t *rdev;
1829		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1830			rw = WRITE;
1831		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1832			rw = READ;
1833		else
1834			continue;
1835
1836		bi = &sh->dev[i].req;
1837
1838		bi->bi_rw = rw;
1839		if (rw == WRITE)
1840			bi->bi_end_io = raid5_end_write_request;
1841		else
1842			bi->bi_end_io = raid5_end_read_request;
1843
1844		rcu_read_lock();
1845		rdev = rcu_dereference(conf->disks[i].rdev);
1846		if (rdev && test_bit(Faulty, &rdev->flags))
1847			rdev = NULL;
1848		if (rdev)
1849			atomic_inc(&rdev->nr_pending);
1850		rcu_read_unlock();
1851
1852		if (rdev) {
1853			if (syncing || expanding || expanded)
1854				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1855
1856			bi->bi_bdev = rdev->bdev;
1857			PRINTK("for %llu schedule op %ld on disc %d\n",
1858				(unsigned long long)sh->sector, bi->bi_rw, i);
1859			atomic_inc(&sh->count);
1860			bi->bi_sector = sh->sector + rdev->data_offset;
1861			bi->bi_flags = 1 << BIO_UPTODATE;
1862			bi->bi_vcnt = 1;
1863			bi->bi_max_vecs = 1;
1864			bi->bi_idx = 0;
1865			bi->bi_io_vec = &sh->dev[i].vec;
1866			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1867			bi->bi_io_vec[0].bv_offset = 0;
1868			bi->bi_size = STRIPE_SIZE;
1869			bi->bi_next = NULL;
1870			if (rw == WRITE &&
1871			    test_bit(R5_ReWrite, &sh->dev[i].flags))
1872				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1873			generic_make_request(bi);
1874		} else {
1875			if (rw == WRITE)
1876				set_bit(STRIPE_DEGRADED, &sh->state);
1877			PRINTK("skip op %ld on disc %d for sector %llu\n",
1878				bi->bi_rw, i, (unsigned long long)sh->sector);
1879			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1880			set_bit(STRIPE_HANDLE, &sh->state);
1881		}
1882	}
1883}
1884
1885static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1886{
1887	raid6_conf_t *conf = sh->raid_conf;
1888	int disks = sh->disks;
1889	struct bio *return_bi= NULL;
1890	struct bio *bi;
1891	int i;
1892	int syncing, expanding, expanded;
1893	int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1894	int non_overwrite = 0;
1895	int failed_num[2] = {0, 0};
1896	struct r5dev *dev, *pdev, *qdev;
1897	int pd_idx = sh->pd_idx;
1898	int qd_idx = raid6_next_disk(pd_idx, disks);
1899	int p_failed, q_failed;
1900
1901	PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1902	       (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1903	       pd_idx, qd_idx);
1904
1905	spin_lock(&sh->lock);
1906	clear_bit(STRIPE_HANDLE, &sh->state);
1907	clear_bit(STRIPE_DELAYED, &sh->state);
1908
1909	syncing = test_bit(STRIPE_SYNCING, &sh->state);
1910	expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1911	expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1912	/* Now to look around and see what can be done */
1913
1914	rcu_read_lock();
1915	for (i=disks; i--; ) {
1916		mdk_rdev_t *rdev;
1917		dev = &sh->dev[i];
1918		clear_bit(R5_Insync, &dev->flags);
1919
1920		PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1921			i, dev->flags, dev->toread, dev->towrite, dev->written);
1922		/* maybe we can reply to a read */
1923		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1924			struct bio *rbi, *rbi2;
1925			PRINTK("Return read for disc %d\n", i);
1926			spin_lock_irq(&conf->device_lock);
1927			rbi = dev->toread;
1928			dev->toread = NULL;
1929			if (test_and_clear_bit(R5_Overlap, &dev->flags))
1930				wake_up(&conf->wait_for_overlap);
1931			spin_unlock_irq(&conf->device_lock);
1932			while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1933				copy_data(0, rbi, dev->page, dev->sector);
1934				rbi2 = r5_next_bio(rbi, dev->sector);
1935				spin_lock_irq(&conf->device_lock);
1936				if (--rbi->bi_phys_segments == 0) {
1937					rbi->bi_next = return_bi;
1938					return_bi = rbi;
1939				}
1940				spin_unlock_irq(&conf->device_lock);
1941				rbi = rbi2;
1942			}
1943		}
1944
1945		/* now count some things */
1946		if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1947		if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1948
1949
1950		if (dev->toread) to_read++;
1951		if (dev->towrite) {
1952			to_write++;
1953			if (!test_bit(R5_OVERWRITE, &dev->flags))
1954				non_overwrite++;
1955		}
1956		if (dev->written) written++;
1957		rdev = rcu_dereference(conf->disks[i].rdev);
1958		if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1959			/* The ReadError flag will just be confusing now */
1960			clear_bit(R5_ReadError, &dev->flags);
1961			clear_bit(R5_ReWrite, &dev->flags);
1962		}
1963		if (!rdev || !test_bit(In_sync, &rdev->flags)
1964		    || test_bit(R5_ReadError, &dev->flags)) {
1965			if ( failed < 2 )
1966				failed_num[failed] = i;
1967			failed++;
1968		} else
1969			set_bit(R5_Insync, &dev->flags);
1970	}
1971	rcu_read_unlock();
1972	PRINTK("locked=%d uptodate=%d to_read=%d"
1973	       " to_write=%d failed=%d failed_num=%d,%d\n",
1974	       locked, uptodate, to_read, to_write, failed,
1975	       failed_num[0], failed_num[1]);
1976	/* check if the array has lost >2 devices and, if so, some requests might
1977	 * need to be failed
1978	 */
1979	if (failed > 2 && to_read+to_write+written) {
1980		for (i=disks; i--; ) {
1981			int bitmap_end = 0;
1982
1983			if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1984				mdk_rdev_t *rdev;
1985				rcu_read_lock();
1986				rdev = rcu_dereference(conf->disks[i].rdev);
1987				if (rdev && test_bit(In_sync, &rdev->flags))
1988					/* multiple read failures in one stripe */
1989					md_error(conf->mddev, rdev);
1990				rcu_read_unlock();
1991			}
1992
1993			spin_lock_irq(&conf->device_lock);
1994			/* fail all writes first */
1995			bi = sh->dev[i].towrite;
1996			sh->dev[i].towrite = NULL;
1997			if (bi) { to_write--; bitmap_end = 1; }
1998
1999			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2000				wake_up(&conf->wait_for_overlap);
2001
2002			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2003				struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2004				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2005				if (--bi->bi_phys_segments == 0) {
2006					md_write_end(conf->mddev);
2007					bi->bi_next = return_bi;
2008					return_bi = bi;
2009				}
2010				bi = nextbi;
2011			}
2012			/* and fail all 'written' */
2013			bi = sh->dev[i].written;
2014			sh->dev[i].written = NULL;
2015			if (bi) bitmap_end = 1;
2016			while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2017				struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2018				clear_bit(BIO_UPTODATE, &bi->bi_flags);
2019				if (--bi->bi_phys_segments == 0) {
2020					md_write_end(conf->mddev);
2021					bi->bi_next = return_bi;
2022					return_bi = bi;
2023				}
2024				bi = bi2;
2025			}
2026
2027			/* fail any reads if this device is non-operational */
2028			if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2029			    test_bit(R5_ReadError, &sh->dev[i].flags)) {
2030				bi = sh->dev[i].toread;
2031				sh->dev[i].toread = NULL;
2032				if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2033					wake_up(&conf->wait_for_overlap);
2034				if (bi) to_read--;
2035				while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2036					struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2037					clear_bit(BIO_UPTODATE, &bi->bi_flags);
2038					if (--bi->bi_phys_segments == 0) {
2039						bi->bi_next = return_bi;
2040						return_bi = bi;
2041					}
2042					bi = nextbi;
2043				}
2044			}
2045			spin_unlock_irq(&conf->device_lock);
2046			if (bitmap_end)
2047				bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2048						STRIPE_SECTORS, 0, 0);
2049		}
2050	}
2051	if (failed > 2 && syncing) {
2052		md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2053		clear_bit(STRIPE_SYNCING, &sh->state);
2054		syncing = 0;
2055	}
2056
2057	/*
2058	 * might be able to return some write requests if the parity blocks
2059	 * are safe, or on a failed drive
2060	 */
2061	pdev = &sh->dev[pd_idx];
2062	p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2063		|| (failed >= 2 && failed_num[1] == pd_idx);
2064	qdev = &sh->dev[qd_idx];
2065	q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2066		|| (failed >= 2 && failed_num[1] == qd_idx);
2067
2068	if ( written &&
2069	     ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2070			     && !test_bit(R5_LOCKED, &pdev->flags)
2071			     && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2072	     ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2073			     && !test_bit(R5_LOCKED, &qdev->flags)
2074			     && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2075		/* any written block on an uptodate or failed drive can be
2076		 * returned.  Note that if we 'wrote' to a failed drive,
2077		 * it will be UPTODATE, but never LOCKED, so we don't need
2078		 * to test 'failed' directly.
2079		 */
2080		for (i=disks; i--; )
2081			if (sh->dev[i].written) {
2082				dev = &sh->dev[i];
2083				if (!test_bit(R5_LOCKED, &dev->flags) &&
2084				    test_bit(R5_UPTODATE, &dev->flags) ) {
2085					/* We can return any write requests */
2086					int bitmap_end = 0;
2087					struct bio *wbi, *wbi2;
2088					PRINTK("Return write for stripe %llu disc %d\n",
2089					       (unsigned long long)sh->sector, i);
2090					spin_lock_irq(&conf->device_lock);
2091					wbi = dev->written;
2092					dev->written = NULL;
2093					while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2094						wbi2 = r5_next_bio(wbi, dev->sector);
2095						if (--wbi->bi_phys_segments == 0) {
2096							md_write_end(conf->mddev);
2097							wbi->bi_next = return_bi;
2098							return_bi = wbi;
2099						}
2100						wbi = wbi2;
2101					}
2102					if (dev->towrite == NULL)
2103						bitmap_end = 1;
2104					spin_unlock_irq(&conf->device_lock);
2105					if (bitmap_end)
2106						bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2107								STRIPE_SECTORS,
2108								!test_bit(STRIPE_DEGRADED, &sh->state), 0);
2109				}
2110			}
2111	}
2112
2113	/* Now we might consider reading some blocks, either to check/generate
2114	 * parity, or to satisfy requests
2115	 * or to load a block that is being partially written.
