1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> -  July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h>	/* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
31#include <linux/blktrace_api.h>
32#include <linux/fault-inject.h>
33
34/*
35 * for max sense size
36 */
37#include <scsi/scsi_cmnd.h>
38
39static void blk_unplug_work(struct work_struct *work);
40static void blk_unplug_timeout(unsigned long data);
41static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
42static void init_request_from_bio(struct request *req, struct bio *bio);
43static int __make_request(request_queue_t *q, struct bio *bio);
44static struct io_context *current_io_context(gfp_t gfp_flags, int node);
45
46/*
47 * For the allocated request tables
48 */
49static struct kmem_cache *request_cachep;
50
51/*
52 * For queue allocation
53 */
54static struct kmem_cache *requestq_cachep;
55
56/*
57 * For io context allocations
58 */
59static struct kmem_cache *iocontext_cachep;
60
61/*
62 * Controlling structure to kblockd
63 */
64static struct workqueue_struct *kblockd_workqueue;
65
66unsigned long blk_max_low_pfn, blk_max_pfn;
67
68EXPORT_SYMBOL(blk_max_low_pfn);
69EXPORT_SYMBOL(blk_max_pfn);
70
71static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
72
73/* Amount of time in which a process may batch requests */
74#define BLK_BATCH_TIME	(HZ/50UL)
75
76/* Number of requests a "batching" process may submit */
77#define BLK_BATCH_REQ	32
78
79/*
80 * Return the threshold (number of used requests) at which the queue is
81 * considered to be congested.  It include a little hysteresis to keep the
82 * context switch rate down.
83 */
84static inline int queue_congestion_on_threshold(struct request_queue *q)
85{
86	return q->nr_congestion_on;
87}
88
89/*
90 * The threshold at which a queue is considered to be uncongested
91 */
92static inline int queue_congestion_off_threshold(struct request_queue *q)
93{
94	return q->nr_congestion_off;
95}
96
97static void blk_queue_congestion_threshold(struct request_queue *q)
98{
99	int nr;
100
101	nr = q->nr_requests - (q->nr_requests / 8) + 1;
102	if (nr > q->nr_requests)
103		nr = q->nr_requests;
104	q->nr_congestion_on = nr;
105
106	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107	if (nr < 1)
108		nr = 1;
109	q->nr_congestion_off = nr;
110}
111
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev:	device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123	struct backing_dev_info *ret = NULL;
124	request_queue_t *q = bdev_get_queue(bdev);
125
126	if (q)
127		ret = &q->backing_dev_info;
128	return ret;
129}
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132/**
133 * blk_queue_prep_rq - set a prepare_request function for queue
134 * @q:		queue
135 * @pfn:	prepare_request function
136 *
137 * It's possible for a queue to register a prepare_request callback which
138 * is invoked before the request is handed to the request_fn. The goal of
139 * the function is to prepare a request for I/O, it can be used to build a
140 * cdb from the request data for instance.
141 *
142 */
143void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
144{
145	q->prep_rq_fn = pfn;
146}
147
148EXPORT_SYMBOL(blk_queue_prep_rq);
149
150/**
151 * blk_queue_merge_bvec - set a merge_bvec function for queue
152 * @q:		queue
153 * @mbfn:	merge_bvec_fn
154 *
155 * Usually queues have static limitations on the max sectors or segments that
156 * we can put in a request. Stacking drivers may have some settings that
157 * are dynamic, and thus we have to query the queue whether it is ok to
158 * add a new bio_vec to a bio at a given offset or not. If the block device
159 * has such limitations, it needs to register a merge_bvec_fn to control
160 * the size of bio's sent to it. Note that a block device *must* allow a
161 * single page to be added to an empty bio. The block device driver may want
162 * to use the bio_split() function to deal with these bio's. By default
163 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
164 * honored.
165 */
166void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
167{
168	q->merge_bvec_fn = mbfn;
169}
170
171EXPORT_SYMBOL(blk_queue_merge_bvec);
172
173void blk_queue_softirq_done(request_queue_t *q, softirq_done_fn *fn)
174{
175	q->softirq_done_fn = fn;
176}
177
178EXPORT_SYMBOL(blk_queue_softirq_done);
179
180/**
181 * blk_queue_make_request - define an alternate make_request function for a device
182 * @q:  the request queue for the device to be affected
183 * @mfn: the alternate make_request function
184 *
185 * Description:
186 *    The normal way for &struct bios to be passed to a device
187 *    driver is for them to be collected into requests on a request
188 *    queue, and then to allow the device driver to select requests
189 *    off that queue when it is ready.  This works well for many block
190 *    devices. However some block devices (typically virtual devices
191 *    such as md or lvm) do not benefit from the processing on the
192 *    request queue, and are served best by having the requests passed
193 *    directly to them.  This can be achieved by providing a function
194 *    to blk_queue_make_request().
195 *
196 * Caveat:
197 *    The driver that does this *must* be able to deal appropriately
198 *    with buffers in "highmemory". This can be accomplished by either calling
199 *    __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
200 *    blk_queue_bounce() to create a buffer in normal memory.
201 **/
202void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
203{
204	/*
205	 * set defaults
206	 */
207	q->nr_requests = BLKDEV_MAX_RQ;
208	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
209	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
210	q->make_request_fn = mfn;
211	q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
212	q->backing_dev_info.state = 0;
213	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
214	blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
215	blk_queue_hardsect_size(q, 512);
216	blk_queue_dma_alignment(q, 511);
217	blk_queue_congestion_threshold(q);
218	q->nr_batching = BLK_BATCH_REQ;
219
220	q->unplug_thresh = 4;		/* hmm */
221	q->unplug_delay = (3 * HZ) / 1000;	/* 3 milliseconds */
222	if (q->unplug_delay == 0)
223		q->unplug_delay = 1;
224
225	INIT_WORK(&q->unplug_work, blk_unplug_work);
226
227	q->unplug_timer.function = blk_unplug_timeout;
228	q->unplug_timer.data = (unsigned long)q;
229
230	/*
231	 * by default assume old behaviour and bounce for any highmem page
232	 */
233	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
234}
235
236EXPORT_SYMBOL(blk_queue_make_request);
237
238static void rq_init(request_queue_t *q, struct request *rq)
239{
240	INIT_LIST_HEAD(&rq->queuelist);
241	INIT_LIST_HEAD(&rq->donelist);
242
243	rq->errors = 0;
244	rq->bio = rq->biotail = NULL;
245	INIT_HLIST_NODE(&rq->hash);
246	RB_CLEAR_NODE(&rq->rb_node);
247	rq->ioprio = 0;
248	rq->buffer = NULL;
249	rq->ref_count = 1;
250	rq->q = q;
251	rq->special = NULL;
252	rq->data_len = 0;
253	rq->data = NULL;
254	rq->nr_phys_segments = 0;
255	rq->sense = NULL;
256	rq->end_io = NULL;
257	rq->end_io_data = NULL;
258	rq->completion_data = NULL;
259}
260
261/**
262 * blk_queue_ordered - does this queue support ordered writes
263 * @q:        the request queue
264 * @ordered:  one of QUEUE_ORDERED_*
265 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
266 *
267 * Description:
268 *   For journalled file systems, doing ordered writes on a commit
269 *   block instead of explicitly doing wait_on_buffer (which is bad
270 *   for performance) can be a big win. Block drivers supporting this
271 *   feature should call this function and indicate so.
272 *
273 **/
274int blk_queue_ordered(request_queue_t *q, unsigned ordered,
275		      prepare_flush_fn *prepare_flush_fn)
276{
277	if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
278	    prepare_flush_fn == NULL) {
279		printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
280		return -EINVAL;
281	}
282
283	if (ordered != QUEUE_ORDERED_NONE &&
284	    ordered != QUEUE_ORDERED_DRAIN &&
285	    ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
286	    ordered != QUEUE_ORDERED_DRAIN_FUA &&
287	    ordered != QUEUE_ORDERED_TAG &&
288	    ordered != QUEUE_ORDERED_TAG_FLUSH &&
289	    ordered != QUEUE_ORDERED_TAG_FUA) {
290		printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
291		return -EINVAL;
292	}
293
294	q->ordered = ordered;
295	q->next_ordered = ordered;
296	q->prepare_flush_fn = prepare_flush_fn;
297
298	return 0;
299}
300
301EXPORT_SYMBOL(blk_queue_ordered);
302
303/**
304 * blk_queue_issue_flush_fn - set function for issuing a flush
305 * @q:     the request queue
306 * @iff:   the function to be called issuing the flush
307 *
308 * Description:
309 *   If a driver supports issuing a flush command, the support is notified
310 *   to the block layer by defining it through this call.
311 *
312 **/
313void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
314{
315	q->issue_flush_fn = iff;
316}
317
318EXPORT_SYMBOL(blk_queue_issue_flush_fn);
319
320/*
321 * Cache flushing for ordered writes handling
322 */
323inline unsigned blk_ordered_cur_seq(request_queue_t *q)
324{
325	if (!q->ordseq)
326		return 0;
327	return 1 << ffz(q->ordseq);
328}
329
330unsigned blk_ordered_req_seq(struct request *rq)
331{
332	request_queue_t *q = rq->q;
333
334	BUG_ON(q->ordseq == 0);
335
336	if (rq == &q->pre_flush_rq)
337		return QUEUE_ORDSEQ_PREFLUSH;
338	if (rq == &q->bar_rq)
339		return QUEUE_ORDSEQ_BAR;
340	if (rq == &q->post_flush_rq)
341		return QUEUE_ORDSEQ_POSTFLUSH;
342
343	/*
344	 * !fs requests don't need to follow barrier ordering.  Always
345	 * put them at the front.  This fixes the following deadlock.
346	 *
347	 * http://thread.gmane.org/gmane.linux.kernel/537473
348	 */
349	if (!blk_fs_request(rq))
350		return QUEUE_ORDSEQ_DRAIN;
351
352	if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
353	    (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
354		return QUEUE_ORDSEQ_DRAIN;
355	else
356		return QUEUE_ORDSEQ_DONE;
357}
358
359void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
360{
361	struct request *rq;
362	int uptodate;
363
364	if (error && !q->orderr)
365		q->orderr = error;
366
367	BUG_ON(q->ordseq & seq);
368	q->ordseq |= seq;
369
370	if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
371		return;
372
373	/*
374	 * Okay, sequence complete.
375	 */
376	rq = q->orig_bar_rq;
377	uptodate = q->orderr ? q->orderr : 1;
378
379	q->ordseq = 0;
380
381	end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
382	end_that_request_last(rq, uptodate);
383}
384
385static void pre_flush_end_io(struct request *rq, int error)
386{
387	elv_completed_request(rq->q, rq);
388	blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
389}
390
391static void bar_end_io(struct request *rq, int error)
392{
393	elv_completed_request(rq->q, rq);
394	blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
395}
396
397static void post_flush_end_io(struct request *rq, int error)
398{
399	elv_completed_request(rq->q, rq);
400	blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
401}
402
403static void queue_flush(request_queue_t *q, unsigned which)
404{
405	struct request *rq;
406	rq_end_io_fn *end_io;
407
408	if (which == QUEUE_ORDERED_PREFLUSH) {
409		rq = &q->pre_flush_rq;
410		end_io = pre_flush_end_io;
411	} else {
412		rq = &q->post_flush_rq;
413		end_io = post_flush_end_io;
414	}
415
416	rq->cmd_flags = REQ_HARDBARRIER;
417	rq_init(q, rq);
418	rq->elevator_private = NULL;
419	rq->elevator_private2 = NULL;
420	rq->rq_disk = q->bar_rq.rq_disk;
421	rq->end_io = end_io;
422	q->prepare_flush_fn(q, rq);
423
424	elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
425}
426
427static inline struct request *start_ordered(request_queue_t *q,
428					    struct request *rq)
429{
430	q->bi_size = 0;
431	q->orderr = 0;
432	q->ordered = q->next_ordered;
433	q->ordseq |= QUEUE_ORDSEQ_STARTED;
434
435	/*
436	 * Prep proxy barrier request.
437	 */
438	blkdev_dequeue_request(rq);
439	q->orig_bar_rq = rq;
440	rq = &q->bar_rq;
441	rq->cmd_flags = 0;
442	rq_init(q, rq);
443	if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
444		rq->cmd_flags |= REQ_RW;
445	rq->cmd_flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
446	rq->elevator_private = NULL;
447	rq->elevator_private2 = NULL;
448	init_request_from_bio(rq, q->orig_bar_rq->bio);
449	rq->end_io = bar_end_io;
450
451	/*
452	 * Queue ordered sequence.  As we stack them at the head, we
453	 * need to queue in reverse order.  Note that we rely on that
454	 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
455	 * request gets inbetween ordered sequence.
456	 */
457	if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
458		queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
459	else
460		q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
461
462	elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
463
464	if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
465		queue_flush(q, QUEUE_ORDERED_PREFLUSH);
466		rq = &q->pre_flush_rq;
467	} else
468		q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
469
470	if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
471		q->ordseq |= QUEUE_ORDSEQ_DRAIN;
472	else
473		rq = NULL;
474
475	return rq;
476}
477
478int blk_do_ordered(request_queue_t *q, struct request **rqp)
479{
480	struct request *rq = *rqp;
481	int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
482
483	if (!q->ordseq) {
484		if (!is_barrier)
485			return 1;
486
487		if (q->next_ordered != QUEUE_ORDERED_NONE) {
488			*rqp = start_ordered(q, rq);
489			return 1;
490		} else {
491			/*
492			 * This can happen when the queue switches to
493			 * ORDERED_NONE while this request is on it.
494			 */
495			blkdev_dequeue_request(rq);
496			end_that_request_first(rq, -EOPNOTSUPP,
497					       rq->hard_nr_sectors);
498			end_that_request_last(rq, -EOPNOTSUPP);
499			*rqp = NULL;
500			return 0;
501		}
502	}
503
504	/*
505	 * Ordered sequence in progress
506	 */
507
508	/* Special requests are not subject to ordering rules. */
509	if (!blk_fs_request(rq) &&
510	    rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
511		return 1;
512
513	if (q->ordered & QUEUE_ORDERED_TAG) {
514		/* Ordered by tag.  Blocking the next barrier is enough. */
515		if (is_barrier && rq != &q->bar_rq)
516			*rqp = NULL;
517	} else {
518		/* Ordered by draining.  Wait for turn. */
519		WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
520		if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
521			*rqp = NULL;
522	}
523
524	return 1;
525}
526
527static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
528{
529	request_queue_t *q = bio->bi_private;
530	struct bio_vec *bvec;
531	int i;
532
533	/*
534	 * This is dry run, restore bio_sector and size.  We'll finish
535	 * this request again with the original bi_end_io after an
536	 * error occurs or post flush is complete.
537	 */
538	q->bi_size += bytes;
539
540	if (bio->bi_size)
541		return 1;
542
543	/* Rewind bvec's */
544	bio->bi_idx = 0;
545	bio_for_each_segment(bvec, bio, i) {
546		bvec->bv_len += bvec->bv_offset;
547		bvec->bv_offset = 0;
548	}
549
550	/* Reset bio */
551	set_bit(BIO_UPTODATE, &bio->bi_flags);
552	bio->bi_size = q->bi_size;
553	bio->bi_sector -= (q->bi_size >> 9);
554	q->bi_size = 0;
555
556	return 0;
557}
558
559static int ordered_bio_endio(struct request *rq, struct bio *bio,
560			     unsigned int nbytes, int error)
561{
562	request_queue_t *q = rq->q;
563	bio_end_io_t *endio;
564	void *private;
565
566	if (&q->bar_rq != rq)
567		return 0;
568
569	/*
570	 * Okay, this is the barrier request in progress, dry finish it.
