1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * arch/sh64/kernel/time.c
7 *
8 * Copyright (C) 2000, 2001  Paolo Alberelli
9 * Copyright (C) 2003, 2004  Paul Mundt
10 * Copyright (C) 2003  Richard Curnow
11 *
12 *    Original TMU/RTC code taken from sh version.
13 *    Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
14 *      Some code taken from i386 version.
15 *      Copyright (C) 1991, 1992, 1995  Linus Torvalds
16 */
17
18#include <linux/errno.h>
19#include <linux/rwsem.h>
20#include <linux/sched.h>
21#include <linux/kernel.h>
22#include <linux/param.h>
23#include <linux/string.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/time.h>
27#include <linux/delay.h>
28#include <linux/init.h>
29#include <linux/profile.h>
30#include <linux/smp.h>
31#include <linux/module.h>
32#include <linux/bcd.h>
33
34#include <asm/registers.h>	 /* required by inline __asm__ stmt. */
35
36#include <asm/processor.h>
37#include <asm/uaccess.h>
38#include <asm/io.h>
39#include <asm/irq.h>
40#include <asm/delay.h>
41
42#include <linux/timex.h>
43#include <linux/irq.h>
44#include <asm/hardware.h>
45
46#define TMU_TOCR_INIT	0x00
47#define TMU0_TCR_INIT	0x0020
48#define TMU_TSTR_INIT	1
49#define TMU_TSTR_OFF	0
50
51/* RCR1 Bits */
52#define RCR1_CF		0x80	/* Carry Flag             */
53#define RCR1_CIE	0x10	/* Carry Interrupt Enable */
54#define RCR1_AIE	0x08	/* Alarm Interrupt Enable */
55#define RCR1_AF		0x01	/* Alarm Flag             */
56
57/* RCR2 Bits */
58#define RCR2_PEF	0x80	/* PEriodic interrupt Flag */
59#define RCR2_PESMASK	0x70	/* Periodic interrupt Set  */
60#define RCR2_RTCEN	0x08	/* ENable RTC              */
61#define RCR2_ADJ	0x04	/* ADJustment (30-second)  */
62#define RCR2_RESET	0x02	/* Reset bit               */
63#define RCR2_START	0x01	/* Start bit               */
64
65/* Clock, Power and Reset Controller */
66#define	CPRC_BLOCK_OFF	0x01010000
67#define CPRC_BASE	PHYS_PERIPHERAL_BLOCK + CPRC_BLOCK_OFF
68
69#define FRQCR		(cprc_base+0x0)
70#define WTCSR		(cprc_base+0x0018)
71#define STBCR		(cprc_base+0x0030)
72
73/* Time Management Unit */
74#define	TMU_BLOCK_OFF	0x01020000
75#define TMU_BASE	PHYS_PERIPHERAL_BLOCK + TMU_BLOCK_OFF
76#define TMU0_BASE	tmu_base + 0x8 + (0xc * 0x0)
77#define TMU1_BASE	tmu_base + 0x8 + (0xc * 0x1)
78#define TMU2_BASE	tmu_base + 0x8 + (0xc * 0x2)
79
80#define TMU_TOCR	tmu_base+0x0	/* Byte access */
81#define TMU_TSTR	tmu_base+0x4	/* Byte access */
82
83#define TMU0_TCOR	TMU0_BASE+0x0	/* Long access */
84#define TMU0_TCNT	TMU0_BASE+0x4	/* Long access */
85#define TMU0_TCR	TMU0_BASE+0x8	/* Word access */
86
87/* Real Time Clock */
88#define	RTC_BLOCK_OFF	0x01040000
89#define RTC_BASE	PHYS_PERIPHERAL_BLOCK + RTC_BLOCK_OFF
90
91#define R64CNT  	rtc_base+0x00
92#define RSECCNT 	rtc_base+0x04
93#define RMINCNT 	rtc_base+0x08
94#define RHRCNT  	rtc_base+0x0c
95#define RWKCNT  	rtc_base+0x10
96#define RDAYCNT 	rtc_base+0x14
97#define RMONCNT 	rtc_base+0x18
98#define RYRCNT  	rtc_base+0x1c	/* 16bit */
99#define RSECAR  	rtc_base+0x20
100#define RMINAR  	rtc_base+0x24
101#define RHRAR   	rtc_base+0x28