2116	 */
2117	if (to_read || non_overwrite || (to_write && failed) ||
2118	    (syncing && (uptodate < disks)) || expanding) {
2119		for (i=disks; i--;) {
2120			dev = &sh->dev[i];
2121			if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2122			    (dev->toread ||
2123			     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2124			     syncing ||
2125			     expanding ||
2126			     (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2127			     (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2128				    )
2129				) {
2130				/* we would like to get this block, possibly
2131				 * by computing it, but we might not be able to
2132				 */
2133				if (uptodate == disks-1) {
2134					PRINTK("Computing stripe %llu block %d\n",
2135					       (unsigned long long)sh->sector, i);
2136					compute_block_1(sh, i, 0);
2137					uptodate++;
2138				} else if ( uptodate == disks-2 && failed >= 2 ) {
2139					/* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2140					int other;
2141					for (other=disks; other--;) {
2142						if ( other == i )
2143							continue;
2144						if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2145							break;
2146					}
2147					BUG_ON(other < 0);
2148					PRINTK("Computing stripe %llu blocks %d,%d\n",
2149					       (unsigned long long)sh->sector, i, other);
2150					compute_block_2(sh, i, other);
2151					uptodate += 2;
2152				} else if (test_bit(R5_Insync, &dev->flags)) {
2153					set_bit(R5_LOCKED, &dev->flags);
2154					set_bit(R5_Wantread, &dev->flags);
2155					locked++;
2156					PRINTK("Reading block %d (sync=%d)\n",
2157						i, syncing);
2158				}
2159			}
2160		}
2161		set_bit(STRIPE_HANDLE, &sh->state);
2162	}
2163
2164	/* now to consider writing and what else, if anything should be read */
2165	if (to_write) {
2166		int rcw=0, must_compute=0;
2167		for (i=disks ; i--;) {
2168			dev = &sh->dev[i];
2169			/* Would I have to read this buffer for reconstruct_write */
2170			if (!test_bit(R5_OVERWRITE, &dev->flags)
2171			    && i != pd_idx && i != qd_idx
2172			    && (!test_bit(R5_LOCKED, &dev->flags)
2173				    ) &&
2174			    !test_bit(R5_UPTODATE, &dev->flags)) {
2175				if (test_bit(R5_Insync, &dev->flags)) rcw++;
2176				else {
2177					PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2178					must_compute++;
2179				}
2180			}
2181		}
2182		PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2183		       (unsigned long long)sh->sector, rcw, must_compute);
2184		set_bit(STRIPE_HANDLE, &sh->state);
2185
2186		if (rcw > 0)
2187			/* want reconstruct write, but need to get some data */
2188			for (i=disks; i--;) {
2189				dev = &sh->dev[i];
2190				if (!test_bit(R5_OVERWRITE, &dev->flags)
2191				    && !(failed == 0 && (i == pd_idx || i == qd_idx))
2192				    && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2193				    test_bit(R5_Insync, &dev->flags)) {
2194					if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2195					{
2196						PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2197						       (unsigned long long)sh->sector, i);
2198						set_bit(R5_LOCKED, &dev->flags);
2199						set_bit(R5_Wantread, &dev->flags);
2200						locked++;
2201					} else {
2202						PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2203						       (unsigned long long)sh->sector, i);
2204						set_bit(STRIPE_DELAYED, &sh->state);
2205						set_bit(STRIPE_HANDLE, &sh->state);
2206					}
2207				}
2208			}
2209		/* now if nothing is locked, and if we have enough data, we can start a write request */
2210		if (locked == 0 && rcw == 0 &&
2211		    !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2212			if ( must_compute > 0 ) {
2213				/* We have failed blocks and need to compute them */
2214				switch ( failed ) {
2215				case 0:	BUG();
2216				case 1: compute_block_1(sh, failed_num[0], 0); break;
2217				case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2218				default: BUG();	/* This request should have been failed? */
2219				}
2220			}
2221
2222			PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2223			compute_parity6(sh, RECONSTRUCT_WRITE);
2224			/* now every locked buffer is ready to be written */
2225			for (i=disks; i--;)
2226				if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2227					PRINTK("Writing stripe %llu block %d\n",
2228					       (unsigned long long)sh->sector, i);
2229					locked++;
2230					set_bit(R5_Wantwrite, &sh->dev[i].flags);
2231				}
2232			/* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2233			set_bit(STRIPE_INSYNC, &sh->state);
2234
2235			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2236				atomic_dec(&conf->preread_active_stripes);
2237				if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2238					md_wakeup_thread(conf->mddev->thread);
2239			}
2240		}
2241	}
2242
2243	/* maybe we need to check and possibly fix the parity for this stripe
2244	 * Any reads will already have been scheduled, so we just see if enough data
2245	 * is available
2246	 */
2247	if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2248		int update_p = 0, update_q = 0;
2249		struct r5dev *dev;
2250
2251		set_bit(STRIPE_HANDLE, &sh->state);
2252
2253		BUG_ON(failed>2);
2254		BUG_ON(uptodate < disks);
2255		/* Want to check and possibly repair P and Q.
2256		 * However there could be one 'failed' device, in which
2257		 * case we can only check one of them, possibly using the
2258		 * other to generate missing data
2259		 */
2260
2261		/* If !tmp_page, we cannot do the calculations,
2262		 * but as we have set STRIPE_HANDLE, we will soon be called
2263		 * by stripe_handle with a tmp_page - just wait until then.
2264		 */
2265		if (tmp_page) {
2266			if (failed == q_failed) {
2267				/* The only possible failed device holds 'Q', so it makes
2268				 * sense to check P (If anything else were failed, we would
2269				 * have used P to recreate it).
2270				 */
2271				compute_block_1(sh, pd_idx, 1);
2272				if (!page_is_zero(sh->dev[pd_idx].page)) {
2273					compute_block_1(sh,pd_idx,0);
2274					update_p = 1;
2275				}
2276			}
2277			if (!q_failed && failed < 2) {
2278				/* q is not failed, and we didn't use it to generate
2279				 * anything, so it makes sense to check it
2280				 */
2281				memcpy(page_address(tmp_page),
2282				       page_address(sh->dev[qd_idx].page),
2283				       STRIPE_SIZE);
2284				compute_parity6(sh, UPDATE_PARITY);
2285				if (memcmp(page_address(tmp_page),
2286					   page_address(sh->dev[qd_idx].page),
2287					   STRIPE_SIZE)!= 0) {
2288					clear_bit(STRIPE_INSYNC, &sh->state);
2289					update_q = 1;
2290				}
2291			}
2292			if (update_p || update_q) {
2293				conf->mddev->resync_mismatches += STRIPE_SECTORS;
2294				if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2295					/* don't try to repair!! */
2296					update_p = update_q = 0;
2297			}
2298
2299			/* now write out any block on a failed drive,
2300			 * or P or Q if they need it
2301			 */
2302
2303			if (failed == 2) {
2304				dev = &sh->dev[failed_num[1]];
2305				locked++;
2306				set_bit(R5_LOCKED, &dev->flags);
2307				set_bit(R5_Wantwrite, &dev->flags);
2308			}
2309			if (failed >= 1) {
2310				dev = &sh->dev[failed_num[0]];
2311				locked++;
2312				set_bit(R5_LOCKED, &dev->flags);
2313				set_bit(R5_Wantwrite, &dev->flags);
2314			}
2315
2316			if (update_p) {
2317				dev = &sh->dev[pd_idx];
2318				locked ++;
2319				set_bit(R5_LOCKED, &dev->flags);
2320				set_bit(R5_Wantwrite, &dev->flags);
2321			}
2322			if (update_q) {
2323				dev = &sh->dev[qd_idx];
2324				locked++;
2325				set_bit(R5_LOCKED, &dev->flags);
2326				set_bit(R5_Wantwrite, &dev->flags);
2327			}
2328			clear_bit(STRIPE_DEGRADED, &sh->state);
2329
2330			set_bit(STRIPE_INSYNC, &sh->state);
2331		}
2332	}
2333
2334	if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2335		md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2336		clear_bit(STRIPE_SYNCING, &sh->state);
2337	}
2338
2339	/* If the failed drives are just a ReadError, then we might need
2340	 * to progress the repair/check process
2341	 */
2342	if (failed <= 2 && ! conf->mddev->ro)
2343		for (i=0; i<failed;i++) {
2344			dev = &sh->dev[failed_num[i]];
2345			if (test_bit(R5_ReadError, &dev->flags)
2346			    && !test_bit(R5_LOCKED, &dev->flags)
2347			    && test_bit(R5_UPTODATE, &dev->flags)
2348				) {
2349				if (!test_bit(R5_ReWrite, &dev->flags)) {
2350					set_bit(R5_Wantwrite, &dev->flags);
2351					set_bit(R5_ReWrite, &dev->flags);
2352					set_bit(R5_LOCKED, &dev->flags);
2353				} else {
2354					/* let's read it back */
2355					set_bit(R5_Wantread, &dev->flags);
2356					set_bit(R5_LOCKED, &dev->flags);
2357				}
2358			}
2359		}
2360
2361	if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2362		/* Need to write out all blocks after computing P&Q */
2363		sh->disks = conf->raid_disks;
2364		sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2365					     conf->raid_disks);
2366		compute_parity6(sh, RECONSTRUCT_WRITE);
2367		for (i = conf->raid_disks ; i-- ;  ) {
2368			set_bit(R5_LOCKED, &sh->dev[i].flags);
2369			locked++;
2370			set_bit(R5_Wantwrite, &sh->dev[i].flags);
2371		}
2372		clear_bit(STRIPE_EXPANDING, &sh->state);
2373	} else if (expanded) {
2374		clear_bit(STRIPE_EXPAND_READY, &sh->state);
2375		atomic_dec(&conf->reshape_stripes);
2376		wake_up(&conf->wait_for_overlap);
2377		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2378	}
2379
2380	if (expanding && locked == 0) {
2381		/* We have read all the blocks in this stripe and now we need to
2382		 * copy some of them into a target stripe for expand.