571	 */
572	if (error && !q->orderr)
573		q->orderr = error;
574
575	endio = bio->bi_end_io;
576	private = bio->bi_private;
577	bio->bi_end_io = flush_dry_bio_endio;
578	bio->bi_private = q;
579
580	bio_endio(bio, nbytes, error);
581
582	bio->bi_end_io = endio;
583	bio->bi_private = private;
584
585	return 1;
586}
587
588/**
589 * blk_queue_bounce_limit - set bounce buffer limit for queue
590 * @q:  the request queue for the device
591 * @dma_addr:   bus address limit
592 *
593 * Description:
594 *    Different hardware can have different requirements as to what pages
595 *    it can do I/O directly to. A low level driver can call
596 *    blk_queue_bounce_limit to have lower memory pages allocated as bounce
597 *    buffers for doing I/O to pages residing above @page.
598 **/
599void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
600{
601	unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
602	int dma = 0;
603
604	q->bounce_gfp = GFP_NOIO;
605#if BITS_PER_LONG == 64
606	/* Assume anything <= 4GB can be handled by IOMMU.
607	   Actually some IOMMUs can handle everything, but I don't
608	   know of a way to test this here. */
609	if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
610		dma = 1;
611	q->bounce_pfn = max_low_pfn;
612#else
613	if (bounce_pfn < blk_max_low_pfn)
614		dma = 1;
615	q->bounce_pfn = bounce_pfn;
616#endif
617	if (dma) {
618		init_emergency_isa_pool();
619		q->bounce_gfp = GFP_NOIO | GFP_DMA;
620		q->bounce_pfn = bounce_pfn;
621	}
622}
623
624EXPORT_SYMBOL(blk_queue_bounce_limit);
625
626/**
627 * blk_queue_max_sectors - set max sectors for a request for this queue
628 * @q:  the request queue for the device
629 * @max_sectors:  max sectors in the usual 512b unit
630 *
631 * Description:
632 *    Enables a low level driver to set an upper limit on the size of
633 *    received requests.
634 **/
635void blk_queue_max_sectors(request_queue_t *q, unsigned int max_sectors)
636{
637	if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
638		max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
639		printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
640	}
641
642	if (BLK_DEF_MAX_SECTORS > max_sectors)
643		q->max_hw_sectors = q->max_sectors = max_sectors;
644 	else {
645		q->max_sectors = BLK_DEF_MAX_SECTORS;
646		q->max_hw_sectors = max_sectors;
647	}
648}
649
650EXPORT_SYMBOL(blk_queue_max_sectors);
651
652/**
653 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
654 * @q:  the request queue for the device
655 * @max_segments:  max number of segments
656 *
657 * Description:
658 *    Enables a low level driver to set an upper limit on the number of
659 *    physical data segments in a request.  This would be the largest sized
660 *    scatter list the driver could handle.
661 **/
662void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
663{
664	if (!max_segments) {
665		max_segments = 1;
666		printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
667	}
668
669	q->max_phys_segments = max_segments;
670}
671
672EXPORT_SYMBOL(blk_queue_max_phys_segments);
673
674/**
675 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
676 * @q:  the request queue for the device
677 * @max_segments:  max number of segments
678 *
679 * Description:
680 *    Enables a low level driver to set an upper limit on the number of
681 *    hw data segments in a request.  This would be the largest number of
682 *    address/length pairs the host adapter can actually give as once
683 *    to the device.
684 **/
685void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
686{
687	if (!max_segments) {
688		max_segments = 1;
689		printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
690	}
691
692	q->max_hw_segments = max_segments;
693}
694
695EXPORT_SYMBOL(blk_queue_max_hw_segments);
696
697/**
698 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
699 * @q:  the request queue for the device
700 * @max_size:  max size of segment in bytes
701 *
702 * Description:
703 *    Enables a low level driver to set an upper limit on the size of a
704 *    coalesced segment
705 **/
706void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
707{
708	if (max_size < PAGE_CACHE_SIZE) {
709		max_size = PAGE_CACHE_SIZE;
710		printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
711	}
712
713	q->max_segment_size = max_size;
714}
715
716EXPORT_SYMBOL(blk_queue_max_segment_size);
717
718/**
719 * blk_queue_hardsect_size - set hardware sector size for the queue
720 * @q:  the request queue for the device
721 * @size:  the hardware sector size, in bytes
722 *
723 * Description:
724 *   This should typically be set to the lowest possible sector size
725 *   that the hardware can operate on (possible without reverting to
726 *   even internal read-modify-write operations). Usually the default
727 *   of 512 covers most hardware.
728 **/
729void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
730{
731	q->hardsect_size = size;
732}
733
734EXPORT_SYMBOL(blk_queue_hardsect_size);
735
736/*
737 * Returns the minimum that is _not_ zero, unless both are zero.
738 */
739#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
740
741/**
742 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
743 * @t:	the stacking driver (top)
744 * @b:  the underlying device (bottom)
745 **/
746void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
747{
748	/* zero is "infinity" */
749	t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
750	t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
751
752	t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
753	t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
754	t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
755	t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
756	if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
757		clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
758}
759
760EXPORT_SYMBOL(blk_queue_stack_limits);
761
762/**
763 * blk_queue_segment_boundary - set boundary rules for segment merging
764 * @q:  the request queue for the device
765 * @mask:  the memory boundary mask
766 **/
767void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
768{
769	if (mask < PAGE_CACHE_SIZE - 1) {
770		mask = PAGE_CACHE_SIZE - 1;
771		printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
772	}
773
774	q->seg_boundary_mask = mask;
775}
776
777EXPORT_SYMBOL(blk_queue_segment_boundary);
778
779/**
780 * blk_queue_dma_alignment - set dma length and memory alignment
781 * @q:     the request queue for the device
782 * @mask:  alignment mask
783 *
784 * description:
785 *    set required memory and length aligment for direct dma transactions.
786 *    this is used when buiding direct io requests for the queue.
787 *
788 **/
789void blk_queue_dma_alignment(request_queue_t *q, int mask)
790{
791	q->dma_alignment = mask;
792}
793
794EXPORT_SYMBOL(blk_queue_dma_alignment);
795
796/**
797 * blk_queue_find_tag - find a request by its tag and queue
798 * @q:	 The request queue for the device
799 * @tag: The tag of the request
800 *
801 * Notes:
802 *    Should be used when a device returns a tag and you want to match
803 *    it with a request.
804 *
805 *    no locks need be held.
806 **/
807struct request *blk_queue_find_tag(request_queue_t *q, int tag)
808{
809	return blk_map_queue_find_tag(q->queue_tags, tag);
810}
811
812EXPORT_SYMBOL(blk_queue_find_tag);
813
814/**
815 * __blk_free_tags - release a given set of tag maintenance info
816 * @bqt:	the tag map to free
817 *
818 * Tries to free the specified @bqt@.  Returns true if it was
819 * actually freed and false if there are still references using it
820 */
821static int __blk_free_tags(struct blk_queue_tag *bqt)
822{
823	int retval;
824
825	retval = atomic_dec_and_test(&bqt->refcnt);
826	if (retval) {
827		BUG_ON(bqt->busy);
828		BUG_ON(!list_empty(&bqt->busy_list));
829
830		kfree(bqt->tag_index);
831		bqt->tag_index = NULL;
832
833		kfree(bqt->tag_map);
834		bqt->tag_map = NULL;
835
836		kfree(bqt);
837
838	}
839
840	return retval;
841}
842
843/**
844 * __blk_queue_free_tags - release tag maintenance info
845 * @q:  the request queue for the device
846 *
847 *  Notes:
848 *    blk_cleanup_queue() will take care of calling this function, if tagging
849 *    has been used. So there's no need to call this directly.
850 **/
851static void __blk_queue_free_tags(request_queue_t *q)
852{
853	struct blk_queue_tag *bqt = q->queue_tags;
854
855	if (!bqt)
856		return;
857
858	__blk_free_tags(bqt);
859
860	q->queue_tags = NULL;
861	q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
862}
863
864
865/**
866 * blk_free_tags - release a given set of tag maintenance info
867 * @bqt:	the tag map to free
868 *
869 * For externally managed @bqt@ frees the map.  Callers of this
870 * function must guarantee to have released all the queues that
871 * might have been using this tag map.
872 */
873void blk_free_tags(struct blk_queue_tag *bqt)
874{
875	if (unlikely(!__blk_free_tags(bqt)))
876		BUG();
877}
878EXPORT_SYMBOL(blk_free_tags);
879
880/**
881 * blk_queue_free_tags - release tag maintenance info
882 * @q:  the request queue for the device
883 *
884 *  Notes:
885 *	This is used to disabled tagged queuing to a device, yet leave
886 *	queue in function.
887 **/
888void blk_queue_free_tags(request_queue_t *q)
889{
890	clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
891}
892
893EXPORT_SYMBOL(blk_queue_free_tags);
894
895static int
896init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
897{
898	struct request **tag_index;
899	unsigned long *tag_map;
900	int nr_ulongs;
901
902	if (q && depth > q->nr_requests * 2) {
903		depth = q->nr_requests * 2;
904		printk(KERN_ERR "%s: adjusted depth to %d\n",
905				__FUNCTION__, depth);
906	}
907
908	tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
909	if (!tag_index)
910		goto fail;
911
912	nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
913	tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
914	if (!tag_map)
915		goto fail;
916
917	tags->real_max_depth = depth;
918	tags->max_depth = depth;
919	tags->tag_index = tag_index;
920	tags->tag_map = tag_map;
921
922	return 0;
923fail:
924	kfree(tag_index);
925	return -ENOMEM;
926}
927
928static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
929						   int depth)
930{
931	struct blk_queue_tag *tags;
932
933	tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
934	if (!tags)
935		goto fail;
936
937	if (init_tag_map(q, tags, depth))
938		goto fail;
939
940	INIT_LIST_HEAD(&tags->busy_list);
941	tags->busy = 0;
942	atomic_set(&tags->refcnt, 1);
943	return tags;
944fail:
945	kfree(tags);
946	return NULL;
947}
948
949/**
950 * blk_init_tags - initialize the tag info for an external tag map
951 * @depth:	the maximum queue depth supported
952 * @tags: the tag to use
953 **/
954struct blk_queue_tag *blk_init_tags(int depth)
955{
956	return __blk_queue_init_tags(NULL, depth);
957}
958EXPORT_SYMBOL(blk_init_tags);
959
960/**
961 * blk_queue_init_tags - initialize the queue tag info
962 * @q:  the request queue for the device
963 * @depth:  the maximum queue depth supported
964 * @tags: the tag to use
965 **/
966int blk_queue_init_tags(request_queue_t *q, int depth,
967			struct blk_queue_tag *tags)
968{
969	int rc;
970
971	BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
972
973	if (!tags && !q->queue_tags) {
974		tags = __blk_queue_init_tags(q, depth);
975
976		if (!tags)
977			goto fail;
978	} else if (q->queue_tags) {
979		if ((rc = blk_queue_resize_tags(q, depth)))
980			return rc;
981		set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
982		return 0;
983	} else
984		atomic_inc(&tags->refcnt);
985
986	/*
987	 * assign it, all done
988	 */
989	q->queue_tags = tags;
990	q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
991	return 0;
992fail:
993	kfree(tags);
994	return -ENOMEM;
995}
996
997EXPORT_SYMBOL(blk_queue_init_tags);
998
999/**
1000 * blk_queue_resize_tags - change the queueing depth
1001 * @q:  the request queue for the device
1002 * @new_depth: the new max command queueing depth
1003 *
1004 *  Notes:
1005 *    Must be called with the queue lock held.
1006 **/
1007int blk_queue_resize_tags(request_queue_t *q, int new_depth)
1008{
1009	struct blk_queue_tag *bqt = q->queue_tags;
1010	struct request **tag_index;
1011	unsigned long *tag_map;
1012	int max_depth, nr_ulongs;
1013
1014	if (!bqt)
1015		return -ENXIO;
1016
1017	/*
1018	 * if we already have large enough real_max_depth.  just
1019	 * adjust max_depth.  *NOTE* as requests with tag value
1020	 * between new_depth and real_max_depth can be in-flight, tag
1021	 * map can not be shrunk blindly here.
1022	 */
1023	if (new_depth <= bqt->real_max_depth) {
1024		bqt->max_depth = new_depth;
1025		return 0;
1026	}
1027
1028	/*
1029	 * Currently cannot replace a shared tag map with a new
1030	 * one, so error out if this is the case
1031	 */
1032	if (atomic_read(&bqt->refcnt) != 1)
1033		return -EBUSY;
1034
1035	/*
1036	 * save the old state info, so we can copy it back
1037	 */
1038	tag_index = bqt->tag_index;
1039	tag_map = bqt->tag_map;
1040	max_depth = bqt->real_max_depth;
1041
1042	if (init_tag_map(q, bqt, new_depth))
1043		return -ENOMEM;
1044
1045	memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
1046	nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
1047	memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1048
1049	kfree(tag_index);
1050	kfree(tag_map);
1051	return 0;
1052}
1053
1054EXPORT_SYMBOL(blk_queue_resize_tags);
1055
1056/**
1057 * blk_queue_end_tag - end tag operations for a request
1058 * @q:  the request queue for the device
1059 * @rq: the request that has completed
1060 *
1061 *  Description:
1062 *    Typically called when end_that_request_first() returns 0, meaning
1063 *    all transfers have been done for a request. It's important to call
1064 *    this function before end_that_request_last(), as that will put the
1065 *    request back on the free list thus corrupting the internal tag list.
1066 *
1067 *  Notes:
1068 *   queue lock must be held.
1069 **/
1070void blk_queue_end_tag(request_queue_t *q, struct request *rq)
1071{
1072	struct blk_queue_tag *bqt = q->queue_tags;
1073	int tag = rq->tag;
1074
1075	BUG_ON(tag == -1);
1076
1077	if (unlikely(tag >= bqt->real_max_depth))
1078		return;
1079
1080	if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
1081		printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1082		       __FUNCTION__, tag);
1083		return;
1084	}
1085
1086	list_del_init(&rq->queuelist);
1087	rq->cmd_flags &= ~REQ_QUEUED;
1088	rq->tag = -1;
1089
1090	if (unlikely(bqt->tag_index[tag] == NULL))
1091		printk(KERN_ERR "%s: tag %d is missing\n",
1092		       __FUNCTION__, tag);
1093
1094	bqt->tag_index[tag] = NULL;
1095	bqt->busy--;
1096}
1097
1098EXPORT_SYMBOL(blk_queue_end_tag);
1099
1100/**
1101 * blk_queue_start_tag - find a free tag and assign it
1102 * @q:  the request queue for the device
1103 * @rq:  the block request that needs tagging
1104 *
1105 *  Description:
1106 *    This can either be used as a stand-alone helper, or possibly be
1107 *    assigned as the queue &prep_rq_fn (in which case &struct request
1108 *    automagically gets a tag assigned). Note that this function
1109 *    assumes that any type of request can be queued! if this is not
1110 *    true for your device, you must check the request type before
1111 *    calling this function.  The request will also be removed from
1112 *    the request queue, so it's the drivers responsibility to readd
1113 *    it if it should need to be restarted for some reason.
1114 *
1115 *  Notes:
1116 *   queue lock must be held.
1117 **/
1118int blk_queue_start_tag(request_queue_t *q, struct request *rq)
1119{
1120	struct blk_queue_tag *bqt = q->queue_tags;
1121	int tag;
1122
1123	if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1124		printk(KERN_ERR
1125		       "%s: request %p for device [%s] already tagged %d",
1126		       __FUNCTION__, rq,
1127		       rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1128		BUG();
1129	}
1130
1131	/*
1132	 * Protect against shared tag maps, as we may not have exclusive
1133	 * access to the tag map.