102#define RWKAR   	rtc_base+0x2c
103#define RDAYAR  	rtc_base+0x30
104#define RMONAR  	rtc_base+0x34
105#define RCR1    	rtc_base+0x38
106#define RCR2    	rtc_base+0x3c
107
108#define TICK_SIZE (tick_nsec / 1000)
109
110static unsigned long tmu_base, rtc_base;
111unsigned long cprc_base;
112
113/* Variables to allow interpolation of time of day to resolution better than a
114 * jiffy. */
115
116/* This is effectively protected by xtime_lock */
117static unsigned long ctc_last_interrupt;
118static unsigned long long usecs_per_jiffy = 1000000/HZ; /* Approximation */
119
120#define CTC_JIFFY_SCALE_SHIFT 40
121
122/* 2**CTC_JIFFY_SCALE_SHIFT / ctc_ticks_per_jiffy */
123static unsigned long long scaled_recip_ctc_ticks_per_jiffy;
124
125
126static unsigned long usecs_since_tick(void)
127{
128	unsigned long long current_ctc;
129	long ctc_ticks_since_interrupt;
130	unsigned long long ull_ctc_ticks_since_interrupt;
131	unsigned long result;
132
133	unsigned long long mul1_out;
134	unsigned long long mul1_out_high;
135	unsigned long long mul2_out_low, mul2_out_high;
136
137	/* Read CTC register */
138	asm ("getcon cr62, %0" : "=r" (current_ctc));
139	/* Note, the CTC counts down on each CPU clock, not up.
140	   Note(2), use long type to get correct wraparound arithmetic when
141	   the counter crosses zero. */
142	ctc_ticks_since_interrupt = (long) ctc_last_interrupt - (long) current_ctc;
143	ull_ctc_ticks_since_interrupt = (unsigned long long) ctc_ticks_since_interrupt;
144
145	/* Inline assembly to do 32x32x32->64 multiplier */
146	asm volatile ("mulu.l %1, %2, %0" :
147	     "=r" (mul1_out) :
148	     "r" (ull_ctc_ticks_since_interrupt), "r" (usecs_per_jiffy));
149
150	mul1_out_high = mul1_out >> 32;
151
152	asm volatile ("mulu.l %1, %2, %0" :
153	     "=r" (mul2_out_low) :
154	     "r" (mul1_out), "r" (scaled_recip_ctc_ticks_per_jiffy));
155
156	asm volatile ("mulu.l %1, %2, %0" :
157	     "=r" (mul2_out_high) :
158	     "r" (mul1_out_high), "r" (scaled_recip_ctc_ticks_per_jiffy));
159
160	result = (unsigned long) (((mul2_out_high << 32) + mul2_out_low) >> CTC_JIFFY_SCALE_SHIFT);
161
162	return result;
163}
164
165void do_gettimeofday(struct timeval *tv)
166{
167	unsigned long flags;
168	unsigned long seq;
169	unsigned long usec, sec;
170
171	do {
172		seq = read_seqbegin_irqsave(&xtime_lock, flags);
173		usec = usecs_since_tick();
174		sec = xtime.tv_sec;
175		usec += xtime.tv_nsec / 1000;
176	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
177
178	while (usec >= 1000000) {
179		usec -= 1000000;
180		sec++;
181	}
182
183	tv->tv_sec = sec;
184	tv->tv_usec = usec;
185}
186
187int do_settimeofday(struct timespec *tv)
188{
189	time_t wtm_sec, sec = tv->tv_sec;
190	long wtm_nsec, nsec = tv->tv_nsec;
191
192	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
193		return -EINVAL;
194
195	write_seqlock_irq(&xtime_lock);
196	/*
197	 * This is revolting. We need to set "xtime" correctly. However, the
198	 * value in this location is the value at the most recent update of
199	 * wall time.  Discover what correction gettimeofday() would have
200	 * made, and then undo it!