2383		 */
2384		clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2385		for (i = 0; i < sh->disks ; i++)
2386			if (i != pd_idx && i != qd_idx) {
2387				int dd_idx2, pd_idx2, j;
2388				struct stripe_head *sh2;
2389
2390				sector_t bn = compute_blocknr(sh, i);
2391				sector_t s = raid5_compute_sector(
2392					bn, conf->raid_disks,
2393					conf->raid_disks - conf->max_degraded,
2394					&dd_idx2, &pd_idx2, conf);
2395				sh2 = get_active_stripe(conf, s,
2396							conf->raid_disks,
2397						       pd_idx2, 1);
2398				if (sh2 == NULL)
2399					/* so for only the early blocks of
2400					 * this stripe have been requests.
2401					 * When later blocks get requests, we
2402					 * will try again
2403					 */
2404					continue;
2405				if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2406				    test_bit(R5_Expanded,
2407					     &sh2->dev[dd_idx2].flags)) {
2408					/* must have already done this block */
2409					release_stripe(sh2);
2410					continue;
2411				}
2412				memcpy(page_address(sh2->dev[dd_idx2].page),
2413				       page_address(sh->dev[i].page),
2414				       STRIPE_SIZE);
2415				set_bit(R5_Expanded, &sh2->dev[dd_idx2].flags);
2416				set_bit(R5_UPTODATE, &sh2->dev[dd_idx2].flags);
2417				for (j = 0 ; j < conf->raid_disks ; j++)
2418					if (j != sh2->pd_idx &&
2419					    j != raid6_next_disk(sh2->pd_idx,
2420							   sh2->disks) &&
2421					    !test_bit(R5_Expanded,
2422						      &sh2->dev[j].flags))
2423						break;
2424				if (j == conf->raid_disks) {
2425					set_bit(STRIPE_EXPAND_READY,
2426						&sh2->state);
2427					set_bit(STRIPE_HANDLE, &sh2->state);
2428				}
2429				release_stripe(sh2);
2430			}
2431	}
2432
2433	spin_unlock(&sh->lock);
2434
2435	while ((bi=return_bi)) {
2436		int bytes = bi->bi_size;
2437
2438		return_bi = bi->bi_next;
2439		bi->bi_next = NULL;
2440		bi->bi_size = 0;
2441		bi->bi_end_io(bi, bytes,
2442			      test_bit(BIO_UPTODATE, &bi->bi_flags)
2443			        ? 0 : -EIO);
2444	}
2445	for (i=disks; i-- ;) {
2446		int rw;
2447		struct bio *bi;
2448		mdk_rdev_t *rdev;
2449		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2450			rw = WRITE;
2451		else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2452			rw = READ;
2453		else
2454			continue;
2455
2456		bi = &sh->dev[i].req;
2457
2458		bi->bi_rw = rw;
2459		if (rw == WRITE)
2460			bi->bi_end_io = raid5_end_write_request;
2461		else
2462			bi->bi_end_io = raid5_end_read_request;
2463
2464		rcu_read_lock();
2465		rdev = rcu_dereference(conf->disks[i].rdev);
2466		if (rdev && test_bit(Faulty, &rdev->flags))
2467			rdev = NULL;
2468		if (rdev)
2469			atomic_inc(&rdev->nr_pending);
2470		rcu_read_unlock();
2471
2472		if (rdev) {
2473			if (syncing || expanding || expanded)
2474				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2475
2476			bi->bi_bdev = rdev->bdev;
2477			PRINTK("for %llu schedule op %ld on disc %d\n",
2478				(unsigned long long)sh->sector, bi->bi_rw, i);
2479			atomic_inc(&sh->count);
2480			bi->bi_sector = sh->sector + rdev->data_offset;
2481			bi->bi_flags = 1 << BIO_UPTODATE;
2482			bi->bi_vcnt = 1;
2483			bi->bi_max_vecs = 1;
2484			bi->bi_idx = 0;
2485			bi->bi_io_vec = &sh->dev[i].vec;
2486			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2487			bi->bi_io_vec[0].bv_offset = 0;
2488			bi->bi_size = STRIPE_SIZE;
2489			bi->bi_next = NULL;
2490			if (rw == WRITE &&
2491			    test_bit(R5_ReWrite, &sh->dev[i].flags))
2492				atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2493			generic_make_request(bi);
2494		} else {
2495			if (rw == WRITE)
2496				set_bit(STRIPE_DEGRADED, &sh->state);
2497			PRINTK("skip op %ld on disc %d for sector %llu\n",
2498				bi->bi_rw, i, (unsigned long long)sh->sector);
2499			clear_bit(R5_LOCKED, &sh->dev[i].flags);
2500			set_bit(STRIPE_HANDLE, &sh->state);
2501		}
2502	}
2503}
2504
2505static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2506{
2507	if (sh->raid_conf->level == 6)
2508		handle_stripe6(sh, tmp_page);
2509	else
2510		handle_stripe5(sh);
2511}
2512
2513
2514
2515static void raid5_activate_delayed(raid5_conf_t *conf)
2516{
2517	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2518		while (!list_empty(&conf->delayed_list)) {
2519			struct list_head *l = conf->delayed_list.next;
2520			struct stripe_head *sh;
2521			sh = list_entry(l, struct stripe_head, lru);
2522			list_del_init(l);
2523			clear_bit(STRIPE_DELAYED, &sh->state);
2524			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2525				atomic_inc(&conf->preread_active_stripes);
2526			list_add_tail(&sh->lru, &conf->handle_list);
2527		}
2528	}
2529}
2530
2531static void activate_bit_delay(raid5_conf_t *conf)
2532{
2533	/* device_lock is held */
2534	struct list_head head;
2535	list_add(&head, &conf->bitmap_list);
2536	list_del_init(&conf->bitmap_list);
2537	while (!list_empty(&head)) {
2538		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2539		list_del_init(&sh->lru);
2540		atomic_inc(&sh->count);
2541		__release_stripe(conf, sh);
2542	}
2543}
2544
2545static void unplug_slaves(mddev_t *mddev)
2546{
2547	raid5_conf_t *conf = mddev_to_conf(mddev);
2548	int i;
2549
2550	rcu_read_lock();
2551	for (i=0; i<mddev->raid_disks; i++) {
2552		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2553		if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2554			request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2555
2556			atomic_inc(&rdev->nr_pending);
2557			rcu_read_unlock();
2558
2559			if (r_queue->unplug_fn)
2560				r_queue->unplug_fn(r_queue);
2561
2562			rdev_dec_pending(rdev, mddev);
2563			rcu_read_lock();
2564		}
2565	}
2566	rcu_read_unlock();
2567}
2568
2569static void raid5_unplug_device(request_queue_t *q)
2570{
2571	mddev_t *mddev = q->queuedata;
2572	raid5_conf_t *conf = mddev_to_conf(mddev);
2573	unsigned long flags;
2574
2575	spin_lock_irqsave(&conf->device_lock, flags);
2576
2577	if (blk_remove_plug(q)) {
2578		conf->seq_flush++;
2579		raid5_activate_delayed(conf);
2580	}
2581	md_wakeup_thread(mddev->thread);
2582
2583	spin_unlock_irqrestore(&conf->device_lock, flags);
2584
2585	unplug_slaves(mddev);
2586}
2587
2588static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2589			     sector_t *error_sector)
2590{
2591	mddev_t *mddev = q->queuedata;
2592	raid5_conf_t *conf = mddev_to_conf(mddev);
2593	int i, ret = 0;
2594
2595	rcu_read_lock();
2596	for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2597		mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2598		if (rdev && !test_bit(Faulty, &rdev->flags)) {
2599			struct block_device *bdev = rdev->bdev;
2600			request_queue_t *r_queue = bdev_get_queue(bdev);
2601
2602			if (!r_queue->issue_flush_fn)
2603				ret = -EOPNOTSUPP;
2604			else {
2605				atomic_inc(&rdev->nr_pending);
2606				rcu_read_unlock();
2607				ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2608							      error_sector);
2609				rdev_dec_pending(rdev, mddev);
2610				rcu_read_lock();
2611			}
2612		}
2613	}
2614	rcu_read_unlock();
2615	return ret;
2616}
2617
2618static int raid5_congested(void *data, int bits)
2619{
2620	mddev_t *mddev = data;
2621	raid5_conf_t *conf = mddev_to_conf(mddev);
2622
2623	/* No difference between reads and writes.  Just check
2624	 * how busy the stripe_cache is
2625	 */
2626	if (conf->inactive_blocked)
2627		return 1;
2628	if (conf->quiesce)
2629		return 1;
2630	if (list_empty_careful(&conf->inactive_list))
2631		return 1;
2632
2633	return 0;
2634}
2635
2636/* We want read requests to align with chunks where possible,
2637 * but write requests don't need to.
2638 */
2639static int raid5_mergeable_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *biovec)
2640{
2641	mddev_t *mddev = q->queuedata;
2642	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
2643	int max;
2644	unsigned int chunk_sectors = mddev->chunk_size >> 9;
2645	unsigned int bio_sectors = bio->bi_size >> 9;
2646
2647	if (bio_data_dir(bio) == WRITE)
2648		return biovec->bv_len; /* always allow writes to be mergeable */
2649
2650	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
2651	if (max < 0) max = 0;
2652	if (max <= biovec->bv_len && bio_sectors == 0)
2653		return biovec->bv_len;
2654	else
2655		return max;
2656}
2657
2658
2659static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
2660{
2661	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
2662	unsigned int chunk_sectors = mddev->chunk_size >> 9;
2663	unsigned int bio_sectors = bio->bi_size >> 9;
2664
2665	return  chunk_sectors >=
2666		((sector & (chunk_sectors - 1)) + bio_sectors);
2667}
2668
2669/*
2670 *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
2671 *  later sampled by raid5d.