1134	 */
1135	do {
1136		tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1137		if (tag >= bqt->max_depth)
1138			return 1;
1139
1140	} while (test_and_set_bit(tag, bqt->tag_map));
1141
1142	rq->cmd_flags |= REQ_QUEUED;
1143	rq->tag = tag;
1144	bqt->tag_index[tag] = rq;
1145	blkdev_dequeue_request(rq);
1146	list_add(&rq->queuelist, &bqt->busy_list);
1147	bqt->busy++;
1148	return 0;
1149}
1150
1151EXPORT_SYMBOL(blk_queue_start_tag);
1152
1153/**
1154 * blk_queue_invalidate_tags - invalidate all pending tags
1155 * @q:  the request queue for the device
1156 *
1157 *  Description:
1158 *   Hardware conditions may dictate a need to stop all pending requests.
1159 *   In this case, we will safely clear the block side of the tag queue and
1160 *   readd all requests to the request queue in the right order.
1161 *
1162 *  Notes:
1163 *   queue lock must be held.
1164 **/
1165void blk_queue_invalidate_tags(request_queue_t *q)
1166{
1167	struct blk_queue_tag *bqt = q->queue_tags;
1168	struct list_head *tmp, *n;
1169	struct request *rq;
1170
1171	list_for_each_safe(tmp, n, &bqt->busy_list) {
1172		rq = list_entry_rq(tmp);
1173
1174		if (rq->tag == -1) {
1175			printk(KERN_ERR
1176			       "%s: bad tag found on list\n", __FUNCTION__);
1177			list_del_init(&rq->queuelist);
1178			rq->cmd_flags &= ~REQ_QUEUED;
1179		} else
1180			blk_queue_end_tag(q, rq);
1181
1182		rq->cmd_flags &= ~REQ_STARTED;
1183		__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1184	}
1185}
1186
1187EXPORT_SYMBOL(blk_queue_invalidate_tags);
1188
1189void blk_dump_rq_flags(struct request *rq, char *msg)
1190{
1191	int bit;
1192
1193	printk("%s: dev %s: type=%x, flags=%x\n", msg,
1194		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1195		rq->cmd_flags);
1196
1197	printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1198						       rq->nr_sectors,
1199						       rq->current_nr_sectors);
1200	printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1201
1202	if (blk_pc_request(rq)) {
1203		printk("cdb: ");
1204		for (bit = 0; bit < sizeof(rq->cmd); bit++)
1205			printk("%02x ", rq->cmd[bit]);
1206		printk("\n");
1207	}
1208}
1209
1210EXPORT_SYMBOL(blk_dump_rq_flags);
1211
1212void blk_recount_segments(request_queue_t *q, struct bio *bio)
1213{
1214	struct bio_vec *bv, *bvprv = NULL;
1215	int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
1216	int high, highprv = 1;
1217
1218	if (unlikely(!bio->bi_io_vec))
1219		return;
1220
1221	cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1222	hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
1223	bio_for_each_segment(bv, bio, i) {
1224		/*
1225		 * the trick here is making sure that a high page is never
1226		 * considered part of another segment, since that might
1227		 * change with the bounce page.
1228		 */
1229		high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1230		if (high || highprv)
1231			goto new_hw_segment;
1232		if (cluster) {
1233			if (seg_size + bv->bv_len > q->max_segment_size)
1234				goto new_segment;
1235			if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1236				goto new_segment;
1237			if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1238				goto new_segment;
1239			if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1240				goto new_hw_segment;
1241
1242			seg_size += bv->bv_len;
1243			hw_seg_size += bv->bv_len;
1244			bvprv = bv;
1245			continue;
1246		}
1247new_segment:
1248		if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
1249		    !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
1250			hw_seg_size += bv->bv_len;
1251		} else {
1252new_hw_segment:
1253			if (hw_seg_size > bio->bi_hw_front_size)
1254				bio->bi_hw_front_size = hw_seg_size;
1255			hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1256			nr_hw_segs++;
1257		}
1258
1259		nr_phys_segs++;
1260		bvprv = bv;
1261		seg_size = bv->bv_len;
1262		highprv = high;
1263	}
1264	if (hw_seg_size > bio->bi_hw_back_size)
1265		bio->bi_hw_back_size = hw_seg_size;
1266	if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
1267		bio->bi_hw_front_size = hw_seg_size;
1268	bio->bi_phys_segments = nr_phys_segs;
1269	bio->bi_hw_segments = nr_hw_segs;
1270	bio->bi_flags |= (1 << BIO_SEG_VALID);
1271}
1272EXPORT_SYMBOL(blk_recount_segments);
1273
1274static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
1275				   struct bio *nxt)
1276{
1277	if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1278		return 0;
1279
1280	if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1281		return 0;
1282	if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1283		return 0;
1284
1285	/*
1286	 * bio and nxt are contigous in memory, check if the queue allows
1287	 * these two to be merged into one
1288	 */
1289	if (BIO_SEG_BOUNDARY(q, bio, nxt))
1290		return 1;
1291
1292	return 0;
1293}
1294
1295static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
1296				 struct bio *nxt)
1297{
1298	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1299		blk_recount_segments(q, bio);
1300	if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1301		blk_recount_segments(q, nxt);
1302	if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
1303	    BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
1304		return 0;
1305	if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1306		return 0;
1307
1308	return 1;
1309}
1310
1311/*
1312 * map a request to scatterlist, return number of sg entries setup. Caller
1313 * must make sure sg can hold rq->nr_phys_segments entries
1314 */
1315int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
1316{
1317	struct bio_vec *bvec, *bvprv;
1318	struct bio *bio;
1319	int nsegs, i, cluster;
1320
1321	nsegs = 0;
1322	cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1323
1324	/*
1325	 * for each bio in rq
1326	 */
1327	bvprv = NULL;
1328	rq_for_each_bio(bio, rq) {
1329		/*
1330		 * for each segment in bio
1331		 */
1332		bio_for_each_segment(bvec, bio, i) {
1333			int nbytes = bvec->bv_len;
1334
1335			if (bvprv && cluster) {
1336				if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
1337					goto new_segment;
1338
1339				if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1340					goto new_segment;
1341				if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1342					goto new_segment;
1343
1344				sg[nsegs - 1].length += nbytes;
1345			} else {
1346new_segment:
1347				memset(&sg[nsegs],0,sizeof(struct scatterlist));
1348				sg[nsegs].page = bvec->bv_page;
1349				sg[nsegs].length = nbytes;
1350				sg[nsegs].offset = bvec->bv_offset;
1351
1352				nsegs++;
1353			}
1354			bvprv = bvec;
1355		} /* segments in bio */
1356	} /* bios in rq */
1357
1358	return nsegs;
1359}
1360
1361EXPORT_SYMBOL(blk_rq_map_sg);
1362
1363/*
1364 * the standard queue merge functions, can be overridden with device
1365 * specific ones if so desired
1366 */
1367
1368static inline int ll_new_mergeable(request_queue_t *q,
1369				   struct request *req,
1370				   struct bio *bio)
1371{
1372	int nr_phys_segs = bio_phys_segments(q, bio);
1373
1374	if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1375		req->cmd_flags |= REQ_NOMERGE;
1376		if (req == q->last_merge)
1377			q->last_merge = NULL;
1378		return 0;
1379	}
1380
1381	/*
1382	 * A hw segment is just getting larger, bump just the phys
1383	 * counter.
1384	 */
1385	req->nr_phys_segments += nr_phys_segs;
1386	return 1;
1387}
1388
1389static inline int ll_new_hw_segment(request_queue_t *q,
1390				    struct request *req,
1391				    struct bio *bio)
1392{
1393	int nr_hw_segs = bio_hw_segments(q, bio);
1394	int nr_phys_segs = bio_phys_segments(q, bio);
1395
1396	if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1397	    || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
1398		req->cmd_flags |= REQ_NOMERGE;
1399		if (req == q->last_merge)
1400			q->last_merge = NULL;
1401		return 0;
1402	}
1403
1404	/*
1405	 * This will form the start of a new hw segment.  Bump both
1406	 * counters.
1407	 */
1408	req->nr_hw_segments += nr_hw_segs;
1409	req->nr_phys_segments += nr_phys_segs;
1410	return 1;
1411}
1412
1413int ll_back_merge_fn(request_queue_t *q, struct request *req, struct bio *bio)
1414{
1415	unsigned short max_sectors;
1416	int len;
1417
1418	if (unlikely(blk_pc_request(req)))
1419		max_sectors = q->max_hw_sectors;
1420	else
1421		max_sectors = q->max_sectors;
1422
1423	if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1424		req->cmd_flags |= REQ_NOMERGE;
1425		if (req == q->last_merge)
1426			q->last_merge = NULL;
1427		return 0;
1428	}
1429	if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1430		blk_recount_segments(q, req->biotail);
1431	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1432		blk_recount_segments(q, bio);
1433	len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1434	if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1435	    !BIOVEC_VIRT_OVERSIZE(len)) {
1436		int mergeable =  ll_new_mergeable(q, req, bio);
1437
1438		if (mergeable) {
1439			if (req->nr_hw_segments == 1)
1440				req->bio->bi_hw_front_size = len;
1441			if (bio->bi_hw_segments == 1)
1442				bio->bi_hw_back_size = len;
1443		}
1444		return mergeable;
1445	}
1446
1447	return ll_new_hw_segment(q, req, bio);
1448}
1449EXPORT_SYMBOL(ll_back_merge_fn);
1450
1451static int ll_front_merge_fn(request_queue_t *q, struct request *req,
1452			     struct bio *bio)
1453{
1454	unsigned short max_sectors;
1455	int len;
1456
1457	if (unlikely(blk_pc_request(req)))
1458		max_sectors = q->max_hw_sectors;
1459	else
1460		max_sectors = q->max_sectors;
1461
1462
1463	if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
1464		req->cmd_flags |= REQ_NOMERGE;
1465		if (req == q->last_merge)
1466			q->last_merge = NULL;
1467		return 0;
1468	}
1469	len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1470	if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1471		blk_recount_segments(q, bio);
1472	if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1473		blk_recount_segments(q, req->bio);
1474	if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1475	    !BIOVEC_VIRT_OVERSIZE(len)) {
1476		int mergeable =  ll_new_mergeable(q, req, bio);
1477
1478		if (mergeable) {
1479			if (bio->bi_hw_segments == 1)
1480				bio->bi_hw_front_size = len;
1481			if (req->nr_hw_segments == 1)
1482				req->biotail->bi_hw_back_size = len;
1483		}
1484		return mergeable;
1485	}
1486
1487	return ll_new_hw_segment(q, req, bio);
1488}
1489
1490static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
1491				struct request *next)
1492{
1493	int total_phys_segments;
1494	int total_hw_segments;
1495
1496	/*
1497	 * First check if the either of the requests are re-queued
1498	 * requests.  Can't merge them if they are.
1499	 */
1500	if (req->special || next->special)
1501		return 0;
1502
1503	/*
1504	 * Will it become too large?
1505	 */
1506	if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1507		return 0;
1508
1509	total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1510	if (blk_phys_contig_segment(q, req->biotail, next->bio))
1511		total_phys_segments--;
1512
1513	if (total_phys_segments > q->max_phys_segments)
1514		return 0;
1515
1516	total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1517	if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1518		int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1519		/*
1520		 * propagate the combined length to the end of the requests
1521		 */
1522		if (req->nr_hw_segments == 1)
1523			req->bio->bi_hw_front_size = len;
1524		if (next->nr_hw_segments == 1)
1525			next->biotail->bi_hw_back_size = len;
1526		total_hw_segments--;
1527	}
1528
1529	if (total_hw_segments > q->max_hw_segments)
1530		return 0;
1531
1532	/* Merge is OK... */
1533	req->nr_phys_segments = total_phys_segments;
1534	req->nr_hw_segments = total_hw_segments;
1535	return 1;
1536}
1537
1538/*
1539 * "plug" the device if there are no outstanding requests: this will
1540 * force the transfer to start only after we have put all the requests
1541 * on the list.
1542 *
1543 * This is called with interrupts off and no requests on the queue and
1544 * with the queue lock held.
1545 */
1546void blk_plug_device(request_queue_t *q)
1547{
1548	WARN_ON(!irqs_disabled());
1549
1550	/*
1551	 * don't plug a stopped queue, it must be paired with blk_start_queue()
1552	 * which will restart the queueing
1553	 */
1554	if (blk_queue_stopped(q))
1555		return;
1556
1557	if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1558		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
1559		blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1560	}
1561}
1562
1563EXPORT_SYMBOL(blk_plug_device);
1564
1565/*
1566 * remove the queue from the plugged list, if present. called with
1567 * queue lock held and interrupts disabled.
1568 */
1569int blk_remove_plug(request_queue_t *q)
1570{
1571	WARN_ON(!irqs_disabled());
1572
1573	if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1574		return 0;
1575
1576	del_timer(&q->unplug_timer);
1577	return 1;
1578}
1579
1580EXPORT_SYMBOL(blk_remove_plug);
1581
1582/*
1583 * remove the plug and let it rip..
1584 */
1585void __generic_unplug_device(request_queue_t *q)
1586{
1587	if (unlikely(blk_queue_stopped(q)))
1588		return;
1589
1590	if (!blk_remove_plug(q))
1591		return;
1592
1593	q->request_fn(q);
1594}
1595EXPORT_SYMBOL(__generic_unplug_device);
1596
1597/**
1598 * generic_unplug_device - fire a request queue
1599 * @q:    The &request_queue_t in question
1600 *
1601 * Description:
1602 *   Linux uses plugging to build bigger requests queues before letting
1603 *   the device have at them. If a queue is plugged, the I/O scheduler
1604 *   is still adding and merging requests on the queue. Once the queue
1605 *   gets unplugged, the request_fn defined for the queue is invoked and
1606 *   transfers started.
1607 **/
1608void generic_unplug_device(request_queue_t *q)
1609{
1610	spin_lock_irq(q->queue_lock);
1611	__generic_unplug_device(q);
1612	spin_unlock_irq(q->queue_lock);
1613}
1614EXPORT_SYMBOL(generic_unplug_device);
1615
1616static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1617				   struct page *page)
1618{
1619	request_queue_t *q = bdi->unplug_io_data;
1620
1621	/*
1622	 * devices don't necessarily have an ->unplug_fn defined
1623	 */
1624	if (q->unplug_fn) {
1625		blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1626					q->rq.count[READ] + q->rq.count[WRITE]);
1627
1628		q->unplug_fn(q);
1629	}
1630}
1631
1632static void blk_unplug_work(struct work_struct *work)
1633{
1634	request_queue_t *q = container_of(work, request_queue_t, unplug_work);
1635
1636	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1637				q->rq.count[READ] + q->rq.count[WRITE]);
1638
1639	q->unplug_fn(q);
1640}
1641
1642static void blk_unplug_timeout(unsigned long data)
1643{
1644	request_queue_t *q = (request_queue_t *)data;
1645
1646	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1647				q->rq.count[READ] + q->rq.count[WRITE]);
1648
1649	kblockd_schedule_work(&q->unplug_work);
1650}
1651
1652/**
1653 * blk_start_queue - restart a previously stopped queue
1654 * @q:    The &request_queue_t in question
1655 *
1656 * Description:
1657 *   blk_start_queue() will clear the stop flag on the queue, and call
1658 *   the request_fn for the queue if it was in a stopped state when
1659 *   entered. Also see blk_stop_queue(). Queue lock must be held.