201	 */
202	nsec -= 1000 * usecs_since_tick();
203
204	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
205	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
206
207	set_normalized_timespec(&xtime, sec, nsec);
208	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
209
210	ntp_clear();
211	write_sequnlock_irq(&xtime_lock);
212	clock_was_set();
213
214	return 0;
215}
216EXPORT_SYMBOL(do_settimeofday);
217
218static int set_rtc_time(unsigned long nowtime)
219{
220	int retval = 0;
221	int real_seconds, real_minutes, cmos_minutes;
222
223	ctrl_outb(RCR2_RESET, RCR2);  /* Reset pre-scaler & stop RTC */
224
225	cmos_minutes = ctrl_inb(RMINCNT);
226	BCD_TO_BIN(cmos_minutes);
227
228	/*
229	 * since we're only adjusting minutes and seconds,
230	 * don't interfere with hour overflow. This avoids
231	 * messing with unknown time zones but requires your
232	 * RTC not to be off by more than 15 minutes
233	 */
234	real_seconds = nowtime % 60;
235	real_minutes = nowtime / 60;
236	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
237		real_minutes += 30;	/* correct for half hour time zone */
238	real_minutes %= 60;
239
240	if (abs(real_minutes - cmos_minutes) < 30) {
241		BIN_TO_BCD(real_seconds);
242		BIN_TO_BCD(real_minutes);
243		ctrl_outb(real_seconds, RSECCNT);
244		ctrl_outb(real_minutes, RMINCNT);
245	} else {
246		printk(KERN_WARNING
247		       "set_rtc_time: can't update from %d to %d\n",
248		       cmos_minutes, real_minutes);
249		retval = -1;
250	}
251
252	ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2);  /* Start RTC */
253
254	return retval;
255}
256
257/* last time the RTC clock got updated */
258static long last_rtc_update = 0;
259
260/*
261 * timer_interrupt() needs to keep up the real-time clock,
262 * as well as call the "do_timer()" routine every clocktick
263 */
264static inline void do_timer_interrupt(void)
265{
266	unsigned long long current_ctc;
267	asm ("getcon cr62, %0" : "=r" (current_ctc));
268	ctc_last_interrupt = (unsigned long) current_ctc;
269
270	do_timer(1);
271#ifndef CONFIG_SMP
272	update_process_times(user_mode(get_irq_regs()));
273#endif
274	if (current->pid)
275		profile_tick(CPU_PROFILING);
276
277#ifdef CONFIG_HEARTBEAT
278	{
279		extern void heartbeat(void);
280
281		heartbeat();
282	}
283#endif
284
285	/*
286	 * If we have an externally synchronized Linux clock, then update
287	 * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
288	 * called as close as possible to 500 ms before the new second starts.
289	 */
290	if (ntp_synced() &&
291	    xtime.tv_sec > last_rtc_update + 660 &&
292	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
293	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
294		if (set_rtc_time(xtime.tv_sec) == 0)
295			last_rtc_update = xtime.tv_sec;
296		else
297			last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
298	}
299}
300
301/*
302 * This is the same as the above, except we _also_ save the current
303 * Time Stamp Counter value at the time of the timer interrupt, so that
304 * we later on can estimate the time of day more exactly.
305 */
306static irqreturn_t timer_interrupt(int irq, void *dev_id)
307{
308	unsigned long timer_status;
309
310	/* Clear UNF bit */
311	timer_status = ctrl_inw(TMU0_TCR);
312	timer_status &= ~0x100;
313	ctrl_outw(timer_status, TMU0_TCR);
314
315	/*
316	 * Here we are in the timer irq handler. We just have irqs locally
317	 * disabled but we don't know if the timer_bh is running on the other
318	 * CPU. We need to avoid to SMP race with it. NOTE: we don' t need