2672 */
2673static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
2674{
2675	unsigned long flags;
2676
2677	spin_lock_irqsave(&conf->device_lock, flags);
2678
2679	bi->bi_next = conf->retry_read_aligned_list;
2680	conf->retry_read_aligned_list = bi;
2681
2682	spin_unlock_irqrestore(&conf->device_lock, flags);
2683	md_wakeup_thread(conf->mddev->thread);
2684}
2685
2686
2687static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
2688{
2689	struct bio *bi;
2690
2691	bi = conf->retry_read_aligned;
2692	if (bi) {
2693		conf->retry_read_aligned = NULL;
2694		return bi;
2695	}
2696	bi = conf->retry_read_aligned_list;
2697	if(bi) {
2698		conf->retry_read_aligned_list = bi->bi_next;
2699		bi->bi_next = NULL;
2700		bi->bi_phys_segments = 1; /* biased count of active stripes */
2701		bi->bi_hw_segments = 0; /* count of processed stripes */
2702	}
2703
2704	return bi;
2705}
2706
2707
2708/*
2709 *  The "raid5_align_endio" should check if the read succeeded and if it
2710 *  did, call bio_endio on the original bio (having bio_put the new bio
2711 *  first).
2712 *  If the read failed..
2713 */
2714static int raid5_align_endio(struct bio *bi, unsigned int bytes, int error)
2715{
2716	struct bio* raid_bi  = bi->bi_private;
2717	mddev_t *mddev;
2718	raid5_conf_t *conf;
2719	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2720	mdk_rdev_t *rdev;
2721
2722	if (bi->bi_size)
2723		return 1;
2724	bio_put(bi);
2725
2726	mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
2727	conf = mddev_to_conf(mddev);
2728	rdev = (void*)raid_bi->bi_next;
2729	raid_bi->bi_next = NULL;
2730
2731	rdev_dec_pending(rdev, conf->mddev);
2732
2733	if (!error && uptodate) {
2734		bio_endio(raid_bi, bytes, 0);
2735		if (atomic_dec_and_test(&conf->active_aligned_reads))
2736			wake_up(&conf->wait_for_stripe);
2737		return 0;
2738	}
2739
2740
2741	PRINTK("raid5_align_endio : io error...handing IO for a retry\n");
2742
2743	add_bio_to_retry(raid_bi, conf);
2744	return 0;
2745}
2746
2747static int bio_fits_rdev(struct bio *bi)
2748{
2749	request_queue_t *q = bdev_get_queue(bi->bi_bdev);
2750
2751	if ((bi->bi_size>>9) > q->max_sectors)
2752		return 0;
2753	blk_recount_segments(q, bi);
2754	if (bi->bi_phys_segments > q->max_phys_segments ||
2755	    bi->bi_hw_segments > q->max_hw_segments)
2756		return 0;
2757
2758	if (q->merge_bvec_fn)
2759		/* it's too hard to apply the merge_bvec_fn at this stage,
2760		 * just just give up
2761		 */
2762		return 0;
2763
2764	return 1;
2765}
2766
2767
2768static int chunk_aligned_read(request_queue_t *q, struct bio * raid_bio)
2769{
2770	mddev_t *mddev = q->queuedata;
2771	raid5_conf_t *conf = mddev_to_conf(mddev);
2772	const unsigned int raid_disks = conf->raid_disks;
2773	const unsigned int data_disks = raid_disks - conf->max_degraded;
2774	unsigned int dd_idx, pd_idx;
2775	struct bio* align_bi;
2776	mdk_rdev_t *rdev;
2777
2778	if (!in_chunk_boundary(mddev, raid_bio)) {
2779		PRINTK("chunk_aligned_read : non aligned\n");
2780		return 0;
2781	}
2782	/*
2783 	 * use bio_clone to make a copy of the bio
2784	 */
2785	align_bi = bio_clone(raid_bio, GFP_NOIO);
2786	if (!align_bi)
2787		return 0;
2788	/*
2789	 *   set bi_end_io to a new function, and set bi_private to the
2790	 *     original bio.
2791	 */
2792	align_bi->bi_end_io  = raid5_align_endio;
2793	align_bi->bi_private = raid_bio;
2794	/*
2795	 *	compute position
2796	 */
2797	align_bi->bi_sector =  raid5_compute_sector(raid_bio->bi_sector,
2798					raid_disks,
2799					data_disks,
2800					&dd_idx,
2801					&pd_idx,
2802					conf);
2803
2804	rcu_read_lock();
2805	rdev = rcu_dereference(conf->disks[dd_idx].rdev);
2806	if (rdev && test_bit(In_sync, &rdev->flags)) {
2807		atomic_inc(&rdev->nr_pending);
2808		rcu_read_unlock();
2809		raid_bio->bi_next = (void*)rdev;
2810		align_bi->bi_bdev =  rdev->bdev;
2811		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
2812		align_bi->bi_sector += rdev->data_offset;
2813
2814		if (!bio_fits_rdev(align_bi)) {
2815			/* too big in some way */
2816			bio_put(align_bi);
2817			rdev_dec_pending(rdev, mddev);
2818			return 0;
2819		}
2820
2821		spin_lock_irq(&conf->device_lock);
2822		wait_event_lock_irq(conf->wait_for_stripe,
2823				    conf->quiesce == 0,
2824				    conf->device_lock, /* nothing */);
2825		atomic_inc(&conf->active_aligned_reads);
2826		spin_unlock_irq(&conf->device_lock);
2827
2828		generic_make_request(align_bi);
2829		return 1;
2830	} else {
2831		rcu_read_unlock();
2832		bio_put(align_bi);
2833		return 0;
2834	}
2835}
2836
2837
2838static int make_request(request_queue_t *q, struct bio * bi)
2839{
2840	mddev_t *mddev = q->queuedata;
2841	raid5_conf_t *conf = mddev_to_conf(mddev);
2842	unsigned int dd_idx, pd_idx;
2843	sector_t new_sector;
2844	sector_t logical_sector, last_sector;
2845	struct stripe_head *sh;
2846	const int rw = bio_data_dir(bi);
2847	int remaining;
2848
2849	if (unlikely(bio_barrier(bi))) {
2850		bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2851		return 0;
2852	}
2853
2854	md_write_start(mddev, bi);
2855
2856	disk_stat_inc(mddev->gendisk, ios[rw]);
2857	disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2858
2859	if (rw == READ &&
2860	     mddev->reshape_position == MaxSector &&
2861	     chunk_aligned_read(q,bi))
2862            	return 0;
2863
2864	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2865	last_sector = bi->bi_sector + (bi->bi_size>>9);
2866	bi->bi_next = NULL;
2867	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
2868
2869	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2870		DEFINE_WAIT(w);
2871		int disks, data_disks;
2872
2873	retry:
2874		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2875		if (likely(conf->expand_progress == MaxSector))
2876			disks = conf->raid_disks;
2877		else {
2878			/* spinlock is needed as expand_progress may be
2879			 * 64bit on a 32bit platform, and so it might be
2880			 * possible to see a half-updated value
2881			 * Ofcourse expand_progress could change after
2882			 * the lock is dropped, so once we get a reference
2883			 * to the stripe that we think it is, we will have
2884			 * to check again.
2885			 */
2886			spin_lock_irq(&conf->device_lock);
2887			disks = conf->raid_disks;
2888			if (logical_sector >= conf->expand_progress)
2889				disks = conf->previous_raid_disks;
2890			else {
2891				if (logical_sector >= conf->expand_lo) {
2892					spin_unlock_irq(&conf->device_lock);
2893					schedule();
2894					goto retry;
2895				}
2896			}
2897			spin_unlock_irq(&conf->device_lock);
2898		}
2899		data_disks = disks - conf->max_degraded;
2900
2901 		new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2902						  &dd_idx, &pd_idx, conf);
2903		PRINTK("raid5: make_request, sector %llu logical %llu\n",
2904			(unsigned long long)new_sector,
2905			(unsigned long long)logical_sector);
2906
2907		sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2908		if (sh) {
2909			if (unlikely(conf->expand_progress != MaxSector)) {
2910				/* expansion might have moved on while waiting for a
2911				 * stripe, so we must do the range check again.
2912				 * Expansion could still move past after this
2913				 * test, but as we are holding a reference to
2914				 * 'sh', we know that if that happens,
2915				 *  STRIPE_EXPANDING will get set and the expansion
2916				 * won't proceed until we finish with the stripe.
2917				 */
2918				int must_retry = 0;
2919				spin_lock_irq(&conf->device_lock);
2920				if (logical_sector <  conf->expand_progress &&
2921				    disks == conf->previous_raid_disks)
2922					/* mismatch, need to try again */
2923					must_retry = 1;
2924				spin_unlock_irq(&conf->device_lock);
2925				if (must_retry) {
2926					release_stripe(sh);
2927					goto retry;
2928				}
2929			}
2930			if (logical_sector >= mddev->suspend_lo &&
2931			    logical_sector < mddev->suspend_hi) {
2932				release_stripe(sh);
2933				schedule();
2934				goto retry;
2935			}
2936
2937			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2938			    !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2939				/* Stripe is busy expanding or
2940				 * add failed due to overlap.  Flush everything
2941				 * and wait a while
2942				 */
2943				raid5_unplug_device(mddev->queue);
2944				release_stripe(sh);
2945				schedule();
2946				goto retry;
2947			}
2948			finish_wait(&conf->wait_for_overlap, &w);
2949			handle_stripe(sh, NULL);
2950			release_stripe(sh);
2951		} else {
2952			/* cannot get stripe for read-ahead, just give-up */
2953			clear_bit(BIO_UPTODATE, &bi->bi_flags);
2954			finish_wait(&conf->wait_for_overlap, &w);
2955			break;
2956		}
2957
2958	}
2959	spin_lock_irq(&conf->device_lock);
2960	remaining = --bi->bi_phys_segments;
2961	spin_unlock_irq(&conf->device_lock);
2962	if (remaining == 0) {
2963		int bytes = bi->bi_size;
2964
2965		if ( rw == WRITE )
2966			md_write_end(mddev);
2967		bi->bi_size = 0;
2968		bi->bi_end_io(bi, bytes,
2969			      test_bit(BIO_UPTODATE, &bi->bi_flags)
2970			        ? 0 : -EIO);
2971	}
2972	return 0;
2973}
2974
2975static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2976{
2977	/* reshaping is quite different to recovery/resync so it is
2978	 * handled quite separately ... here.