1660 **/
1661void blk_start_queue(request_queue_t *q)
1662{
1663	WARN_ON(!irqs_disabled());
1664
1665	clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1666
1667	/*
1668	 * one level of recursion is ok and is much faster than kicking
1669	 * the unplug handling
1670	 */
1671	if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1672		q->request_fn(q);
1673		clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1674	} else {
1675		blk_plug_device(q);
1676		kblockd_schedule_work(&q->unplug_work);
1677	}
1678}
1679
1680EXPORT_SYMBOL(blk_start_queue);
1681
1682/**
1683 * blk_stop_queue - stop a queue
1684 * @q:    The &request_queue_t in question
1685 *
1686 * Description:
1687 *   The Linux block layer assumes that a block driver will consume all
1688 *   entries on the request queue when the request_fn strategy is called.
1689 *   Often this will not happen, because of hardware limitations (queue
1690 *   depth settings). If a device driver gets a 'queue full' response,
1691 *   or if it simply chooses not to queue more I/O at one point, it can
1692 *   call this function to prevent the request_fn from being called until
1693 *   the driver has signalled it's ready to go again. This happens by calling
1694 *   blk_start_queue() to restart queue operations. Queue lock must be held.
1695 **/
1696void blk_stop_queue(request_queue_t *q)
1697{
1698	blk_remove_plug(q);
1699	set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1700}
1701EXPORT_SYMBOL(blk_stop_queue);
1702
1703/**
1704 * blk_sync_queue - cancel any pending callbacks on a queue
1705 * @q: the queue
1706 *
1707 * Description:
1708 *     The block layer may perform asynchronous callback activity
1709 *     on a queue, such as calling the unplug function after a timeout.
1710 *     A block device may call blk_sync_queue to ensure that any
1711 *     such activity is cancelled, thus allowing it to release resources
1712 *     that the callbacks might use. The caller must already have made sure
1713 *     that its ->make_request_fn will not re-add plugging prior to calling
1714 *     this function.
1715 *
1716 */
1717void blk_sync_queue(struct request_queue *q)
1718{
1719	del_timer_sync(&q->unplug_timer);
1720}
1721EXPORT_SYMBOL(blk_sync_queue);
1722
1723/**
1724 * blk_run_queue - run a single device queue
1725 * @q:	The queue to run
1726 */
1727void blk_run_queue(struct request_queue *q)
1728{
1729	unsigned long flags;
1730
1731	spin_lock_irqsave(q->queue_lock, flags);
1732	blk_remove_plug(q);
1733
1734	/*
1735	 * Only recurse once to avoid overrunning the stack, let the unplug
1736	 * handling reinvoke the handler shortly if we already got there.
1737	 */
1738	if (!elv_queue_empty(q)) {
1739		if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1740			q->request_fn(q);
1741			clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1742		} else {
1743			blk_plug_device(q);
1744			kblockd_schedule_work(&q->unplug_work);
1745		}
1746	}
1747
1748	spin_unlock_irqrestore(q->queue_lock, flags);
1749}
1750EXPORT_SYMBOL(blk_run_queue);
1751
1752/**
1753 * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
1754 * @kobj:    the kobj belonging of the request queue to be released
1755 *
1756 * Description:
1757 *     blk_cleanup_queue is the pair to blk_init_queue() or
1758 *     blk_queue_make_request().  It should be called when a request queue is
1759 *     being released; typically when a block device is being de-registered.
1760 *     Currently, its primary task it to free all the &struct request
1761 *     structures that were allocated to the queue and the queue itself.
1762 *
1763 * Caveat:
1764 *     Hopefully the low level driver will have finished any
1765 *     outstanding requests first...
1766 **/
1767static void blk_release_queue(struct kobject *kobj)
1768{
1769	request_queue_t *q = container_of(kobj, struct request_queue, kobj);
1770	struct request_list *rl = &q->rq;
1771
1772	blk_sync_queue(q);
1773
1774	if (rl->rq_pool)
1775		mempool_destroy(rl->rq_pool);
1776
1777	if (q->queue_tags)
1778		__blk_queue_free_tags(q);
1779
1780	blk_trace_shutdown(q);
1781
1782	kmem_cache_free(requestq_cachep, q);
1783}
1784
1785void blk_put_queue(request_queue_t *q)
1786{
1787	kobject_put(&q->kobj);
1788}
1789EXPORT_SYMBOL(blk_put_queue);
1790
1791void blk_cleanup_queue(request_queue_t * q)
1792{
1793	mutex_lock(&q->sysfs_lock);
1794	set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1795	mutex_unlock(&q->sysfs_lock);
1796
1797	if (q->elevator)
1798		elevator_exit(q->elevator);
1799
1800	blk_put_queue(q);
1801}
1802
1803EXPORT_SYMBOL(blk_cleanup_queue);
1804
1805static int blk_init_free_list(request_queue_t *q)
1806{
1807	struct request_list *rl = &q->rq;
1808
1809	rl->count[READ] = rl->count[WRITE] = 0;
1810	rl->starved[READ] = rl->starved[WRITE] = 0;
1811	rl->elvpriv = 0;
1812	init_waitqueue_head(&rl->wait[READ]);
1813	init_waitqueue_head(&rl->wait[WRITE]);
1814
1815	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1816				mempool_free_slab, request_cachep, q->node);
1817
1818	if (!rl->rq_pool)
1819		return -ENOMEM;
1820
1821	return 0;
1822}
1823
1824request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
1825{
1826	return blk_alloc_queue_node(gfp_mask, -1);
1827}
1828EXPORT_SYMBOL(blk_alloc_queue);
1829
1830static struct kobj_type queue_ktype;
1831
1832request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1833{
1834	request_queue_t *q;
1835
1836	q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
1837	if (!q)
1838		return NULL;
1839
1840	memset(q, 0, sizeof(*q));
1841	init_timer(&q->unplug_timer);
1842
1843	snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
1844	q->kobj.ktype = &queue_ktype;
1845	kobject_init(&q->kobj);
1846
1847	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1848	q->backing_dev_info.unplug_io_data = q;
1849
1850	mutex_init(&q->sysfs_lock);
1851
1852	return q;
1853}
1854EXPORT_SYMBOL(blk_alloc_queue_node);
1855
1856/**
1857 * blk_init_queue  - prepare a request queue for use with a block device
1858 * @rfn:  The function to be called to process requests that have been
1859 *        placed on the queue.
1860 * @lock: Request queue spin lock
1861 *
1862 * Description:
1863 *    If a block device wishes to use the standard request handling procedures,
1864 *    which sorts requests and coalesces adjacent requests, then it must
1865 *    call blk_init_queue().  The function @rfn will be called when there
1866 *    are requests on the queue that need to be processed.  If the device
1867 *    supports plugging, then @rfn may not be called immediately when requests
1868 *    are available on the queue, but may be called at some time later instead.
1869 *    Plugged queues are generally unplugged when a buffer belonging to one
1870 *    of the requests on the queue is needed, or due to memory pressure.
1871 *
1872 *    @rfn is not required, or even expected, to remove all requests off the
1873 *    queue, but only as many as it can handle at a time.  If it does leave
1874 *    requests on the queue, it is responsible for arranging that the requests
1875 *    get dealt with eventually.
1876 *
1877 *    The queue spin lock must be held while manipulating the requests on the
1878 *    request queue; this lock will be taken also from interrupt context, so irq
1879 *    disabling is needed for it.
1880 *
1881 *    Function returns a pointer to the initialized request queue, or NULL if
1882 *    it didn't succeed.
1883 *
1884 * Note:
1885 *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1886 *    when the block device is deactivated (such as at module unload).
1887 **/
1888
1889request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1890{
1891	return blk_init_queue_node(rfn, lock, -1);
1892}
1893EXPORT_SYMBOL(blk_init_queue);
1894
1895request_queue_t *
1896blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1897{
1898	request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1899
1900	if (!q)
1901		return NULL;
1902
1903	q->node = node_id;
1904	if (blk_init_free_list(q)) {
1905		kmem_cache_free(requestq_cachep, q);
1906		return NULL;
1907	}
1908
1909	/*
1910	 * if caller didn't supply a lock, they get per-queue locking with
1911	 * our embedded lock
1912	 */
1913	if (!lock) {
1914		spin_lock_init(&q->__queue_lock);
1915		lock = &q->__queue_lock;
1916	}
1917
1918	q->request_fn		= rfn;
1919	q->prep_rq_fn		= NULL;
1920	q->unplug_fn		= generic_unplug_device;
1921	q->queue_flags		= (1 << QUEUE_FLAG_CLUSTER);
1922	q->queue_lock		= lock;
1923
1924	blk_queue_segment_boundary(q, 0xffffffff);
1925
1926	blk_queue_make_request(q, __make_request);
1927	blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1928
1929	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1930	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1931
1932	q->sg_reserved_size = INT_MAX;
1933
1934	/*
1935	 * all done
1936	 */
1937	if (!elevator_init(q, NULL)) {
1938		blk_queue_congestion_threshold(q);
1939		return q;
1940	}
1941
1942	blk_put_queue(q);
1943	return NULL;
1944}
1945EXPORT_SYMBOL(blk_init_queue_node);
1946
1947int blk_get_queue(request_queue_t *q)
1948{
1949	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
1950		kobject_get(&q->kobj);
1951		return 0;
1952	}
1953
1954	return 1;
1955}
1956
1957EXPORT_SYMBOL(blk_get_queue);
1958
1959static inline void blk_free_request(request_queue_t *q, struct request *rq)
1960{
1961	if (rq->cmd_flags & REQ_ELVPRIV)
1962		elv_put_request(q, rq);
1963	mempool_free(rq, q->rq.rq_pool);
1964}
1965
1966static struct request *
1967blk_alloc_request(request_queue_t *q, int rw, int priv, gfp_t gfp_mask)
1968{
1969	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1970
1971	if (!rq)
1972		return NULL;
1973
1974	/*
1975	 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1976	 * see bio.h and blkdev.h
1977	 */
1978	rq->cmd_flags = rw | REQ_ALLOCED;
1979
1980	if (priv) {
1981		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
1982			mempool_free(rq, q->rq.rq_pool);
1983			return NULL;
1984		}
1985		rq->cmd_flags |= REQ_ELVPRIV;
1986	}
1987
1988	return rq;
1989}
1990
1991/*
1992 * ioc_batching returns true if the ioc is a valid batching request and
1993 * should be given priority access to a request.
1994 */
1995static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
1996{
1997	if (!ioc)
1998		return 0;
1999
2000	/*
2001	 * Make sure the process is able to allocate at least 1 request
2002	 * even if the batch times out, otherwise we could theoretically
2003	 * lose wakeups.
2004	 */
2005	return ioc->nr_batch_requests == q->nr_batching ||
2006		(ioc->nr_batch_requests > 0
2007		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2008}
2009
2010/*
2011 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2012 * will cause the process to be a "batcher" on all queues in the system. This
2013 * is the behaviour we want though - once it gets a wakeup it should be given
2014 * a nice run.
2015 */
2016static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
2017{
2018	if (!ioc || ioc_batching(q, ioc))
2019		return;
2020
2021	ioc->nr_batch_requests = q->nr_batching;
2022	ioc->last_waited = jiffies;
2023}
2024
2025static void __freed_request(request_queue_t *q, int rw)
2026{
2027	struct request_list *rl = &q->rq;
2028
2029	if (rl->count[rw] < queue_congestion_off_threshold(q))
2030		blk_clear_queue_congested(q, rw);
2031
2032	if (rl->count[rw] + 1 <= q->nr_requests) {
2033		if (waitqueue_active(&rl->wait[rw]))
2034			wake_up(&rl->wait[rw]);
2035
2036		blk_clear_queue_full(q, rw);
2037	}
2038}
2039
2040/*
2041 * A request has just been released.  Account for it, update the full and
2042 * congestion status, wake up any waiters.   Called under q->queue_lock.
2043 */
2044static void freed_request(request_queue_t *q, int rw, int priv)
2045{
2046	struct request_list *rl = &q->rq;
2047
2048	rl->count[rw]--;
2049	if (priv)
2050		rl->elvpriv--;
2051
2052	__freed_request(q, rw);
2053
2054	if (unlikely(rl->starved[rw ^ 1]))
2055		__freed_request(q, rw ^ 1);
2056}
2057
2058#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2059/*
2060 * Get a free request, queue_lock must be held.
2061 * Returns NULL on failure, with queue_lock held.
2062 * Returns !NULL on success, with queue_lock *not held*.
2063 */
2064static struct request *get_request(request_queue_t *q, int rw_flags,
2065				   struct bio *bio, gfp_t gfp_mask)
2066{
2067	struct request *rq = NULL;
2068	struct request_list *rl = &q->rq;
2069	struct io_context *ioc = NULL;
2070	const int rw = rw_flags & 0x01;
2071	int may_queue, priv;
2072
2073	may_queue = elv_may_queue(q, rw_flags);
2074	if (may_queue == ELV_MQUEUE_NO)
2075		goto rq_starved;
2076
2077	if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2078		if (rl->count[rw]+1 >= q->nr_requests) {
2079			ioc = current_io_context(GFP_ATOMIC, q->node);
2080			/*
2081			 * The queue will fill after this allocation, so set
2082			 * it as full, and mark this process as "batching".
2083			 * This process will be allowed to complete a batch of
2084			 * requests, others will be blocked.
2085			 */
2086			if (!blk_queue_full(q, rw)) {
2087				ioc_set_batching(q, ioc);
2088				blk_set_queue_full(q, rw);
2089			} else {
2090				if (may_queue != ELV_MQUEUE_MUST
2091						&& !ioc_batching(q, ioc)) {
2092					/*
2093					 * The queue is full and the allocating
2094					 * process is not a "batcher", and not
2095					 * exempted by the IO scheduler
2096					 */
2097					goto out;
2098				}
2099			}
2100		}
2101		blk_set_queue_congested(q, rw);
2102	}
2103
2104	/*
2105	 * Only allow batching queuers to allocate up to 50% over the defined
2106	 * limit of requests, otherwise we could have thousands of requests
2107	 * allocated with any setting of ->nr_requests
2108	 */
2109	if (rl->count[rw] >= (3 * q->nr_requests / 2))
2110		goto out;
2111
2112	rl->count[rw]++;
2113	rl->starved[rw] = 0;
2114
2115	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
2116	if (priv)
2117		rl->elvpriv++;
2118
2119	spin_unlock_irq(q->queue_lock);
2120
2121	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
2122	if (unlikely(!rq)) {
2123		/*
2124		 * Allocation failed presumably due to memory. Undo anything
2125		 * we might have messed up.
2126		 *
2127		 * Allocating task should really be put onto the front of the
2128		 * wait queue, but this is pretty rare.
2129		 */
2130		spin_lock_irq(q->queue_lock);
2131		freed_request(q, rw, priv);
2132
2133		/*
2134		 * in the very unlikely event that allocation failed and no
2135		 * requests for this direction was pending, mark us starved
2136		 * so that freeing of a request in the other direction will
2137		 * notice us. another possible fix would be to split the
2138		 * rq mempool into READ and WRITE
2139		 */
2140rq_starved:
2141		if (unlikely(rl->count[rw] == 0))
2142			rl->starved[rw] = 1;
2143
2144		goto out;
2145	}
2146
2147	/*
2148	 * ioc may be NULL here, and ioc_batching will be false. That's
2149	 * OK, if the queue is under the request limit then requests need
2150	 * not count toward the nr_batch_requests limit. There will always
2151	 * be some limit enforced by BLK_BATCH_TIME.
2152	 */
2153	if (ioc_batching(q, ioc))
2154		ioc->nr_batch_requests--;
2155
2156	rq_init(q, rq);
2157
2158	blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
2159out:
2160	return rq;
2161}
2162
2163/*
2164 * No available requests for this queue, unplug the device and wait for some
2165 * requests to become available.