319	 * the irq version of write_lock because as just said we have irq
320	 * locally disabled. -arca
321	 */
322	write_lock(&xtime_lock);
323	do_timer_interrupt();
324	write_unlock(&xtime_lock);
325
326	return IRQ_HANDLED;
327}
328
329static unsigned long get_rtc_time(void)
330{
331	unsigned int sec, min, hr, wk, day, mon, yr, yr100;
332
333 again:
334	do {
335		ctrl_outb(0, RCR1);  /* Clear CF-bit */
336		sec = ctrl_inb(RSECCNT);
337		min = ctrl_inb(RMINCNT);
338		hr  = ctrl_inb(RHRCNT);
339		wk  = ctrl_inb(RWKCNT);
340		day = ctrl_inb(RDAYCNT);
341		mon = ctrl_inb(RMONCNT);
342		yr  = ctrl_inw(RYRCNT);
343		yr100 = (yr >> 8);
344		yr &= 0xff;
345	} while ((ctrl_inb(RCR1) & RCR1_CF) != 0);
346
347	BCD_TO_BIN(yr100);
348	BCD_TO_BIN(yr);
349	BCD_TO_BIN(mon);
350	BCD_TO_BIN(day);
351	BCD_TO_BIN(hr);
352	BCD_TO_BIN(min);
353	BCD_TO_BIN(sec);
354
355	if (yr > 99 || mon < 1 || mon > 12 || day > 31 || day < 1 ||
356	    hr > 23 || min > 59 || sec > 59) {
357		printk(KERN_ERR
358		       "SH RTC: invalid value, resetting to 1 Jan 2000\n");
359		ctrl_outb(RCR2_RESET, RCR2);  /* Reset & Stop */
360		ctrl_outb(0, RSECCNT);
361		ctrl_outb(0, RMINCNT);
362		ctrl_outb(0, RHRCNT);
363		ctrl_outb(6, RWKCNT);
364		ctrl_outb(1, RDAYCNT);
365		ctrl_outb(1, RMONCNT);
366		ctrl_outw(0x2000, RYRCNT);
367		ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2);  /* Start */
368		goto again;
369	}
370
371	return mktime(yr100 * 100 + yr, mon, day, hr, min, sec);
372}
373
374static __init unsigned int get_cpu_hz(void)
375{
376	unsigned int count;
377	unsigned long __dummy;
378	unsigned long ctc_val_init, ctc_val;
379
380	/*
381	** Regardless the toolchain, force the compiler to use the
382	** arbitrary register r3 as a clock tick counter.
383	** NOTE: r3 must be in accordance with sh64_rtc_interrupt()
384	*/
385	register unsigned long long  __rtc_irq_flag __asm__ ("r3");
386
387	local_irq_enable();
388	do {} while (ctrl_inb(R64CNT) != 0);
389	ctrl_outb(RCR1_CIE, RCR1); /* Enable carry interrupt */
390
391	/*
392	 * r3 is arbitrary. CDC does not support "=z".
393	 */
394	ctc_val_init = 0xffffffff;
395	ctc_val = ctc_val_init;
396
397	asm volatile("gettr	tr0, %1\n\t"
398		     "putcon	%0, " __CTC "\n\t"
399		     "and	%2, r63, %2\n\t"
400		     "pta	$+4, tr0\n\t"
401		     "beq/l	%2, r63, tr0\n\t"
402		     "ptabs	%1, tr0\n\t"
403		     "getcon	" __CTC ", %0\n\t"
404		: "=r"(ctc_val), "=r" (__dummy), "=r" (__rtc_irq_flag)
405		: "0" (0));
406	local_irq_disable();
407	/*
408	 * SH-3:
409	 * CPU clock = 4 stages * loop
410	 * tst    rm,rm      if id ex
411	 * bt/s   1b            if id ex
412	 * add    #1,rd            if id ex
413         *                            (if) pipe line stole
414	 * tst    rm,rm                  if id ex
415         * ....
416	 *
417	 *
418	 * SH-4:
419	 * CPU clock = 6 stages * loop
420	 * I don't know why.
421         * ....
422	 *
423	 * SH-5:
424	 * Use CTC register to count.  This approach returns the right value
425	 * even if the I-cache is disabled (e.g. whilst debugging.)
426	 *
427	 */
428
429	count = ctc_val_init - ctc_val; /* CTC counts down */
430
431#if defined(CONFIG_SH_SIMULATOR)
432	/*
433	 * Let's pretend we are a 5MHz SH-5 to avoid a too
434	 * little timer interval. Also to keep delay
435	 * calibration within a reasonable time.
436	 */
437	return 5000000;
438#else
439	/*
440	 * This really is count by the number of clock cycles
441         * by the ratio between a complete R64CNT
442         * wrap-around (128) and CUI interrupt being raised (64).