2979	 *
2980	 * On each call to sync_request, we gather one chunk worth of
2981	 * destination stripes and flag them as expanding.
2982	 * Then we find all the source stripes and request reads.
2983	 * As the reads complete, handle_stripe will copy the data
2984	 * into the destination stripe and release that stripe.
2985	 */
2986	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2987	struct stripe_head *sh;
2988	int pd_idx;
2989	sector_t first_sector, last_sector;
2990	int raid_disks = conf->previous_raid_disks;
2991	int data_disks = raid_disks - conf->max_degraded;
2992	int new_data_disks = conf->raid_disks - conf->max_degraded;
2993	int i;
2994	int dd_idx;
2995	sector_t writepos, safepos, gap;
2996
2997	if (sector_nr == 0 &&
2998	    conf->expand_progress != 0) {
2999		/* restarting in the middle, skip the initial sectors */
3000		sector_nr = conf->expand_progress;
3001		sector_div(sector_nr, new_data_disks);
3002		*skipped = 1;
3003		return sector_nr;
3004	}
3005
3006	/* we update the metadata when there is more than 3Meg
3007	 * in the block range (that is rather arbitrary, should
3008	 * probably be time based) or when the data about to be
3009	 * copied would over-write the source of the data at
3010	 * the front of the range.
3011	 * i.e. one new_stripe forward from expand_progress new_maps
3012	 * to after where expand_lo old_maps to
3013	 */
3014	writepos = conf->expand_progress +
3015		conf->chunk_size/512*(new_data_disks);
3016	sector_div(writepos, new_data_disks);
3017	safepos = conf->expand_lo;
3018	sector_div(safepos, data_disks);
3019	gap = conf->expand_progress - conf->expand_lo;
3020
3021	if (writepos >= safepos ||
3022	    gap > (new_data_disks)*3000*2 /*3Meg*/) {
3023		/* Cannot proceed until we've updated the superblock... */
3024		wait_event(conf->wait_for_overlap,
3025			   atomic_read(&conf->reshape_stripes)==0);
3026		mddev->reshape_position = conf->expand_progress;
3027		set_bit(MD_CHANGE_DEVS, &mddev->flags);
3028		md_wakeup_thread(mddev->thread);
3029		wait_event(mddev->sb_wait, mddev->flags == 0 ||
3030			   kthread_should_stop());
3031		spin_lock_irq(&conf->device_lock);
3032		conf->expand_lo = mddev->reshape_position;
3033		spin_unlock_irq(&conf->device_lock);
3034		wake_up(&conf->wait_for_overlap);
3035	}
3036
3037	for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3038		int j;
3039		int skipped = 0;
3040		pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3041		sh = get_active_stripe(conf, sector_nr+i,
3042				       conf->raid_disks, pd_idx, 0);
3043		set_bit(STRIPE_EXPANDING, &sh->state);
3044		atomic_inc(&conf->reshape_stripes);
3045		/* If any of this stripe is beyond the end of the old
3046		 * array, then we need to zero those blocks
3047		 */
3048		for (j=sh->disks; j--;) {
3049			sector_t s;
3050			if (j == sh->pd_idx)
3051				continue;
3052			if (conf->level == 6 &&
3053			    j == raid6_next_disk(sh->pd_idx, sh->disks))
3054				continue;
3055			s = compute_blocknr(sh, j);
3056			if (s < (mddev->array_size<<1)) {
3057				skipped = 1;
3058				continue;
3059			}
3060			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3061			set_bit(R5_Expanded, &sh->dev[j].flags);
3062			set_bit(R5_UPTODATE, &sh->dev[j].flags);
3063		}
3064		if (!skipped) {
3065			set_bit(STRIPE_EXPAND_READY, &sh->state);
3066			set_bit(STRIPE_HANDLE, &sh->state);
3067		}
3068		release_stripe(sh);
3069	}
3070	spin_lock_irq(&conf->device_lock);
3071	conf->expand_progress = (sector_nr + i) * new_data_disks;
3072	spin_unlock_irq(&conf->device_lock);
3073	/* Ok, those stripe are ready. We can start scheduling
3074	 * reads on the source stripes.
3075	 * The source stripes are determined by mapping the first and last
3076	 * block on the destination stripes.
3077	 */
3078	first_sector =
3079		raid5_compute_sector(sector_nr*(new_data_disks),
3080				     raid_disks, data_disks,
3081				     &dd_idx, &pd_idx, conf);
3082	last_sector =
3083		raid5_compute_sector((sector_nr+conf->chunk_size/512)
3084				     *(new_data_disks) -1,
3085				     raid_disks, data_disks,
3086				     &dd_idx, &pd_idx, conf);
3087	if (last_sector >= (mddev->size<<1))
3088		last_sector = (mddev->size<<1)-1;
3089	while (first_sector <= last_sector) {
3090		pd_idx = stripe_to_pdidx(first_sector, conf,
3091					 conf->previous_raid_disks);
3092		sh = get_active_stripe(conf, first_sector,
3093				       conf->previous_raid_disks, pd_idx, 0);
3094		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3095		set_bit(STRIPE_HANDLE, &sh->state);
3096		release_stripe(sh);
3097		first_sector += STRIPE_SECTORS;
3098	}
3099	return conf->chunk_size>>9;
3100}
3101
3102static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3103{
3104	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3105	struct stripe_head *sh;
3106	int pd_idx;
3107	int raid_disks = conf->raid_disks;
3108	sector_t max_sector = mddev->size << 1;
3109	int sync_blocks;
3110	int still_degraded = 0;
3111	int i;
3112
3113	if (sector_nr >= max_sector) {
3114		/* just being told to finish up .. nothing much to do */
3115		unplug_slaves(mddev);
3116		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3117			end_reshape(conf);
3118			return 0;
3119		}
3120
3121		if (mddev->curr_resync < max_sector) /* aborted */
3122			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3123					&sync_blocks, 1);
3124		else /* completed sync */
3125			conf->fullsync = 0;
3126		bitmap_close_sync(mddev->bitmap);
3127
3128		return 0;
3129	}
3130
3131	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3132		return reshape_request(mddev, sector_nr, skipped);
3133
3134	/* if there is too many failed drives and we are trying
3135	 * to resync, then assert that we are finished, because there is
3136	 * nothing we can do.
3137	 */
3138	if (mddev->degraded >= conf->max_degraded &&
3139	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3140		sector_t rv = (mddev->size << 1) - sector_nr;
3141		*skipped = 1;
3142		return rv;
3143	}
3144	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3145	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3146	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3147		/* we can skip this block, and probably more */
3148		sync_blocks /= STRIPE_SECTORS;
3149		*skipped = 1;
3150		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3151	}
3152
3153	pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3154	sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3155	if (sh == NULL) {
3156		sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3157		/* make sure we don't swamp the stripe cache if someone else
3158		 * is trying to get access
3159		 */
3160		schedule_timeout_uninterruptible(1);
3161	}
3162	/* Need to check if array will still be degraded after recovery/resync
3163	 * We don't need to check the 'failed' flag as when that gets set,
3164	 * recovery aborts.
3165	 */
3166	for (i=0; i<mddev->raid_disks; i++)
3167		if (conf->disks[i].rdev == NULL)
3168			still_degraded = 1;
3169
3170	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3171
3172	spin_lock(&sh->lock);
3173	set_bit(STRIPE_SYNCING, &sh->state);
3174	clear_bit(STRIPE_INSYNC, &sh->state);
3175	spin_unlock(&sh->lock);
3176
3177	handle_stripe(sh, NULL);
3178	release_stripe(sh);
3179
3180	return STRIPE_SECTORS;
3181}
3182
3183static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3184{
3185	/* We may not be able to submit a whole bio at once as there
3186	 * may not be enough stripe_heads available.
3187	 * We cannot pre-allocate enough stripe_heads as we may need
3188	 * more than exist in the cache (if we allow ever large chunks).
3189	 * So we do one stripe head at a time and record in
3190	 * ->bi_hw_segments how many have been done.
3191	 *
3192	 * We *know* that this entire raid_bio is in one chunk, so
3193	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3194	 */
3195	struct stripe_head *sh;
3196	int dd_idx, pd_idx;
3197	sector_t sector, logical_sector, last_sector;
3198	int scnt = 0;
3199	int remaining;
3200	int handled = 0;
3201
3202	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3203	sector = raid5_compute_sector(	logical_sector,
3204					conf->raid_disks,
3205					conf->raid_disks - conf->max_degraded,
3206					&dd_idx,
3207					&pd_idx,
3208					conf);
3209	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3210
3211	for (; logical_sector < last_sector;
3212	     logical_sector += STRIPE_SECTORS,
3213		     sector += STRIPE_SECTORS,
3214		     scnt++) {
3215
3216		if (scnt < raid_bio->bi_hw_segments)
3217			/* already done this stripe */
3218			continue;
3219
3220		sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3221
3222		if (!sh) {
3223			/* failed to get a stripe - must wait */
3224			raid_bio->bi_hw_segments = scnt;
3225			conf->retry_read_aligned = raid_bio;
3226			return handled;
3227		}
3228
3229		set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3230		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3231			release_stripe(sh);
3232			raid_bio->bi_hw_segments = scnt;
3233			conf->retry_read_aligned = raid_bio;
3234			return handled;
3235		}
3236
3237		handle_stripe(sh, NULL);
3238		release_stripe(sh);
3239		handled++;
3240	}
3241	spin_lock_irq(&conf->device_lock);
3242	remaining = --raid_bio->bi_phys_segments;
3243	spin_unlock_irq(&conf->device_lock);
3244	if (remaining == 0) {
3245		int bytes = raid_bio->bi_size;
3246
3247		raid_bio->bi_size = 0;
3248		raid_bio->bi_end_io(raid_bio, bytes,
3249			      test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3250			        ? 0 : -EIO);
3251	}
3252	if (atomic_dec_and_test(&conf->active_aligned_reads))
3253		wake_up(&conf->wait_for_stripe);
3254	return handled;
3255}
3256
3257
3258
3259/*
3260 * This is our raid5 kernel thread.