2166 *
2167 * Called with q->queue_lock held, and returns with it unlocked.
2168 */
2169static struct request *get_request_wait(request_queue_t *q, int rw_flags,
2170					struct bio *bio)
2171{
2172	const int rw = rw_flags & 0x01;
2173	struct request *rq;
2174
2175	rq = get_request(q, rw_flags, bio, GFP_NOIO);
2176	while (!rq) {
2177		DEFINE_WAIT(wait);
2178		struct request_list *rl = &q->rq;
2179
2180		prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2181				TASK_UNINTERRUPTIBLE);
2182
2183		rq = get_request(q, rw_flags, bio, GFP_NOIO);
2184
2185		if (!rq) {
2186			struct io_context *ioc;
2187
2188			blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2189
2190			__generic_unplug_device(q);
2191			spin_unlock_irq(q->queue_lock);
2192			io_schedule();
2193
2194			/*
2195			 * After sleeping, we become a "batching" process and
2196			 * will be able to allocate at least one request, and
2197			 * up to a big batch of them for a small period time.
2198			 * See ioc_batching, ioc_set_batching
2199			 */
2200			ioc = current_io_context(GFP_NOIO, q->node);
2201			ioc_set_batching(q, ioc);
2202
2203			spin_lock_irq(q->queue_lock);
2204		}
2205		finish_wait(&rl->wait[rw], &wait);
2206	}
2207
2208	return rq;
2209}
2210
2211struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
2212{
2213	struct request *rq;
2214
2215	BUG_ON(rw != READ && rw != WRITE);
2216
2217	spin_lock_irq(q->queue_lock);
2218	if (gfp_mask & __GFP_WAIT) {
2219		rq = get_request_wait(q, rw, NULL);
2220	} else {
2221		rq = get_request(q, rw, NULL, gfp_mask);
2222		if (!rq)
2223			spin_unlock_irq(q->queue_lock);
2224	}
2225	/* q->queue_lock is unlocked at this point */
2226
2227	return rq;
2228}
2229EXPORT_SYMBOL(blk_get_request);
2230
2231/**
2232 * blk_start_queueing - initiate dispatch of requests to device
2233 * @q:		request queue to kick into gear
2234 *
2235 * This is basically a helper to remove the need to know whether a queue
2236 * is plugged or not if someone just wants to initiate dispatch of requests
2237 * for this queue.
2238 *
2239 * The queue lock must be held with interrupts disabled.
2240 */
2241void blk_start_queueing(request_queue_t *q)
2242{
2243	if (!blk_queue_plugged(q))
2244		q->request_fn(q);
2245	else
2246		__generic_unplug_device(q);
2247}
2248EXPORT_SYMBOL(blk_start_queueing);
2249
2250/**
2251 * blk_requeue_request - put a request back on queue
2252 * @q:		request queue where request should be inserted
2253 * @rq:		request to be inserted
2254 *
2255 * Description:
2256 *    Drivers often keep queueing requests until the hardware cannot accept
2257 *    more, when that condition happens we need to put the request back
2258 *    on the queue. Must be called with queue lock held.
2259 */
2260void blk_requeue_request(request_queue_t *q, struct request *rq)
2261{
2262	blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2263
2264	if (blk_rq_tagged(rq))
2265		blk_queue_end_tag(q, rq);
2266
2267	elv_requeue_request(q, rq);
2268}
2269
2270EXPORT_SYMBOL(blk_requeue_request);
2271
2272/**
2273 * blk_insert_request - insert a special request in to a request queue
2274 * @q:		request queue where request should be inserted
2275 * @rq:		request to be inserted
2276 * @at_head:	insert request at head or tail of queue
2277 * @data:	private data
2278 *
2279 * Description:
2280 *    Many block devices need to execute commands asynchronously, so they don't
2281 *    block the whole kernel from preemption during request execution.  This is
2282 *    accomplished normally by inserting aritficial requests tagged as
2283 *    REQ_SPECIAL in to the corresponding request queue, and letting them be
2284 *    scheduled for actual execution by the request queue.
2285 *
2286 *    We have the option of inserting the head or the tail of the queue.
2287 *    Typically we use the tail for new ioctls and so forth.  We use the head
2288 *    of the queue for things like a QUEUE_FULL message from a device, or a
2289 *    host that is unable to accept a particular command.
2290 */
2291void blk_insert_request(request_queue_t *q, struct request *rq,
2292			int at_head, void *data)
2293{
2294	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2295	unsigned long flags;
2296
2297	/*
2298	 * tell I/O scheduler that this isn't a regular read/write (ie it
2299	 * must not attempt merges on this) and that it acts as a soft
2300	 * barrier
2301	 */
2302	rq->cmd_type = REQ_TYPE_SPECIAL;
2303	rq->cmd_flags |= REQ_SOFTBARRIER;
2304
2305	rq->special = data;
2306
2307	spin_lock_irqsave(q->queue_lock, flags);
2308
2309	/*
2310	 * If command is tagged, release the tag
2311	 */
2312	if (blk_rq_tagged(rq))
2313		blk_queue_end_tag(q, rq);
2314
2315	drive_stat_acct(rq, rq->nr_sectors, 1);
2316	__elv_add_request(q, rq, where, 0);
2317	blk_start_queueing(q);
2318	spin_unlock_irqrestore(q->queue_lock, flags);
2319}
2320
2321EXPORT_SYMBOL(blk_insert_request);
2322
2323static int __blk_rq_unmap_user(struct bio *bio)
2324{
2325	int ret = 0;
2326
2327	if (bio) {
2328		if (bio_flagged(bio, BIO_USER_MAPPED))
2329			bio_unmap_user(bio);
2330		else
2331			ret = bio_uncopy_user(bio);
2332	}
2333
2334	return ret;
2335}
2336
2337static int __blk_rq_map_user(request_queue_t *q, struct request *rq,
2338			     void __user *ubuf, unsigned int len)
2339{
2340	unsigned long uaddr;
2341	struct bio *bio, *orig_bio;
2342	int reading, ret;
2343
2344	reading = rq_data_dir(rq) == READ;
2345
2346	/*
2347	 * if alignment requirement is satisfied, map in user pages for
2348	 * direct dma. else, set up kernel bounce buffers
2349	 */
2350	uaddr = (unsigned long) ubuf;
2351	if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2352		bio = bio_map_user(q, NULL, uaddr, len, reading);
2353	else
2354		bio = bio_copy_user(q, uaddr, len, reading);
2355
2356	if (IS_ERR(bio))
2357		return PTR_ERR(bio);
2358
2359	orig_bio = bio;
2360	blk_queue_bounce(q, &bio);
2361
2362	/*
2363	 * We link the bounce buffer in and could have to traverse it
2364	 * later so we have to get a ref to prevent it from being freed
2365	 */
2366	bio_get(bio);
2367
2368	if (!rq->bio)
2369		blk_rq_bio_prep(q, rq, bio);
2370	else if (!ll_back_merge_fn(q, rq, bio)) {
2371		ret = -EINVAL;
2372		goto unmap_bio;
2373	} else {
2374		rq->biotail->bi_next = bio;
2375		rq->biotail = bio;
2376
2377		rq->data_len += bio->bi_size;
2378	}
2379
2380	return bio->bi_size;
2381
2382unmap_bio:
2383	/* if it was boucned we must call the end io function */
2384	bio_endio(bio, bio->bi_size, 0);
2385	__blk_rq_unmap_user(orig_bio);
2386	bio_put(bio);
2387	return ret;
2388}
2389
2390/**
2391 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2392 * @q:		request queue where request should be inserted
2393 * @rq:		request structure to fill
2394 * @ubuf:	the user buffer
2395 * @len:	length of user data
2396 *
2397 * Description:
2398 *    Data will be mapped directly for zero copy io, if possible. Otherwise
2399 *    a kernel bounce buffer is used.
2400 *
2401 *    A matching blk_rq_unmap_user() must be issued at the end of io, while
2402 *    still in process context.
2403 *
2404 *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
2405 *    before being submitted to the device, as pages mapped may be out of
2406 *    reach. It's the callers responsibility to make sure this happens. The
2407 *    original bio must be passed back in to blk_rq_unmap_user() for proper
2408 *    unmapping.
2409 */
2410int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
2411		    unsigned long len)
2412{
2413	unsigned long bytes_read = 0;
2414	struct bio *bio = NULL;
2415	int ret;
2416
2417	if (len > (q->max_hw_sectors << 9))
2418		return -EINVAL;
2419	if (!len || !ubuf)
2420		return -EINVAL;
2421
2422	while (bytes_read != len) {
2423		unsigned long map_len, end, start;
2424
2425		map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2426		end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2427								>> PAGE_SHIFT;
2428		start = (unsigned long)ubuf >> PAGE_SHIFT;
2429
2430		/*
2431		 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2432		 * pages. If this happens we just lower the requested
2433		 * mapping len by a page so that we can fit
2434		 */
2435		if (end - start > BIO_MAX_PAGES)
2436			map_len -= PAGE_SIZE;
2437
2438		ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2439		if (ret < 0)
2440			goto unmap_rq;
2441		if (!bio)
2442			bio = rq->bio;
2443		bytes_read += ret;
2444		ubuf += ret;
2445	}
2446
2447	rq->buffer = rq->data = NULL;
2448	return 0;
2449unmap_rq:
2450	blk_rq_unmap_user(bio);
2451	return ret;
2452}
2453
2454EXPORT_SYMBOL(blk_rq_map_user);
2455
2456/**
2457 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2458 * @q:		request queue where request should be inserted
2459 * @rq:		request to map data to
2460 * @iov:	pointer to the iovec
2461 * @iov_count:	number of elements in the iovec
2462 * @len:	I/O byte count
2463 *
2464 * Description:
2465 *    Data will be mapped directly for zero copy io, if possible. Otherwise
2466 *    a kernel bounce buffer is used.
2467 *
2468 *    A matching blk_rq_unmap_user() must be issued at the end of io, while
2469 *    still in process context.
2470 *
2471 *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
2472 *    before being submitted to the device, as pages mapped may be out of
2473 *    reach. It's the callers responsibility to make sure this happens. The
2474 *    original bio must be passed back in to blk_rq_unmap_user() for proper
2475 *    unmapping.
2476 */
2477int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
2478			struct sg_iovec *iov, int iov_count, unsigned int len)
2479{
2480	struct bio *bio;
2481
2482	if (!iov || iov_count <= 0)
2483		return -EINVAL;
2484
2485	/* we don't allow misaligned data like bio_map_user() does.  If the
2486	 * user is using sg, they're expected to know the alignment constraints
2487	 * and respect them accordingly */
2488	bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2489	if (IS_ERR(bio))
2490		return PTR_ERR(bio);
2491
2492	if (bio->bi_size != len) {
2493		bio_endio(bio, bio->bi_size, 0);
2494		bio_unmap_user(bio);
2495		return -EINVAL;
2496	}
2497
2498	bio_get(bio);
2499	blk_rq_bio_prep(q, rq, bio);
2500	rq->buffer = rq->data = NULL;
2501	return 0;
2502}
2503
2504EXPORT_SYMBOL(blk_rq_map_user_iov);
2505
2506/**
2507 * blk_rq_unmap_user - unmap a request with user data
2508 * @bio:	       start of bio list
2509 *
2510 * Description:
2511 *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2512 *    supply the original rq->bio from the blk_rq_map_user() return, since
2513 *    the io completion may have changed rq->bio.
2514 */
2515int blk_rq_unmap_user(struct bio *bio)
2516{
2517	struct bio *mapped_bio;
2518	int ret = 0, ret2;
2519
2520	while (bio) {
2521		mapped_bio = bio;
2522		if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
2523			mapped_bio = bio->bi_private;
2524
2525		ret2 = __blk_rq_unmap_user(mapped_bio);
2526		if (ret2 && !ret)
2527			ret = ret2;
2528
2529		mapped_bio = bio;
2530		bio = bio->bi_next;
2531		bio_put(mapped_bio);
2532	}
2533
2534	return ret;
2535}
2536
2537EXPORT_SYMBOL(blk_rq_unmap_user);
2538
2539/**
2540 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2541 * @q:		request queue where request should be inserted
2542 * @rq:		request to fill
2543 * @kbuf:	the kernel buffer
2544 * @len:	length of user data
2545 * @gfp_mask:	memory allocation flags
2546 */
2547int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
2548		    unsigned int len, gfp_t gfp_mask)
2549{
2550	struct bio *bio;
2551
2552	if (len > (q->max_hw_sectors << 9))
2553		return -EINVAL;
2554	if (!len || !kbuf)
2555		return -EINVAL;
2556
2557	bio = bio_map_kern(q, kbuf, len, gfp_mask);
2558	if (IS_ERR(bio))
2559		return PTR_ERR(bio);
2560
2561	if (rq_data_dir(rq) == WRITE)
2562		bio->bi_rw |= (1 << BIO_RW);
2563
2564	blk_rq_bio_prep(q, rq, bio);
2565	blk_queue_bounce(q, &rq->bio);
2566	rq->buffer = rq->data = NULL;
2567	return 0;
2568}
2569
2570EXPORT_SYMBOL(blk_rq_map_kern);
2571
2572/**
2573 * blk_execute_rq_nowait - insert a request into queue for execution
2574 * @q:		queue to insert the request in
2575 * @bd_disk:	matching gendisk
2576 * @rq:		request to insert
2577 * @at_head:    insert request at head or tail of queue
2578 * @done:	I/O completion handler
2579 *
2580 * Description:
2581 *    Insert a fully prepared request at the back of the io scheduler queue
2582 *    for execution.  Don't wait for completion.
2583 */
2584void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
2585			   struct request *rq, int at_head,
2586			   rq_end_io_fn *done)
2587{
2588	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2589
2590	rq->rq_disk = bd_disk;
2591	rq->cmd_flags |= REQ_NOMERGE;
2592	rq->end_io = done;
2593	WARN_ON(irqs_disabled());
2594	spin_lock_irq(q->queue_lock);
2595	__elv_add_request(q, rq, where, 1);
2596	__generic_unplug_device(q);
2597	spin_unlock_irq(q->queue_lock);
2598}
2599EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2600
2601/**
2602 * blk_execute_rq - insert a request into queue for execution
2603 * @q:		queue to insert the request in
2604 * @bd_disk:	matching gendisk
2605 * @rq:		request to insert
2606 * @at_head:    insert request at head or tail of queue
2607 *
2608 * Description:
2609 *    Insert a fully prepared request at the back of the io scheduler queue
2610 *    for execution and wait for completion.
2611 */
2612int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
2613		   struct request *rq, int at_head)
2614{
2615	DECLARE_COMPLETION_ONSTACK(wait);
2616	char sense[SCSI_SENSE_BUFFERSIZE];
2617	int err = 0;
2618
2619	/*
2620	 * we need an extra reference to the request, so we can look at
2621	 * it after io completion
2622	 */
2623	rq->ref_count++;
2624
2625	if (!rq->sense) {
2626		memset(sense, 0, sizeof(sense));
2627		rq->sense = sense;
2628		rq->sense_len = 0;
2629	}
2630
2631	rq->end_io_data = &wait;
2632	blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
2633	wait_for_completion(&wait);
2634
2635	if (rq->errors)
2636		err = -EIO;
2637
2638	return err;
2639}
2640
2641EXPORT_SYMBOL(blk_execute_rq);
2642
2643/**
2644 * blkdev_issue_flush - queue a flush
2645 * @bdev:	blockdev to issue flush for
2646 * @error_sector:	error sector
2647 *
2648 * Description:
2649 *    Issue a flush for the block device in question. Caller can supply
2650 *    room for storing the error offset in case of a flush error, if they
2651 *    wish to.  Caller must run wait_for_completion() on its own.