3261 *
3262 * We scan the hash table for stripes which can be handled now.
3263 * During the scan, completed stripes are saved for us by the interrupt
3264 * handler, so that they will not have to wait for our next wakeup.
3265 */
3266static void raid5d (mddev_t *mddev)
3267{
3268	struct stripe_head *sh;
3269	raid5_conf_t *conf = mddev_to_conf(mddev);
3270	int handled;
3271
3272	PRINTK("+++ raid5d active\n");
3273
3274	md_check_recovery(mddev);
3275
3276	handled = 0;
3277	spin_lock_irq(&conf->device_lock);
3278	while (1) {
3279		struct list_head *first;
3280		struct bio *bio;
3281
3282		if (conf->seq_flush != conf->seq_write) {
3283			int seq = conf->seq_flush;
3284			spin_unlock_irq(&conf->device_lock);
3285			bitmap_unplug(mddev->bitmap);
3286			spin_lock_irq(&conf->device_lock);
3287			conf->seq_write = seq;
3288			activate_bit_delay(conf);
3289		}
3290
3291		if (list_empty(&conf->handle_list) &&
3292		    atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3293		    !blk_queue_plugged(mddev->queue) &&
3294		    !list_empty(&conf->delayed_list))
3295			raid5_activate_delayed(conf);
3296
3297		while ((bio = remove_bio_from_retry(conf))) {
3298			int ok;
3299			spin_unlock_irq(&conf->device_lock);
3300			ok = retry_aligned_read(conf, bio);
3301			spin_lock_irq(&conf->device_lock);
3302			if (!ok)
3303				break;
3304			handled++;
3305		}
3306
3307		if (list_empty(&conf->handle_list))
3308			break;
3309
3310		first = conf->handle_list.next;
3311		sh = list_entry(first, struct stripe_head, lru);
3312
3313		list_del_init(first);
3314		atomic_inc(&sh->count);
3315		BUG_ON(atomic_read(&sh->count)!= 1);
3316		spin_unlock_irq(&conf->device_lock);
3317
3318		handled++;
3319		handle_stripe(sh, conf->spare_page);
3320		release_stripe(sh);
3321
3322		spin_lock_irq(&conf->device_lock);
3323	}
3324	PRINTK("%d stripes handled\n", handled);
3325
3326	spin_unlock_irq(&conf->device_lock);
3327
3328	unplug_slaves(mddev);
3329
3330	PRINTK("--- raid5d inactive\n");
3331}
3332
3333static ssize_t
3334raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3335{
3336	raid5_conf_t *conf = mddev_to_conf(mddev);
3337	if (conf)
3338		return sprintf(page, "%d\n", conf->max_nr_stripes);
3339	else
3340		return 0;
3341}
3342
3343static ssize_t
3344raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3345{
3346	raid5_conf_t *conf = mddev_to_conf(mddev);
3347	char *end;
3348	int new;
3349	if (len >= PAGE_SIZE)
3350		return -EINVAL;
3351	if (!conf)
3352		return -ENODEV;
3353
3354	new = simple_strtoul(page, &end, 10);
3355	if (!*page || (*end && *end != '\n') )
3356		return -EINVAL;
3357	if (new <= 16 || new > 32768)
3358		return -EINVAL;
3359	while (new < conf->max_nr_stripes) {
3360		if (drop_one_stripe(conf))
3361			conf->max_nr_stripes--;
3362		else
3363			break;
3364	}
3365	md_allow_write(mddev);
3366	while (new > conf->max_nr_stripes) {
3367		if (grow_one_stripe(conf))
3368			conf->max_nr_stripes++;
3369		else break;
3370	}
3371	return len;
3372}
3373
3374static struct md_sysfs_entry
3375raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3376				raid5_show_stripe_cache_size,
3377				raid5_store_stripe_cache_size);
3378
3379static ssize_t
3380stripe_cache_active_show(mddev_t *mddev, char *page)
3381{
3382	raid5_conf_t *conf = mddev_to_conf(mddev);
3383	if (conf)
3384		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3385	else
3386		return 0;
3387}
3388
3389static struct md_sysfs_entry
3390raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3391
3392static struct attribute *raid5_attrs[] =  {
3393	&raid5_stripecache_size.attr,
3394	&raid5_stripecache_active.attr,
3395	NULL,
3396};
3397static struct attribute_group raid5_attrs_group = {
3398	.name = NULL,
3399	.attrs = raid5_attrs,
3400};
3401
3402static int run(mddev_t *mddev)
3403{
3404	raid5_conf_t *conf;
3405	int raid_disk, memory;
3406	mdk_rdev_t *rdev;
3407	struct disk_info *disk;
3408	struct list_head *tmp;
3409	int working_disks = 0;
3410
3411	if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3412		printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3413		       mdname(mddev), mddev->level);
3414		return -EIO;
3415	}
3416
3417	if (mddev->reshape_position != MaxSector) {
3418		/* Check that we can continue the reshape.
3419		 * Currently only disks can change, it must
3420		 * increase, and we must be past the point where
3421		 * a stripe over-writes itself
3422		 */
3423		sector_t here_new, here_old;
3424		int old_disks;
3425		int max_degraded = (mddev->level == 5 ? 1 : 2);
3426
3427		if (mddev->new_level != mddev->level ||
3428		    mddev->new_layout != mddev->layout ||
3429		    mddev->new_chunk != mddev->chunk_size) {
3430			printk(KERN_ERR "raid5: %s: unsupported reshape "
3431			       "required - aborting.\n",
3432			       mdname(mddev));
3433			return -EINVAL;
3434		}
3435		if (mddev->delta_disks <= 0) {
3436			printk(KERN_ERR "raid5: %s: unsupported reshape "
3437			       "(reduce disks) required - aborting.\n",
3438			       mdname(mddev));
3439			return -EINVAL;
3440		}
3441		old_disks = mddev->raid_disks - mddev->delta_disks;
3442		/* reshape_position must be on a new-stripe boundary, and one
3443		 * further up in new geometry must map after here in old
3444		 * geometry.
3445		 */
3446		here_new = mddev->reshape_position;
3447		if (sector_div(here_new, (mddev->chunk_size>>9)*
3448			       (mddev->raid_disks - max_degraded))) {
3449			printk(KERN_ERR "raid5: reshape_position not "
3450			       "on a stripe boundary\n");
3451			return -EINVAL;
3452		}
3453		/* here_new is the stripe we will write to */
3454		here_old = mddev->reshape_position;
3455		sector_div(here_old, (mddev->chunk_size>>9)*
3456			   (old_disks-max_degraded));
3457		/* here_old is the first stripe that we might need to read
3458		 * from */
3459		if (here_new >= here_old) {
3460			/* Reading from the same stripe as writing to - bad */
3461			printk(KERN_ERR "raid5: reshape_position too early for "
3462			       "auto-recovery - aborting.\n");
3463			return -EINVAL;
3464		}
3465		printk(KERN_INFO "raid5: reshape will continue\n");
3466		/* OK, we should be able to continue; */
3467	}
3468
3469
3470	mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3471	if ((conf = mddev->private) == NULL)
3472		goto abort;
3473	if (mddev->reshape_position == MaxSector) {
3474		conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3475	} else {
3476		conf->raid_disks = mddev->raid_disks;
3477		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3478	}
3479
3480	conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3481			      GFP_KERNEL);
3482	if (!conf->disks)
3483		goto abort;
3484
3485	conf->mddev = mddev;
3486
3487	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3488		goto abort;
3489
3490	if (mddev->level == 6) {
3491		conf->spare_page = alloc_page(GFP_KERNEL);
3492		if (!conf->spare_page)
3493			goto abort;
3494	}
3495	spin_lock_init(&conf->device_lock);
3496	init_waitqueue_head(&conf->wait_for_stripe);
3497	init_waitqueue_head(&conf->wait_for_overlap);
3498	INIT_LIST_HEAD(&conf->handle_list);
3499	INIT_LIST_HEAD(&conf->delayed_list);
3500	INIT_LIST_HEAD(&conf->bitmap_list);
3501	INIT_LIST_HEAD(&conf->inactive_list);
3502	atomic_set(&conf->active_stripes, 0);
3503	atomic_set(&conf->preread_active_stripes, 0);
3504	atomic_set(&conf->active_aligned_reads, 0);
3505
3506	PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3507
3508	ITERATE_RDEV(mddev,rdev,tmp) {
3509		raid_disk = rdev->raid_disk;
3510		if (raid_disk >= conf->raid_disks
3511		    || raid_disk < 0)
3512			continue;
3513		disk = conf->disks + raid_disk;
3514
3515		disk->rdev = rdev;
3516
3517		if (test_bit(In_sync, &rdev->flags)) {
3518			char b[BDEVNAME_SIZE];
3519			printk(KERN_INFO "raid5: device %s operational as raid"
3520				" disk %d\n", bdevname(rdev->bdev,b),
3521				raid_disk);
3522			working_disks++;
3523		}
3524	}
3525
3526	/*
3527	 * 0 for a fully functional array, 1 or 2 for a degraded array.
3528	 */
3529	mddev->degraded = conf->raid_disks - working_disks;
3530	conf->mddev = mddev;
3531	conf->chunk_size = mddev->chunk_size;
3532	conf->level = mddev->level;
3533	if (conf->level == 6)
3534		conf->max_degraded = 2;
3535	else
3536		conf->max_degraded = 1;
3537	conf->algorithm = mddev->layout;
3538	conf->max_nr_stripes = NR_STRIPES;
3539	conf->expand_progress = mddev->reshape_position;
3540
3541	/* device size must be a multiple of chunk size */
3542	mddev->size &= ~(mddev->chunk_size/1024 -1);
3543	mddev->resync_max_sectors = mddev->size << 1;
3544
3545	if (conf->level == 6 && conf->raid_disks < 4) {
3546		printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3547		       mdname(mddev), conf->raid_disks);
3548		goto abort;
3549	}
3550	if (!conf->chunk_size || conf->chunk_size % 4) {
3551		printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3552			conf->chunk_size, mdname(mddev));
3553		goto abort;
3554	}
3555	if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3556		printk(KERN_ERR
3557			"raid5: unsupported parity algorithm %d for %s\n",
3558			conf->algorithm, mdname(mddev));
3559		goto abort;
3560	}
3561	if (mddev->degraded > conf->max_degraded) {
3562		printk(KERN_ERR "raid5: not enough operational devices for %s"
3563			" (%d/%d failed)\n",
3564			mdname(mddev), mddev->degraded, conf->raid_disks);
3565		goto abort;
3566	}
3567
3568	if (mddev->degraded > 0 &&
3569	    mddev->recovery_cp != MaxSector) {
3570		if (mddev->ok_start_degraded)
3571			printk(KERN_WARNING
3572			       "raid5: starting dirty degraded array: %s"
3573			       "- data corruption possible.\n",
3574			       mdname(mddev));
3575		else {
3576			printk(KERN_ERR
3577			       "raid5: cannot start dirty degraded array for %s\n",
3578			       mdname(mddev));
3579			goto abort;
3580		}
3581	}
3582
3583	{
3584		mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3585		if (!mddev->thread) {
3586			printk(KERN_ERR
3587				"raid5: couldn't allocate thread for %s\n",
3588				mdname(mddev));
3589			goto abort;
3590		}
3591	}
3592	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3593		 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3594	if (grow_stripes(conf, conf->max_nr_stripes)) {
3595		printk(KERN_ERR
3596			"raid5: couldn't allocate %dkB for buffers\n", memory);
3597		shrink_stripes(conf);
3598		md_unregister_thread(mddev->thread);
3599		goto abort;
3600	} else
3601		printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3602			memory, mdname(mddev));
3603
3604	if (mddev->degraded == 0)
3605		printk("raid5: raid level %d set %s active with %d out of %d"
3606			" devices, algorithm %d\n", conf->level, mdname(mddev),
3607			mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3608			conf->algorithm);
3609	else
3610		printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3611			" out of %d devices, algorithm %d\n", conf->level,
3612			mdname(mddev), mddev->raid_disks - mddev->degraded,
3613			mddev->raid_disks, conf->algorithm);
3614
3615	print_raid5_conf(conf);
3616
3617	if (conf->expand_progress != MaxSector) {
3618		printk("...ok start reshape thread\n");
3619		conf->expand_lo = conf->expand_progress;
3620		atomic_set(&conf->reshape_stripes, 0);
3621		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3622		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3623		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3624		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3625		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3626							"%s_reshape");
3627	}
3628
3629	/* read-ahead size must cover two whole stripes, which is
3630	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3631	 */
3632	{
3633		int data_disks = conf->previous_raid_disks - conf->max_degraded;
3634		int stripe = data_disks *
3635			(mddev->chunk_size / PAGE_SIZE);
3636		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3637			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3638	}
3639
3640	/* Ok, everything is just fine now */
3641	if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
3642		printk(KERN_WARNING
3643		       "raid5: failed to create sysfs attributes for %s\n",
3644		       mdname(mddev));
3645
3646	mddev->queue->unplug_fn = raid5_unplug_device;
3647	mddev->queue->issue_flush_fn = raid5_issue_flush;
3648	mddev->queue->backing_dev_info.congested_data = mddev;
3649	mddev->queue->backing_dev_info.congested_fn = raid5_congested;
3650
3651	mddev->array_size =  mddev->size * (conf->previous_raid_disks -
3652					    conf->max_degraded);
3653
3654	blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
3655
3656	return 0;
3657abort:
3658	if (conf) {
3659		print_raid5_conf(conf);
3660		safe_put_page(conf->spare_page);
3661		kfree(conf->disks);
3662		kfree(conf->stripe_hashtbl);
3663		kfree(conf);
3664	}
3665	mddev->private = NULL;
3666	printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3667	return -EIO;
3668}
3669
3670
3671
3672static int stop(mddev_t *mddev)
3673{
3674	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3675
3676	md_unregister_thread(mddev->thread);
3677	mddev->thread = NULL;
3678	shrink_stripes(conf);
3679	kfree(conf->stripe_hashtbl);
3680	mddev->queue->backing_dev_info.congested_fn = NULL;
3681	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3682	sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3683	kfree(conf->disks);
3684	kfree(conf);
3685	mddev->private = NULL;
3686	return 0;
3687}
3688
3689#if RAID5_DEBUG
3690static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3691{
3692	int i;
3693
3694	seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3695		   (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3696	seq_printf(seq, "sh %llu,  count %d.\n",
3697		   (unsigned long long)sh->sector, atomic_read(&sh->count));
3698	seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3699	for (i = 0; i < sh->disks; i++) {
3700		seq_printf(seq, "(cache%d: %p %ld) ",
3701			   i, sh->dev[i].page, sh->dev[i].flags);
3702	}
3703	seq_printf(seq, "\n");
3704}
3705
3706static void printall (struct seq_file *seq, raid5_conf_t *conf)
3707{
3708	struct stripe_head *sh;
3709	struct hlist_node *hn;
3710	int i;
3711
3712	spin_lock_irq(&conf->device_lock);
3713	for (i = 0; i < NR_HASH; i++) {
3714		hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3715			if (sh->raid_conf != conf)
3716				continue;
3717			print_sh(seq, sh);
3718		}
3719	}
3720	spin_unlock_irq(&conf->device_lock);
3721}
3722#endif
3723
3724static void status (struct seq_file *seq, mddev_t *mddev)
3725{
3726	raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3727	int i;
3728
3729	seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3730	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
3731	for (i = 0; i < conf->raid_disks; i++)
3732		seq_printf (seq, "%s",
3733			       conf->disks[i].rdev &&
3734			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3735	seq_printf (seq, "]");
3736#if RAID5_DEBUG
3737	seq_printf (seq, "\n");
3738	printall(seq, conf);
3739#endif
3740}
3741
3742static void print_raid5_conf (raid5_conf_t *conf)
3743{
3744	int i;
3745	struct disk_info *tmp;
3746
3747	printk("RAID5 conf printout:\n");
3748	if (!conf) {
3749		printk("(conf==NULL)\n");
3750		return;
3751	}
3752	printk(" --- rd:%d wd:%d\n", conf->raid_disks,
3753		 conf->raid_disks - conf->mddev->degraded);
3754
3755	for (i = 0; i < conf->raid_disks; i++) {
3756		char b[BDEVNAME_SIZE];
3757		tmp = conf->disks + i;
3758		if (tmp->rdev)
3759		printk(" disk %d, o:%d, dev:%s\n",
3760			i, !test_bit(Faulty, &tmp->rdev->flags),
3761			bdevname(tmp->rdev->bdev,b));
3762	}
3763}
3764
3765static int raid5_spare_active(mddev_t *mddev)
3766{
3767	int i;
3768	raid5_conf_t *conf = mddev->private;
3769	struct disk_info *tmp;
3770
3771	for (i = 0; i < conf->raid_disks; i++) {
3772		tmp = conf->disks + i;
3773		if (tmp->rdev
3774		    && !test_bit(Faulty, &tmp->rdev->flags)
3775		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
3776			unsigned long flags;
3777			spin_lock_irqsave(&conf->device_lock, flags);
3778			mddev->degraded--;
3779			spin_unlock_irqrestore(&conf->device_lock, flags);
3780		}
3781	}
3782	print_raid5_conf(conf);
3783	return 0;
3784}
3785
3786static int raid5_remove_disk(mddev_t *mddev, int number)
3787{
3788	raid5_conf_t *conf = mddev->private;
3789	int err = 0;
3790	mdk_rdev_t *rdev;
3791	struct disk_info *p = conf->disks + number;
3792
3793	print_raid5_conf(conf);
3794	rdev = p->rdev;
3795	if (rdev) {
3796		if (test_bit(In_sync, &rdev->flags) ||
3797		    atomic_read(&rdev->nr_pending)) {
3798			err = -EBUSY;
3799			goto abort;
3800		}
3801		p->rdev = NULL;
3802		synchronize_rcu();
3803		if (atomic_read(&rdev->nr_pending)) {
3804			/* lost the race, try later */
3805			err = -EBUSY;
3806			p->rdev = rdev;
3807		}
3808	}
3809abort:
3810
3811	print_raid5_conf(conf);
3812	return err;
3813}
3814
3815static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3816{
3817	raid5_conf_t *conf = mddev->private;
3818	int found = 0;
3819	int disk;
3820	struct disk_info *p;
3821
3822	if (mddev->degraded > conf->max_degraded)
3823		/* no point adding a device */
3824		return 0;
3825
3826	/*
3827	 * find the disk ... but prefer rdev->saved_raid_disk
3828	 * if possible.
3829	 */
3830	if (rdev->saved_raid_disk >= 0 &&
3831	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
3832		disk = rdev->saved_raid_disk;
3833	else
3834		disk = 0;
3835	for ( ; disk < conf->raid_disks; disk++)
3836		if ((p=conf->disks + disk)->rdev == NULL) {
3837			clear_bit(In_sync, &rdev->flags);
3838			rdev->raid_disk = disk;
3839			found = 1;
3840			if (rdev->saved_raid_disk != disk)
3841				conf->fullsync = 1;
3842			rcu_assign_pointer(p->rdev, rdev);
3843			break;
3844		}
3845	print_raid5_conf(conf);
3846	return found;
3847}
3848
3849static int raid5_resize(mddev_t *mddev, sector_t sectors)
3850{
3851	/* no resync is happening, and there is enough space
3852	 * on all devices, so we can resize.
3853	 * We need to make sure resync covers any new space.
3854	 * If the array is shrinking we should possibly wait until
3855	 * any io in the removed space completes, but it hardly seems
3856	 * worth it.