2652 */
2653int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2654{
2655	request_queue_t *q;
2656
2657	if (bdev->bd_disk == NULL)
2658		return -ENXIO;
2659
2660	q = bdev_get_queue(bdev);
2661	if (!q)
2662		return -ENXIO;
2663	if (!q->issue_flush_fn)
2664		return -EOPNOTSUPP;
2665
2666	return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
2667}
2668
2669EXPORT_SYMBOL(blkdev_issue_flush);
2670
2671static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
2672{
2673	int rw = rq_data_dir(rq);
2674
2675	if (!blk_fs_request(rq) || !rq->rq_disk)
2676		return;
2677
2678	if (!new_io) {
2679		__disk_stat_inc(rq->rq_disk, merges[rw]);
2680	} else {
2681		disk_round_stats(rq->rq_disk);
2682		rq->rq_disk->in_flight++;
2683	}
2684}
2685
2686/*
2687 * add-request adds a request to the linked list.
2688 * queue lock is held and interrupts disabled, as we muck with the
2689 * request queue list.
2690 */
2691static inline void add_request(request_queue_t * q, struct request * req)
2692{
2693	drive_stat_acct(req, req->nr_sectors, 1);
2694
2695	/*
2696	 * elevator indicated where it wants this request to be
2697	 * inserted at elevator_merge time
2698	 */
2699	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2700}
2701
2702/*
2703 * disk_round_stats()	- Round off the performance stats on a struct
2704 * disk_stats.
2705 *
2706 * The average IO queue length and utilisation statistics are maintained
2707 * by observing the current state of the queue length and the amount of
2708 * time it has been in this state for.
2709 *
2710 * Normally, that accounting is done on IO completion, but that can result
2711 * in more than a second's worth of IO being accounted for within any one
2712 * second, leading to >100% utilisation.  To deal with that, we call this
2713 * function to do a round-off before returning the results when reading
2714 * /proc/diskstats.  This accounts immediately for all queue usage up to
2715 * the current jiffies and restarts the counters again.
2716 */
2717void disk_round_stats(struct gendisk *disk)
2718{
2719	unsigned long now = jiffies;
2720
2721	if (now == disk->stamp)
2722		return;
2723
2724	if (disk->in_flight) {
2725		__disk_stat_add(disk, time_in_queue,
2726				disk->in_flight * (now - disk->stamp));
2727		__disk_stat_add(disk, io_ticks, (now - disk->stamp));
2728	}
2729	disk->stamp = now;
2730}
2731
2732EXPORT_SYMBOL_GPL(disk_round_stats);
2733
2734/*
2735 * queue lock must be held
2736 */
2737void __blk_put_request(request_queue_t *q, struct request *req)
2738{
2739	if (unlikely(!q))
2740		return;
2741	if (unlikely(--req->ref_count))
2742		return;
2743
2744	elv_completed_request(q, req);
2745
2746	/*
2747	 * Request may not have originated from ll_rw_blk. if not,
2748	 * it didn't come out of our reserved rq pools
2749	 */
2750	if (req->cmd_flags & REQ_ALLOCED) {
2751		int rw = rq_data_dir(req);
2752		int priv = req->cmd_flags & REQ_ELVPRIV;
2753
2754		BUG_ON(!list_empty(&req->queuelist));
2755		BUG_ON(!hlist_unhashed(&req->hash));
2756
2757		blk_free_request(q, req);
2758		freed_request(q, rw, priv);
2759	}
2760}
2761
2762EXPORT_SYMBOL_GPL(__blk_put_request);
2763
2764void blk_put_request(struct request *req)
2765{
2766	unsigned long flags;
2767	request_queue_t *q = req->q;
2768
2769	/*
2770	 * Gee, IDE calls in w/ NULL q.  Fix IDE and remove the
2771	 * following if (q) test.
2772	 */
2773	if (q) {
2774		spin_lock_irqsave(q->queue_lock, flags);
2775		__blk_put_request(q, req);
2776		spin_unlock_irqrestore(q->queue_lock, flags);
2777	}
2778}
2779
2780EXPORT_SYMBOL(blk_put_request);
2781
2782/**
2783 * blk_end_sync_rq - executes a completion event on a request
2784 * @rq: request to complete
2785 * @error: end io status of the request
2786 */
2787void blk_end_sync_rq(struct request *rq, int error)
2788{
2789	struct completion *waiting = rq->end_io_data;
2790
2791	rq->end_io_data = NULL;
2792	__blk_put_request(rq->q, rq);
2793
2794	/*
2795	 * complete last, if this is a stack request the process (and thus
2796	 * the rq pointer) could be invalid right after this complete()
2797	 */
2798	complete(waiting);
2799}
2800EXPORT_SYMBOL(blk_end_sync_rq);
2801
2802/*
2803 * Has to be called with the request spinlock acquired
2804 */
2805static int attempt_merge(request_queue_t *q, struct request *req,
2806			  struct request *next)
2807{
2808	if (!rq_mergeable(req) || !rq_mergeable(next))
2809		return 0;
2810
2811	/*
2812	 * not contiguous
2813	 */
2814	if (req->sector + req->nr_sectors != next->sector)
2815		return 0;
2816
2817	if (rq_data_dir(req) != rq_data_dir(next)
2818	    || req->rq_disk != next->rq_disk
2819	    || next->special)
2820		return 0;
2821
2822	/*
2823	 * If we are allowed to merge, then append bio list
2824	 * from next to rq and release next. merge_requests_fn
2825	 * will have updated segment counts, update sector
2826	 * counts here.
2827	 */
2828	if (!ll_merge_requests_fn(q, req, next))
2829		return 0;
2830
2831	/*
2832	 * At this point we have either done a back merge
2833	 * or front merge. We need the smaller start_time of
2834	 * the merged requests to be the current request
2835	 * for accounting purposes.
2836	 */
2837	if (time_after(req->start_time, next->start_time))
2838		req->start_time = next->start_time;
2839
2840	req->biotail->bi_next = next->bio;
2841	req->biotail = next->biotail;
2842
2843	req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2844
2845	elv_merge_requests(q, req, next);
2846
2847	if (req->rq_disk) {
2848		disk_round_stats(req->rq_disk);
2849		req->rq_disk->in_flight--;
2850	}
2851
2852	req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2853
2854	__blk_put_request(q, next);
2855	return 1;
2856}
2857
2858static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
2859{
2860	struct request *next = elv_latter_request(q, rq);
2861
2862	if (next)
2863		return attempt_merge(q, rq, next);
2864
2865	return 0;
2866}
2867
2868static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
2869{
2870	struct request *prev = elv_former_request(q, rq);
2871
2872	if (prev)
2873		return attempt_merge(q, prev, rq);
2874
2875	return 0;
2876}
2877
2878static void init_request_from_bio(struct request *req, struct bio *bio)
2879{
2880	req->cmd_type = REQ_TYPE_FS;
2881
2882	/*
2883	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2884	 */
2885	if (bio_rw_ahead(bio) || bio_failfast(bio))
2886		req->cmd_flags |= REQ_FAILFAST;
2887
2888	/*
2889	 * REQ_BARRIER implies no merging, but lets make it explicit
2890	 */
2891	if (unlikely(bio_barrier(bio)))
2892		req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
2893
2894	if (bio_sync(bio))
2895		req->cmd_flags |= REQ_RW_SYNC;
2896	if (bio_rw_meta(bio))
2897		req->cmd_flags |= REQ_RW_META;
2898
2899	req->errors = 0;
2900	req->hard_sector = req->sector = bio->bi_sector;
2901	req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
2902	req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
2903	req->nr_phys_segments = bio_phys_segments(req->q, bio);
2904	req->nr_hw_segments = bio_hw_segments(req->q, bio);
2905	req->buffer = bio_data(bio);	/* see ->buffer comment above */
2906	req->bio = req->biotail = bio;
2907	req->ioprio = bio_prio(bio);
2908	req->rq_disk = bio->bi_bdev->bd_disk;
2909	req->start_time = jiffies;
2910}
2911
2912static int __make_request(request_queue_t *q, struct bio *bio)
2913{
2914	struct request *req;
2915	int el_ret, nr_sectors, barrier, err;
2916	const unsigned short prio = bio_prio(bio);
2917	const int sync = bio_sync(bio);
2918	int rw_flags;
2919
2920	nr_sectors = bio_sectors(bio);
2921
2922	/*
2923	 * low level driver can indicate that it wants pages above a
2924	 * certain limit bounced to low memory (ie for highmem, or even
2925	 * ISA dma in theory)
2926	 */
2927	blk_queue_bounce(q, &bio);
2928
2929	barrier = bio_barrier(bio);
2930	if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
2931		err = -EOPNOTSUPP;
2932		goto end_io;
2933	}
2934
2935	spin_lock_irq(q->queue_lock);
2936
2937	if (unlikely(barrier) || elv_queue_empty(q))
2938		goto get_rq;
2939
2940	el_ret = elv_merge(q, &req, bio);
2941	switch (el_ret) {
2942		case ELEVATOR_BACK_MERGE:
2943			BUG_ON(!rq_mergeable(req));
2944
2945			if (!ll_back_merge_fn(q, req, bio))
2946				break;
2947
2948			blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2949
2950			req->biotail->bi_next = bio;
2951			req->biotail = bio;
2952			req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2953			req->ioprio = ioprio_best(req->ioprio, prio);
2954			drive_stat_acct(req, nr_sectors, 0);
2955			if (!attempt_back_merge(q, req))
2956				elv_merged_request(q, req, el_ret);
2957			goto out;
2958
2959		case ELEVATOR_FRONT_MERGE:
2960			BUG_ON(!rq_mergeable(req));
2961
2962			if (!ll_front_merge_fn(q, req, bio))
2963				break;
2964
2965			blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2966
2967			bio->bi_next = req->bio;
2968			req->bio = bio;
2969
2970			/*
2971			 * may not be valid. if the low level driver said
2972			 * it didn't need a bounce buffer then it better
2973			 * not touch req->buffer either...
2974			 */
2975			req->buffer = bio_data(bio);
2976			req->current_nr_sectors = bio_cur_sectors(bio);
2977			req->hard_cur_sectors = req->current_nr_sectors;
2978			req->sector = req->hard_sector = bio->bi_sector;
2979			req->nr_sectors = req->hard_nr_sectors += nr_sectors;
2980			req->ioprio = ioprio_best(req->ioprio, prio);
2981			drive_stat_acct(req, nr_sectors, 0);
2982			if (!attempt_front_merge(q, req))
2983				elv_merged_request(q, req, el_ret);
2984			goto out;
2985
2986		/* ELV_NO_MERGE: elevator says don't/can't merge. */
2987		default:
2988			;
2989	}
2990
2991get_rq:
2992	/*
2993	 * This sync check and mask will be re-done in init_request_from_bio(),
2994	 * but we need to set it earlier to expose the sync flag to the
2995	 * rq allocator and io schedulers.
2996	 */
2997	rw_flags = bio_data_dir(bio);
2998	if (sync)
2999		rw_flags |= REQ_RW_SYNC;
3000
3001	/*
3002	 * Grab a free request. This is might sleep but can not fail.
3003	 * Returns with the queue unlocked.
3004	 */
3005	req = get_request_wait(q, rw_flags, bio);
3006
3007	/*
3008	 * After dropping the lock and possibly sleeping here, our request
3009	 * may now be mergeable after it had proven unmergeable (above).
3010	 * We don't worry about that case for efficiency. It won't happen
3011	 * often, and the elevators are able to handle it.
3012	 */
3013	init_request_from_bio(req, bio);
3014
3015	spin_lock_irq(q->queue_lock);
3016	if (elv_queue_empty(q))
3017		blk_plug_device(q);
3018	add_request(q, req);
3019out:
3020	if (sync)
3021		__generic_unplug_device(q);
3022
3023	spin_unlock_irq(q->queue_lock);
3024	return 0;
3025
3026end_io:
3027	bio_endio(bio, nr_sectors << 9, err);
3028	return 0;
3029}
3030
3031/*
3032 * If bio->bi_dev is a partition, remap the location
3033 */
3034static inline void blk_partition_remap(struct bio *bio)
3035{
3036	struct block_device *bdev = bio->bi_bdev;
3037
3038	if (bdev != bdev->bd_contains) {
3039		struct hd_struct *p = bdev->bd_part;
3040		const int rw = bio_data_dir(bio);
3041
3042		p->sectors[rw] += bio_sectors(bio);
3043		p->ios[rw]++;
3044
3045		bio->bi_sector += p->start_sect;
3046		bio->bi_bdev = bdev->bd_contains;
3047	}
3048}
3049
3050static void handle_bad_sector(struct bio *bio)
3051{
3052	char b[BDEVNAME_SIZE];
3053
3054	printk(KERN_INFO "attempt to access beyond end of device\n");
3055	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3056			bdevname(bio->bi_bdev, b),
3057			bio->bi_rw,
3058			(unsigned long long)bio->bi_sector + bio_sectors(bio),
3059			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3060
3061	set_bit(BIO_EOF, &bio->bi_flags);
3062}
3063
3064#ifdef CONFIG_FAIL_MAKE_REQUEST
3065
3066static DECLARE_FAULT_ATTR(fail_make_request);
3067
3068static int __init setup_fail_make_request(char *str)
3069{
3070	return setup_fault_attr(&fail_make_request, str);
3071}
3072__setup("fail_make_request=", setup_fail_make_request);
3073
3074static int should_fail_request(struct bio *bio)
3075{
3076	if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3077	    (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3078		return should_fail(&fail_make_request, bio->bi_size);
3079
3080	return 0;
3081}
3082
3083static int __init fail_make_request_debugfs(void)
3084{
3085	return init_fault_attr_dentries(&fail_make_request,
3086					"fail_make_request");
3087}
3088
3089late_initcall(fail_make_request_debugfs);
3090
3091#else /* CONFIG_FAIL_MAKE_REQUEST */
3092
3093static inline int should_fail_request(struct bio *bio)
3094{
3095	return 0;
3096}
3097
3098#endif /* CONFIG_FAIL_MAKE_REQUEST */
3099
3100/**
3101 * generic_make_request: hand a buffer to its device driver for I/O
3102 * @bio:  The bio describing the location in memory and on the device.
3103 *
3104 * generic_make_request() is used to make I/O requests of block
3105 * devices. It is passed a &struct bio, which describes the I/O that needs
3106 * to be done.
3107 *
3108 * generic_make_request() does not return any status.  The
3109 * success/failure status of the request, along with notification of
3110 * completion, is delivered asynchronously through the bio->bi_end_io
3111 * function described (one day) else where.
3112 *
3113 * The caller of generic_make_request must make sure that bi_io_vec
3114 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3115 * set to describe the device address, and the
3116 * bi_end_io and optionally bi_private are set to describe how
3117 * completion notification should be signaled.
3118 *
3119 * generic_make_request and the drivers it calls may use bi_next if this
3120 * bio happens to be merged with someone else, and may change bi_dev and
3121 * bi_sector for remaps as it sees fit.  So the values of these fields
3122 * should NOT be depended on after the call to generic_make_request.
3123 */
3124static inline void __generic_make_request(struct bio *bio)
3125{
3126	request_queue_t *q;
3127	sector_t maxsector;
3128	sector_t old_sector;
3129	int ret, nr_sectors = bio_sectors(bio);
3130	dev_t old_dev;
3131
3132	might_sleep();
3133	/* Test device or partition size, when known. */
3134	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3135	if (maxsector) {
3136		sector_t sector = bio->bi_sector;
3137
3138		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3139			/*
3140			 * This may well happen - the kernel calls bread()
3141			 * without checking the size of the device, e.g., when
3142			 * mounting a device.
3143			 */
3144			handle_bad_sector(bio);
3145			goto end_io;
3146		}
3147	}
3148
3149	/*
3150	 * Resolve the mapping until finished. (drivers are
3151	 * still free to implement/resolve their own stacking
3152	 * by explicitly returning 0)
3153	 *
3154	 * NOTE: we don't repeat the blk_size check for each new device.
3155	 * Stacking drivers are expected to know what they are doing.
3156	 */
3157	old_sector = -1;
3158	old_dev = 0;
3159	do {
3160		char b[BDEVNAME_SIZE];
3161
3162		q = bdev_get_queue(bio->bi_bdev);
3163		if (!q) {
3164			printk(KERN_ERR
3165			       "generic_make_request: Trying to access "
3166				"nonexistent block-device %s (%Lu)\n",
3167				bdevname(bio->bi_bdev, b),
3168				(long long) bio->bi_sector);
3169end_io:
3170			bio_endio(bio, bio->bi_size, -EIO);
3171			break;
3172		}
3173
3174		if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
3175			printk("bio too big device %s (%u > %u)\n",
3176				bdevname(bio->bi_bdev, b),
3177				bio_sectors(bio),
3178				q->max_hw_sectors);
3179			goto end_io;
3180		}
3181
3182		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
3183			goto end_io;
3184
3185		if (should_fail_request(bio))
3186			goto end_io;
3187
3188		/*
3189		 * If this device has partitions, remap block n
3190		 * of partition p to block n+start(p) of the disk.
3191		 */
3192		blk_partition_remap(bio);
3193
3194		if (old_sector != -1)
3195			blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
3196					    old_sector);
3197
3198		blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3199
3200		old_sector = bio->bi_sector;
3201		old_dev = bio->bi_bdev->bd_dev;
3202
3203		maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3204		if (maxsector) {
3205			sector_t sector = bio->bi_sector;
3206
3207			if (maxsector < nr_sectors ||
3208					maxsector - nr_sectors < sector) {
3209				/*
3210				 * This may well happen - partitions are not
3211				 * checked to make sure they are within the size
3212				 * of the whole device.
3213				 */
3214				handle_bad_sector(bio);
3215				goto end_io;
3216			}
3217		}
3218
3219		ret = q->make_request_fn(q, bio);
3220	} while (ret);
3221}
3222
3223/*
3224 * We only want one ->make_request_fn to be active at a time,
3225 * else stack usage with stacked devices could be a problem.
3226 * So use current->bio_{list,tail} to keep a list of requests
3227 * submited by a make_request_fn function.
3228 * current->bio_tail is also used as a flag to say if
3229 * generic_make_request is currently active in this task or not.
3230 * If it is NULL, then no make_request is active.  If it is non-NULL,
3231 * then a make_request is active, and new requests should be added
3232 * at the tail
3233 */
3234void generic_make_request(struct bio *bio)
3235{
3236	if (current->bio_tail) {
3237		/* make_request is active */
3238		*(current->bio_tail) = bio;
3239		bio->bi_next = NULL;
3240		current->bio_tail = &bio->bi_next;
3241		return;
3242	}
3243	/* following loop may be a bit non-obvious, and so deserves some
3244	 * explanation.
3245	 * Before entering the loop, bio->bi_next is NULL (as all callers
3246	 * ensure that) so we have a list with a single bio.
3247	 * We pretend that we have just taken it off a longer list, so
3248	 * we assign bio_list to the next (which is NULL) and bio_tail
3249	 * to &bio_list, thus initialising the bio_list of new bios to be
3250	 * added.  __generic_make_request may indeed add some more bios
3251	 * through a recursive call to generic_make_request.  If it
3252	 * did, we find a non-NULL value in bio_list and re-enter the loop
3253	 * from the top.  In this case we really did just take the bio
3254	 * of the top of the list (no pretending) and so fixup bio_list and
3255	 * bio_tail or bi_next, and call into __generic_make_request again.
3256	 *
3257	 * The loop was structured like this to make only one call to
3258	 * __generic_make_request (which is important as it is large and
3259	 * inlined) and to keep the structure simple.
3260	 */
3261	BUG_ON(bio->bi_next);
3262	do {
3263		current->bio_list = bio->bi_next;
3264		if (bio->bi_next == NULL)
3265			current->bio_tail = &current->bio_list;
3266		else
3267			bio->bi_next = NULL;
3268		__generic_make_request(bio);
3269		bio = current->bio_list;
3270	} while (bio);
3271	current->bio_tail = NULL; /* deactivate */
3272}
3273
3274EXPORT_SYMBOL(generic_make_request);
3275
3276/**
3277 * submit_bio: submit a bio to the block device layer for I/O
3278 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3279 * @bio: The &struct bio which describes the I/O
3280 *
3281 * submit_bio() is very similar in purpose to generic_make_request(), and
3282 * uses that function to do most of the work. Both are fairly rough
3283 * interfaces, @bio must be presetup and ready for I/O.
3284 *
3285 */
3286void submit_bio(int rw, struct bio *bio)
3287{
3288	int count = bio_sectors(bio);
3289
3290	BIO_BUG_ON(!bio->bi_size);
3291	BIO_BUG_ON(!bio->bi_io_vec);
3292	bio->bi_rw |= rw;
3293	if (rw & WRITE) {
3294		count_vm_events(PGPGOUT, count);
3295	} else {
3296		task_io_account_read(bio->bi_size);
3297		count_vm_events(PGPGIN, count);
3298	}
3299
3300	if (unlikely(block_dump)) {
3301		char b[BDEVNAME_SIZE];
3302		printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
3303			current->comm, current->pid,
3304			(rw & WRITE) ? "WRITE" : "READ",
3305			(unsigned long long)bio->bi_sector,
3306			bdevname(bio->bi_bdev,b));
3307	}
3308
3309	generic_make_request(bio);
3310}
3311
3312EXPORT_SYMBOL(submit_bio);
3313
3314static void blk_recalc_rq_segments(struct request *rq)
3315{
3316	struct bio *bio, *prevbio = NULL;
3317	int nr_phys_segs, nr_hw_segs;
3318	unsigned int phys_size, hw_size;
3319	request_queue_t *q = rq->q;
3320
3321	if (!rq->bio)
3322		return;
3323
3324	phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
3325	rq_for_each_bio(bio, rq) {
3326		/* Force bio hw/phys segs to be recalculated. */
3327		bio->bi_flags &= ~(1 << BIO_SEG_VALID);
3328
3329		nr_phys_segs += bio_phys_segments(q, bio);
3330		nr_hw_segs += bio_hw_segments(q, bio);
3331		if (prevbio) {
3332			int pseg = phys_size + prevbio->bi_size + bio->bi_size;
3333			int hseg = hw_size + prevbio->bi_size + bio->bi_size;
3334
3335			if (blk_phys_contig_segment(q, prevbio, bio) &&
3336			    pseg <= q->max_segment_size) {
3337				nr_phys_segs--;
3338				phys_size += prevbio->bi_size + bio->bi_size;
3339			} else
3340				phys_size = 0;
3341
3342			if (blk_hw_contig_segment(q, prevbio, bio) &&
3343			    hseg <= q->max_segment_size) {
3344				nr_hw_segs--;
3345				hw_size += prevbio->bi_size + bio->bi_size;
3346			} else
3347				hw_size = 0;
3348		}
3349		prevbio = bio;
3350	}
3351
3352	rq->nr_phys_segments = nr_phys_segs;
3353	rq->nr_hw_segments = nr_hw_segs;
3354}
3355
3356static void blk_recalc_rq_sectors(struct request *rq, int nsect)
3357{
3358	if (blk_fs_request(rq)) {
3359		rq->hard_sector += nsect;
3360		rq->hard_nr_sectors -= nsect;
3361
3362		/*
3363		 * Move the I/O submission pointers ahead if required.
3364		 */
3365		if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3366		    (rq->sector <= rq->hard_sector)) {
3367			rq->sector = rq->hard_sector;
3368			rq->nr_sectors = rq->hard_nr_sectors;
3369			rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3370			rq->current_nr_sectors = rq->hard_cur_sectors;
3371			rq->buffer = bio_data(rq->bio);
3372		}
3373
3374		/*
3375		 * if total number of sectors is less than the first segment
3376		 * size, something has gone terribly wrong
3377		 */
3378		if (rq->nr_sectors < rq->current_nr_sectors) {
3379			printk("blk: request botched\n");
3380			rq->nr_sectors = rq->current_nr_sectors;
3381		}
3382	}
3383}
3384
3385static int __end_that_request_first(struct request *req, int uptodate,
3386				    int nr_bytes)
3387{
3388	int total_bytes, bio_nbytes, error, next_idx = 0;
3389	struct bio *bio;
3390
3391	blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3392
3393	/*
3394	 * extend uptodate bool to allow < 0 value to be direct io error
3395	 */
3396	error = 0;
3397	if (end_io_error(uptodate))
3398		error = !uptodate ? -EIO : uptodate;
3399
3400	/*
3401	 * for a REQ_BLOCK_PC request, we want to carry any eventual
3402	 * sense key with us all the way through
3403	 */
3404	if (!blk_pc_request(req))
3405		req->errors = 0;
3406
3407	if (!uptodate) {
3408		if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
3409			printk("end_request: I/O error, dev %s, sector %llu\n",
3410				req->rq_disk ? req->rq_disk->disk_name : "?",
3411				(unsigned long long)req->sector);
3412	}
3413
3414	if (blk_fs_request(req) && req->rq_disk) {
3415		const int rw = rq_data_dir(req);
3416
3417		disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
3418	}
3419
3420	total_bytes = bio_nbytes = 0;
3421	while ((bio = req->bio) != NULL) {
3422		int nbytes;
3423
3424		if (nr_bytes >= bio->bi_size) {
3425			req->bio = bio->bi_next;
3426			nbytes = bio->bi_size;
3427			if (!ordered_bio_endio(req, bio, nbytes, error))
3428				bio_endio(bio, nbytes, error);
3429			next_idx = 0;
3430			bio_nbytes = 0;
3431		} else {
3432			int idx = bio->bi_idx + next_idx;
3433
3434			if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3435				blk_dump_rq_flags(req, "__end_that");
3436				printk("%s: bio idx %d >= vcnt %d\n",
3437						__FUNCTION__,
3438						bio->bi_idx, bio->bi_vcnt);
3439				break;
3440			}
3441
3442			nbytes = bio_iovec_idx(bio, idx)->bv_len;
3443			BIO_BUG_ON(nbytes > bio->bi_size);
3444
3445			/*
3446			 * not a complete bvec done
3447			 */
3448			if (unlikely(nbytes > nr_bytes)) {
3449				bio_nbytes += nr_bytes;
3450				total_bytes += nr_bytes;
3451				break;
3452			}
3453
3454			/*
3455			 * advance to the next vector
3456			 */
3457			next_idx++;
3458			bio_nbytes += nbytes;
3459		}
3460
3461		total_bytes += nbytes;
3462		nr_bytes -= nbytes;
3463
3464		if ((bio = req->bio)) {
3465			/*
3466			 * end more in this run, or just return 'not-done'
3467			 */
3468			if (unlikely(nr_bytes <= 0))
3469				break;
3470		}
3471	}
3472
3473	/*
3474	 * completely done
3475	 */
3476	if (!req->bio)
3477		return 0;
3478
3479	/*
3480	 * if the request wasn't completed, update state
3481	 */
3482	if (bio_nbytes) {
3483		if (!ordered_bio_endio(req, bio, bio_nbytes, error))
3484			bio_endio(bio, bio_nbytes, error);
3485		bio->bi_idx += next_idx;
3486		bio_iovec(bio)->bv_offset += nr_bytes;
3487		bio_iovec(bio)->bv_len -= nr_bytes;
3488	}
3489
3490	blk_recalc_rq_sectors(req, total_bytes >> 9);
3491	blk_recalc_rq_segments(req);
3492	return 1;
3493}
3494
3495/**
3496 * end_that_request_first - end I/O on a request
3497 * @req:      the request being processed
3498 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3499 * @nr_sectors: number of sectors to end I/O on
3500 *
3501 * Description:
3502 *     Ends I/O on a number of sectors attached to @req, and sets it up
3503 *     for the next range of segments (if any) in the cluster.
3504 *
3505 * Return:
3506 *     0 - we are done with this request, call end_that_request_last()
3507 *     1 - still buffers pending for this request
3508 **/
3509int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3510{
3511	return __end_that_request_first(req, uptodate, nr_sectors << 9);
3512}
3513
3514EXPORT_SYMBOL(end_that_request_first);
3515
3516/**
3517 * end_that_request_chunk - end I/O on a request
3518 * @req:      the request being processed
3519 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3520 * @nr_bytes: number of bytes to complete
3521 *
3522 * Description:
3523 *     Ends I/O on a number of bytes attached to @req, and sets it up
3524 *     for the next range of segments (if any). Like end_that_request_first(),
3525 *     but deals with bytes instead of sectors.
3526 *
3527 * Return:
3528 *     0 - we are done with this request, call end_that_request_last()
3529 *     1 - still buffers pending for this request
3530 **/
3531int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3532{
3533	return __end_that_request_first(req, uptodate, nr_bytes);
3534}
3535
3536EXPORT_SYMBOL(end_that_request_chunk);
3537
3538/*
3539 * splice the completion data to a local structure and hand off to
3540 * process_completion_queue() to complete the requests
3541 */
3542static void blk_done_softirq(struct softirq_action *h)
3543{
3544	struct list_head *cpu_list, local_list;
3545
3546	local_irq_disable();
3547	cpu_list = &__get_cpu_var(blk_cpu_done);
3548	list_replace_init(cpu_list, &local_list);
3549	local_irq_enable();
3550
3551	while (!list_empty(&local_list)) {
3552		struct request *rq = list_entry(local_list.next, struct request, donelist);
3553
3554		list_del_init(&rq->donelist);
3555		rq->q->softirq_done_fn(rq);
3556	}
3557}
3558
3559static int blk_cpu_notify(struct notifier_block *self, unsigned long action,
3560			  void *hcpu)
3561{
3562	/*
3563	 * If a CPU goes away, splice its entries to the current CPU
3564	 * and trigger a run of the softirq
3565	 */
3566	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3567		int cpu = (unsigned long) hcpu;
3568
3569		local_irq_disable();
3570		list_splice_init(&per_cpu(blk_cpu_done, cpu),
3571				 &__get_cpu_var(blk_cpu_done));
3572		raise_softirq_irqoff(BLOCK_SOFTIRQ);
3573		local_irq_enable();
3574	}
3575
3576	return NOTIFY_OK;
3577}
3578
3579
3580static struct notifier_block __devinitdata blk_cpu_notifier = {
3581	.notifier_call	= blk_cpu_notify,
3582};
3583
3584/**
3585 * blk_complete_request - end I/O on a request
3586 * @req:      the request being processed
3587 *
3588 * Description:
3589 *     Ends all I/O on a request. It does not handle partial completions,
3590 *     unless the driver actually implements this in its completion callback
3591 *     through requeueing. Theh actual completion happens out-of-order,
3592 *     through a softirq handler. The user must have registered a completion
3593 *     callback through blk_queue_softirq_done().