3857	 */
3858	raid5_conf_t *conf = mddev_to_conf(mddev);
3859
3860	sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3861	mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3862	set_capacity(mddev->gendisk, mddev->array_size << 1);
3863	mddev->changed = 1;
3864	if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
3865		mddev->recovery_cp = mddev->size << 1;
3866		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3867	}
3868	mddev->size = sectors /2;
3869	mddev->resync_max_sectors = sectors;
3870	return 0;
3871}
3872
3873#ifdef CONFIG_MD_RAID5_RESHAPE
3874static int raid5_check_reshape(mddev_t *mddev)
3875{
3876	raid5_conf_t *conf = mddev_to_conf(mddev);
3877	int err;
3878
3879	if (mddev->delta_disks < 0 ||
3880	    mddev->new_level != mddev->level)
3881		return -EINVAL; /* Cannot shrink array or change level yet */
3882	if (mddev->delta_disks == 0)
3883		return 0; /* nothing to do */
3884
3885	/* Can only proceed if there are plenty of stripe_heads.
3886	 * We need a minimum of one full stripe,, and for sensible progress
3887	 * it is best to have about 4 times that.
3888	 * If we require 4 times, then the default 256 4K stripe_heads will
3889	 * allow for chunk sizes up to 256K, which is probably OK.
3890	 * If the chunk size is greater, user-space should request more
3891	 * stripe_heads first.
3892	 */
3893	if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3894	    (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3895		printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
3896		       (mddev->chunk_size / STRIPE_SIZE)*4);
3897		return -ENOSPC;
3898	}
3899
3900	err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3901	if (err)
3902		return err;
3903
3904	if (mddev->degraded > conf->max_degraded)
3905		return -EINVAL;
3906	/* looks like we might be able to manage this */
3907	return 0;
3908}
3909
3910static int raid5_start_reshape(mddev_t *mddev)
3911{
3912	raid5_conf_t *conf = mddev_to_conf(mddev);
3913	mdk_rdev_t *rdev;
3914	struct list_head *rtmp;
3915	int spares = 0;
3916	int added_devices = 0;
3917	unsigned long flags;
3918
3919	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3920		return -EBUSY;
3921
3922	ITERATE_RDEV(mddev, rdev, rtmp)
3923		if (rdev->raid_disk < 0 &&
3924		    !test_bit(Faulty, &rdev->flags))
3925			spares++;
3926
3927	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
3928		/* Not enough devices even to make a degraded array
3929		 * of that size
3930		 */
3931		return -EINVAL;
3932
3933	atomic_set(&conf->reshape_stripes, 0);
3934	spin_lock_irq(&conf->device_lock);
3935	conf->previous_raid_disks = conf->raid_disks;
3936	conf->raid_disks += mddev->delta_disks;
3937	conf->expand_progress = 0;
3938	conf->expand_lo = 0;
3939	spin_unlock_irq(&conf->device_lock);
3940
3941	/* Add some new drives, as many as will fit.
3942	 * We know there are enough to make the newly sized array work.
3943	 */
3944	ITERATE_RDEV(mddev, rdev, rtmp)
3945		if (rdev->raid_disk < 0 &&
3946		    !test_bit(Faulty, &rdev->flags)) {
3947			if (raid5_add_disk(mddev, rdev)) {
3948				char nm[20];
3949				set_bit(In_sync, &rdev->flags);
3950				added_devices++;
3951				rdev->recovery_offset = 0;
3952				sprintf(nm, "rd%d", rdev->raid_disk);
3953				if (sysfs_create_link(&mddev->kobj,
3954						      &rdev->kobj, nm))
3955					printk(KERN_WARNING
3956					       "raid5: failed to create "
3957					       " link %s for %s\n",
3958					       nm, mdname(mddev));
3959			} else
3960				break;
3961		}
3962
3963	spin_lock_irqsave(&conf->device_lock, flags);
3964	mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3965	spin_unlock_irqrestore(&conf->device_lock, flags);
3966	mddev->raid_disks = conf->raid_disks;
3967	mddev->reshape_position = 0;
3968	set_bit(MD_CHANGE_DEVS, &mddev->flags);
3969
3970	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3971	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3972	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3973	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3974	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3975						"%s_reshape");
3976	if (!mddev->sync_thread) {
3977		mddev->recovery = 0;
3978		spin_lock_irq(&conf->device_lock);
3979		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3980		conf->expand_progress = MaxSector;
3981		spin_unlock_irq(&conf->device_lock);
3982		return -EAGAIN;
3983	}
3984	md_wakeup_thread(mddev->sync_thread);
3985	md_new_event(mddev);
3986	return 0;
3987}
3988#endif
3989
3990static void end_reshape(raid5_conf_t *conf)
3991{
3992	struct block_device *bdev;
3993
3994	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3995		conf->mddev->array_size = conf->mddev->size *
3996			(conf->raid_disks - conf->max_degraded);
3997		set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3998		conf->mddev->changed = 1;
3999
4000		bdev = bdget_disk(conf->mddev->gendisk, 0);
4001		if (bdev) {
4002			mutex_lock(&bdev->bd_inode->i_mutex);
4003			i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4004			mutex_unlock(&bdev->bd_inode->i_mutex);
4005			bdput(bdev);
4006		}
4007		spin_lock_irq(&conf->device_lock);
4008		conf->expand_progress = MaxSector;
4009		spin_unlock_irq(&conf->device_lock);
4010		conf->mddev->reshape_position = MaxSector;
4011
4012		/* read-ahead size must cover two whole stripes, which is
4013		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4014		 */
4015		{
4016			int data_disks = conf->previous_raid_disks - conf->max_degraded;
4017			int stripe = data_disks *
4018				(conf->mddev->chunk_size / PAGE_SIZE);
4019			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4020				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4021		}
4022	}
4023}
4024
4025static void raid5_quiesce(mddev_t *mddev, int state)
4026{
4027	raid5_conf_t *conf = mddev_to_conf(mddev);
4028
4029	switch(state) {
4030	case 2: /* resume for a suspend */
4031		wake_up(&conf->wait_for_overlap);
4032		break;
4033
4034	case 1: /* stop all writes */
4035		spin_lock_irq(&conf->device_lock);
4036		conf->quiesce = 1;
4037		wait_event_lock_irq(conf->wait_for_stripe,
4038				    atomic_read(&conf->active_stripes) == 0 &&
4039				    atomic_read(&conf->active_aligned_reads) == 0,
4040				    conf->device_lock, /* nothing */);
4041		spin_unlock_irq(&conf->device_lock);
4042		break;
4043
4044	case 0: /* re-enable writes */
4045		spin_lock_irq(&conf->device_lock);
4046		conf->quiesce = 0;
4047		wake_up(&conf->wait_for_stripe);
4048		wake_up(&conf->wait_for_overlap);
4049		spin_unlock_irq(&conf->device_lock);
4050		break;
4051	}
4052}
4053
4054static struct mdk_personality raid6_personality =
4055{
4056	.name		= "raid6",
4057	.level		= 6,
4058	.owner		= THIS_MODULE,
4059	.make_request	= make_request,
4060	.run		= run,
4061	.stop		= stop,
4062	.status		= status,
4063	.error_handler	= error,
4064	.hot_add_disk	= raid5_add_disk,
4065	.hot_remove_disk= raid5_remove_disk,
4066	.spare_active	= raid5_spare_active,
4067	.sync_request	= sync_request,
4068	.resize		= raid5_resize,
4069#ifdef CONFIG_MD_RAID5_RESHAPE
4070	.check_reshape	= raid5_check_reshape,
4071	.start_reshape  = raid5_start_reshape,
4072#endif
4073	.quiesce	= raid5_quiesce,
4074};
4075static struct mdk_personality raid5_personality =
4076{
4077	.name		= "raid5",
4078	.level		= 5,
4079	.owner		= THIS_MODULE,
4080	.make_request	= make_request,
4081	.run		= run,
4082	.stop		= stop,
4083	.status		= status,
4084	.error_handler	= error,
4085	.hot_add_disk	= raid5_add_disk,
4086	.hot_remove_disk= raid5_remove_disk,
4087	.spare_active	= raid5_spare_active,
4088	.sync_request	= sync_request,
4089	.resize		= raid5_resize,
4090#ifdef CONFIG_MD_RAID5_RESHAPE
4091	.check_reshape	= raid5_check_reshape,
4092	.start_reshape  = raid5_start_reshape,
4093#endif
4094	.quiesce	= raid5_quiesce,
4095};
4096
4097static struct mdk_personality raid4_personality =
4098{
4099	.name		= "raid4",
4100	.level		= 4,
4101	.owner		= THIS_MODULE,
4102	.make_request	= make_request,
4103	.run		= run,
4104	.stop		= stop,
4105	.status		= status,
4106	.error_handler	= error,
4107	.hot_add_disk	= raid5_add_disk,
4108	.hot_remove_disk= raid5_remove_disk,
4109	.spare_active	= raid5_spare_active,
4110	.sync_request	= sync_request,
4111	.resize		= raid5_resize,
4112#ifdef CONFIG_MD_RAID5_RESHAPE
4113	.check_reshape	= raid5_check_reshape,
4114	.start_reshape  = raid5_start_reshape,
4115#endif
4116	.quiesce	= raid5_quiesce,
4117};
4118
4119static int __init raid5_init(void)
4120{
4121	int e;
4122
4123	e = raid6_select_algo();
4124	if ( e )
4125		return e;
4126	register_md_personality(&raid6_personality);
4127	register_md_personality(&raid5_personality);
4128	register_md_personality(&raid4_personality);
4129	return 0;
4130}
4131
4132static void raid5_exit(void)
4133{
4134	unregister_md_personality(&raid6_personality);
4135	unregister_md_personality(&raid5_personality);
4136	unregister_md_personality(&raid4_personality);
4137}
4138
4139module_init(raid5_init);
4140module_exit(raid5_exit);
4141MODULE_LICENSE("GPL");
4142MODULE_ALIAS("md-personality-4"); /* RAID5 */
4143MODULE_ALIAS("md-raid5");
4144MODULE_ALIAS("md-raid4");
4145MODULE_ALIAS("md-level-5");
4146MODULE_ALIAS("md-level-4");
4147MODULE_ALIAS("md-personality-8"); /* RAID6 */
4148MODULE_ALIAS("md-raid6");
4149MODULE_ALIAS("md-level-6");
4150
4151/* This used to be two separate modules, they were: */
4152MODULE_ALIAS("raid5");
4153MODULE_ALIAS("raid6");
4154