3594 **/
3595
3596void blk_complete_request(struct request *req)
3597{
3598	struct list_head *cpu_list;
3599	unsigned long flags;
3600
3601	BUG_ON(!req->q->softirq_done_fn);
3602
3603	local_irq_save(flags);
3604
3605	cpu_list = &__get_cpu_var(blk_cpu_done);
3606	list_add_tail(&req->donelist, cpu_list);
3607	raise_softirq_irqoff(BLOCK_SOFTIRQ);
3608
3609	local_irq_restore(flags);
3610}
3611
3612EXPORT_SYMBOL(blk_complete_request);
3613
3614/*
3615 * queue lock must be held
3616 */
3617void end_that_request_last(struct request *req, int uptodate)
3618{
3619	struct gendisk *disk = req->rq_disk;
3620	int error;
3621
3622	/*
3623	 * extend uptodate bool to allow < 0 value to be direct io error
3624	 */
3625	error = 0;
3626	if (end_io_error(uptodate))
3627		error = !uptodate ? -EIO : uptodate;
3628
3629	if (unlikely(laptop_mode) && blk_fs_request(req))
3630		laptop_io_completion();
3631
3632	/*
3633	 * Account IO completion.  bar_rq isn't accounted as a normal
3634	 * IO on queueing nor completion.  Accounting the containing
3635	 * request is enough.
3636	 */
3637	if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
3638		unsigned long duration = jiffies - req->start_time;
3639		const int rw = rq_data_dir(req);
3640
3641		__disk_stat_inc(disk, ios[rw]);
3642		__disk_stat_add(disk, ticks[rw], duration);
3643		disk_round_stats(disk);
3644		disk->in_flight--;
3645	}
3646	if (req->end_io)
3647		req->end_io(req, error);
3648	else
3649		__blk_put_request(req->q, req);
3650}
3651
3652EXPORT_SYMBOL(end_that_request_last);
3653
3654void end_request(struct request *req, int uptodate)
3655{
3656	if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
3657		add_disk_randomness(req->rq_disk);
3658		blkdev_dequeue_request(req);
3659		end_that_request_last(req, uptodate);
3660	}
3661}
3662
3663EXPORT_SYMBOL(end_request);
3664
3665void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
3666{
3667	/* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3668	rq->cmd_flags |= (bio->bi_rw & 3);
3669
3670	rq->nr_phys_segments = bio_phys_segments(q, bio);
3671	rq->nr_hw_segments = bio_hw_segments(q, bio);
3672	rq->current_nr_sectors = bio_cur_sectors(bio);
3673	rq->hard_cur_sectors = rq->current_nr_sectors;
3674	rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3675	rq->buffer = bio_data(bio);
3676	rq->data_len = bio->bi_size;
3677
3678	rq->bio = rq->biotail = bio;
3679}
3680
3681EXPORT_SYMBOL(blk_rq_bio_prep);
3682
3683int kblockd_schedule_work(struct work_struct *work)
3684{
3685	return queue_work(kblockd_workqueue, work);
3686}
3687
3688EXPORT_SYMBOL(kblockd_schedule_work);
3689
3690void kblockd_flush_work(struct work_struct *work)
3691{
3692	cancel_work_sync(work);
3693}
3694EXPORT_SYMBOL(kblockd_flush_work);
3695
3696int __init blk_dev_init(void)
3697{
3698	int i;
3699
3700	kblockd_workqueue = create_workqueue("kblockd");
3701	if (!kblockd_workqueue)
3702		panic("Failed to create kblockd\n");
3703
3704	request_cachep = kmem_cache_create("blkdev_requests",
3705			sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
3706
3707	requestq_cachep = kmem_cache_create("blkdev_queue",
3708			sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
3709
3710	iocontext_cachep = kmem_cache_create("blkdev_ioc",
3711			sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
3712
3713	for_each_possible_cpu(i)
3714		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3715
3716	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
3717	register_hotcpu_notifier(&blk_cpu_notifier);
3718
3719	blk_max_low_pfn = max_low_pfn - 1;
3720	blk_max_pfn = max_pfn - 1;
3721
3722	return 0;
3723}
3724
3725/*
3726 * IO Context helper functions
3727 */
3728void put_io_context(struct io_context *ioc)
3729{
3730	if (ioc == NULL)
3731		return;
3732
3733	BUG_ON(atomic_read(&ioc->refcount) == 0);
3734
3735	if (atomic_dec_and_test(&ioc->refcount)) {
3736		struct cfq_io_context *cic;
3737
3738		rcu_read_lock();
3739		if (ioc->aic && ioc->aic->dtor)
3740			ioc->aic->dtor(ioc->aic);
3741		if (ioc->cic_root.rb_node != NULL) {
3742			struct rb_node *n = rb_first(&ioc->cic_root);
3743
3744			cic = rb_entry(n, struct cfq_io_context, rb_node);
3745			cic->dtor(ioc);
3746		}
3747		rcu_read_unlock();
3748
3749		kmem_cache_free(iocontext_cachep, ioc);
3750	}
3751}
3752EXPORT_SYMBOL(put_io_context);
3753
3754/* Called by the exitting task */
3755void exit_io_context(void)
3756{
3757	struct io_context *ioc;
3758	struct cfq_io_context *cic;
3759
3760	task_lock(current);
3761	ioc = current->io_context;
3762	current->io_context = NULL;
3763	task_unlock(current);
3764
3765	ioc->task = NULL;
3766	if (ioc->aic && ioc->aic->exit)
3767		ioc->aic->exit(ioc->aic);
3768	if (ioc->cic_root.rb_node != NULL) {
3769		cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3770		cic->exit(ioc);
3771	}
3772
3773	put_io_context(ioc);
3774}
3775
3776/*
3777 * If the current task has no IO context then create one and initialise it.
3778 * Otherwise, return its existing IO context.
3779 *
3780 * This returned IO context doesn't have a specifically elevated refcount,
3781 * but since the current task itself holds a reference, the context can be
3782 * used in general code, so long as it stays within `current` context.
3783 */
3784static struct io_context *current_io_context(gfp_t gfp_flags, int node)
3785{
3786	struct task_struct *tsk = current;
3787	struct io_context *ret;
3788
3789	ret = tsk->io_context;
3790	if (likely(ret))
3791		return ret;
3792
3793	ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
3794	if (ret) {
3795		atomic_set(&ret->refcount, 1);
3796		ret->task = current;
3797		ret->ioprio_changed = 0;
3798		ret->last_waited = jiffies; /* doesn't matter... */
3799		ret->nr_batch_requests = 0; /* because this is 0 */
3800		ret->aic = NULL;
3801		ret->cic_root.rb_node = NULL;
3802		ret->ioc_data = NULL;
3803		/* make sure set_task_ioprio() sees the settings above */
3804		smp_wmb();
3805		tsk->io_context = ret;
3806	}
3807
3808	return ret;
3809}
3810
3811/*
3812 * If the current task has no IO context then create one and initialise it.
3813 * If it does have a context, take a ref on it.
3814 *
3815 * This is always called in the context of the task which submitted the I/O.
3816 */
3817struct io_context *get_io_context(gfp_t gfp_flags, int node)
3818{
3819	struct io_context *ret;
3820	ret = current_io_context(gfp_flags, node);
3821	if (likely(ret))
3822		atomic_inc(&ret->refcount);
3823	return ret;
3824}
3825EXPORT_SYMBOL(get_io_context);
3826
3827void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3828{
3829	struct io_context *src = *psrc;
3830	struct io_context *dst = *pdst;
3831
3832	if (src) {
3833		BUG_ON(atomic_read(&src->refcount) == 0);
3834		atomic_inc(&src->refcount);
3835		put_io_context(dst);
3836		*pdst = src;
3837	}
3838}
3839EXPORT_SYMBOL(copy_io_context);
3840
3841void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3842{
3843	struct io_context *temp;
3844	temp = *ioc1;
3845	*ioc1 = *ioc2;
3846	*ioc2 = temp;
3847}
3848EXPORT_SYMBOL(swap_io_context);
3849
3850/*
3851 * sysfs parts below
3852 */
3853struct queue_sysfs_entry {
3854	struct attribute attr;
3855	ssize_t (*show)(struct request_queue *, char *);
3856	ssize_t (*store)(struct request_queue *, const char *, size_t);
3857};
3858
3859static ssize_t
3860queue_var_show(unsigned int var, char *page)
3861{
3862	return sprintf(page, "%d\n", var);
3863}
3864
3865static ssize_t
3866queue_var_store(unsigned long *var, const char *page, size_t count)
3867{
3868	char *p = (char *) page;
3869
3870	*var = simple_strtoul(p, &p, 10);
3871	return count;
3872}
3873
3874static ssize_t queue_requests_show(struct request_queue *q, char *page)
3875{
3876	return queue_var_show(q->nr_requests, (page));
3877}
3878
3879static ssize_t
3880queue_requests_store(struct request_queue *q, const char *page, size_t count)
3881{
3882	struct request_list *rl = &q->rq;
3883	unsigned long nr;
3884	int ret = queue_var_store(&nr, page, count);
3885	if (nr < BLKDEV_MIN_RQ)
3886		nr = BLKDEV_MIN_RQ;
3887
3888	spin_lock_irq(q->queue_lock);
3889	q->nr_requests = nr;
3890	blk_queue_congestion_threshold(q);
3891
3892	if (rl->count[READ] >= queue_congestion_on_threshold(q))
3893		blk_set_queue_congested(q, READ);
3894	else if (rl->count[READ] < queue_congestion_off_threshold(q))
3895		blk_clear_queue_congested(q, READ);
3896
3897	if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
3898		blk_set_queue_congested(q, WRITE);
3899	else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
3900		blk_clear_queue_congested(q, WRITE);
3901
3902	if (rl->count[READ] >= q->nr_requests) {
3903		blk_set_queue_full(q, READ);
3904	} else if (rl->count[READ]+1 <= q->nr_requests) {
3905		blk_clear_queue_full(q, READ);
3906		wake_up(&rl->wait[READ]);
3907	}
3908
3909	if (rl->count[WRITE] >= q->nr_requests) {
3910		blk_set_queue_full(q, WRITE);
3911	} else if (rl->count[WRITE]+1 <= q->nr_requests) {
3912		blk_clear_queue_full(q, WRITE);
3913		wake_up(&rl->wait[WRITE]);
3914	}
3915	spin_unlock_irq(q->queue_lock);
3916	return ret;
3917}
3918
3919static ssize_t queue_ra_show(struct request_queue *q, char *page)
3920{
3921	int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3922
3923	return queue_var_show(ra_kb, (page));
3924}
3925
3926static ssize_t
3927queue_ra_store(struct request_queue *q, const char *page, size_t count)
3928{
3929	unsigned long ra_kb;
3930	ssize_t ret = queue_var_store(&ra_kb, page, count);
3931
3932	spin_lock_irq(q->queue_lock);
3933	q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
3934	spin_unlock_irq(q->queue_lock);
3935
3936	return ret;
3937}
3938
3939static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
3940{
3941	int max_sectors_kb = q->max_sectors >> 1;
3942
3943	return queue_var_show(max_sectors_kb, (page));
3944}
3945
3946static ssize_t
3947queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
3948{
3949	unsigned long max_sectors_kb,
3950			max_hw_sectors_kb = q->max_hw_sectors >> 1,
3951			page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
3952	ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
3953	int ra_kb;
3954
3955	if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
3956		return -EINVAL;
3957	/*
3958	 * Take the queue lock to update the readahead and max_sectors
3959	 * values synchronously:
3960	 */
3961	spin_lock_irq(q->queue_lock);
3962	/*
3963	 * Trim readahead window as well, if necessary:
3964	 */
3965	ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
3966	if (ra_kb > max_sectors_kb)
3967		q->backing_dev_info.ra_pages =
3968				max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
3969
3970	q->max_sectors = max_sectors_kb << 1;
3971	spin_unlock_irq(q->queue_lock);
3972
3973	return ret;
3974}
3975
3976static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
3977{
3978	int max_hw_sectors_kb = q->max_hw_sectors >> 1;
3979
3980	return queue_var_show(max_hw_sectors_kb, (page));
3981}
3982
3983
3984static struct queue_sysfs_entry queue_requests_entry = {
3985	.attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
3986	.show = queue_requests_show,
3987	.store = queue_requests_store,
3988};
3989
3990static struct queue_sysfs_entry queue_ra_entry = {
3991	.attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
3992	.show = queue_ra_show,
3993	.store = queue_ra_store,
3994};
3995
3996static struct queue_sysfs_entry queue_max_sectors_entry = {
3997	.attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
3998	.show = queue_max_sectors_show,
3999	.store = queue_max_sectors_store,
4000};
4001
4002static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4003	.attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4004	.show = queue_max_hw_sectors_show,
4005};
4006
4007static struct queue_sysfs_entry queue_iosched_entry = {
4008	.attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4009	.show = elv_iosched_show,
4010	.store = elv_iosched_store,
4011};
4012
4013static struct attribute *default_attrs[] = {
4014	&queue_requests_entry.attr,
4015	&queue_ra_entry.attr,
4016	&queue_max_hw_sectors_entry.attr,
4017	&queue_max_sectors_entry.attr,
4018	&queue_iosched_entry.attr,
4019	NULL,
4020};
4021
4022#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4023
4024static ssize_t
4025queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4026{
4027	struct queue_sysfs_entry *entry = to_queue(attr);
4028	request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4029	ssize_t res;
4030
4031	if (!entry->show)
4032		return -EIO;
4033	mutex_lock(&q->sysfs_lock);
4034	if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4035		mutex_unlock(&q->sysfs_lock);
4036		return -ENOENT;
4037	}
4038	res = entry->show(q, page);
4039	mutex_unlock(&q->sysfs_lock);
4040	return res;
4041}
4042
4043static ssize_t
4044queue_attr_store(struct kobject *kobj, struct attribute *attr,
4045		    const char *page, size_t length)
4046{
4047	struct queue_sysfs_entry *entry = to_queue(attr);
4048	request_queue_t *q = container_of(kobj, struct request_queue, kobj);
4049
4050	ssize_t res;
4051
4052	if (!entry->store)
4053		return -EIO;
4054	mutex_lock(&q->sysfs_lock);
4055	if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4056		mutex_unlock(&q->sysfs_lock);
4057		return -ENOENT;
4058	}
4059	res = entry->store(q, page, length);
4060	mutex_unlock(&q->sysfs_lock);
4061	return res;
4062}
4063
4064static struct sysfs_ops queue_sysfs_ops = {
4065	.show	= queue_attr_show,
4066	.store	= queue_attr_store,
4067};
4068
4069static struct kobj_type queue_ktype = {
4070	.sysfs_ops	= &queue_sysfs_ops,
4071	.default_attrs	= default_attrs,
4072	.release	= blk_release_queue,
4073};
4074
4075int blk_register_queue(struct gendisk *disk)
4076{
4077	int ret;
4078
4079	request_queue_t *q = disk->queue;
4080
4081	if (!q || !q->request_fn)
4082		return -ENXIO;
4083
4084	q->kobj.parent = kobject_get(&disk->kobj);
4085
4086	ret = kobject_add(&q->kobj);
4087	if (ret < 0)
4088		return ret;
4089
4090	kobject_uevent(&q->kobj, KOBJ_ADD);
4091
4092	ret = elv_register_queue(q);
4093	if (ret) {
4094		kobject_uevent(&q->kobj, KOBJ_REMOVE);
4095		kobject_del(&q->kobj);
4096		return ret;
4097	}
4098
4099	return 0;
4100}
4101
4102void blk_unregister_queue(struct gendisk *disk)
4103{
4104	request_queue_t *q = disk->queue;
4105
4106	if (q && q->request_fn) {
4107		elv_unregister_queue(q);
4108
4109		kobject_uevent(&q->kobj, KOBJ_REMOVE);
4110		kobject_del(&q->kobj);
4111		kobject_put(&disk->kobj);
4112	}
4113}
4114