443	 */
444	return count*2;
445#endif
446}
447
448static irqreturn_t sh64_rtc_interrupt(int irq, void *dev_id)
449{
450	struct pt_regs *regs = get_irq_regs();
451
452	ctrl_outb(0, RCR1);	/* Disable Carry Interrupts */
453	regs->regs[3] = 1;	/* Using r3 */
454
455	return IRQ_HANDLED;
456}
457
458static struct irqaction irq0  = { timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL};
459static struct irqaction irq1  = { sh64_rtc_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "rtc", NULL, NULL};
460
461void __init time_init(void)
462{
463	unsigned int cpu_clock, master_clock, bus_clock, module_clock;
464	unsigned long interval;
465	unsigned long frqcr, ifc, pfc;
466	static int ifc_table[] = { 2, 4, 6, 8, 10, 12, 16, 24 };
467#define bfc_table ifc_table	/* Same */
468#define pfc_table ifc_table	/* Same */
469
470	tmu_base = onchip_remap(TMU_BASE, 1024, "TMU");
471	if (!tmu_base) {
472		panic("Unable to remap TMU\n");
473	}
474
475	rtc_base = onchip_remap(RTC_BASE, 1024, "RTC");
476	if (!rtc_base) {
477		panic("Unable to remap RTC\n");
478	}
479
480	cprc_base = onchip_remap(CPRC_BASE, 1024, "CPRC");
481	if (!cprc_base) {
482		panic("Unable to remap CPRC\n");
483	}
484
485	xtime.tv_sec = get_rtc_time();
486	xtime.tv_nsec = 0;
487
488	setup_irq(TIMER_IRQ, &irq0);
489	setup_irq(RTC_IRQ, &irq1);
490
491	/* Check how fast it is.. */
492	cpu_clock = get_cpu_hz();
493
494	/* Note careful order of operations to maintain reasonable precision and avoid overflow. */
495	scaled_recip_ctc_ticks_per_jiffy = ((1ULL << CTC_JIFFY_SCALE_SHIFT) / (unsigned long long)(cpu_clock / HZ));
496
497	disable_irq(RTC_IRQ);
498
499	printk("CPU clock: %d.%02dMHz\n",
500	       (cpu_clock / 1000000), (cpu_clock % 1000000)/10000);
501	{
502		unsigned short bfc;
503		frqcr = ctrl_inl(FRQCR);
504		ifc  = ifc_table[(frqcr>> 6) & 0x0007];
505		bfc  = bfc_table[(frqcr>> 3) & 0x0007];
506		pfc  = pfc_table[(frqcr>> 12) & 0x0007];
507		master_clock = cpu_clock * ifc;
508		bus_clock = master_clock/bfc;
509	}
510
511	printk("Bus clock: %d.%02dMHz\n",
512	       (bus_clock/1000000), (bus_clock % 1000000)/10000);
513	module_clock = master_clock/pfc;
514	printk("Module clock: %d.%02dMHz\n",
515	       (module_clock/1000000), (module_clock % 1000000)/10000);
516	interval = (module_clock/(HZ*4));
517
518	printk("Interval = %ld\n", interval);
519
520	current_cpu_data.cpu_clock    = cpu_clock;
521	current_cpu_data.master_clock = master_clock;
522	current_cpu_data.bus_clock    = bus_clock;
523	current_cpu_data.module_clock = module_clock;
524
525	/* Start TMU0 */
526	ctrl_outb(TMU_TSTR_OFF, TMU_TSTR);
527	ctrl_outb(TMU_TOCR_INIT, TMU_TOCR);
528	ctrl_outw(TMU0_TCR_INIT, TMU0_TCR);
529	ctrl_outl(interval, TMU0_TCOR);
530	ctrl_outl(interval, TMU0_TCNT);
531	ctrl_outb(TMU_TSTR_INIT, TMU_TSTR);
532}
533
534void enter_deep_standby(void)
535{
536	/* Disable watchdog timer */
537	ctrl_outl(0xa5000000, WTCSR);
538	/* Configure deep standby on sleep */
539	ctrl_outl(0x03, STBCR);
540
541#ifdef CONFIG_SH_ALPHANUMERIC
542	{
543		extern void mach_alphanum(int position, unsigned char value);
544		extern void mach_alphanum_brightness(int setting);
545		char halted[] = "Halted. ";
546		int i;
547		mach_alphanum_brightness(6); /* dimmest setting above off */
548		for (i=0; i<8; i++) {
549			mach_alphanum(i, halted[i]);
550		}
551		asm __volatile__ ("synco");
552	}
553#endif
554
555	asm __volatile__ ("sleep");
556	asm __volatile__ ("synci");
557	asm __volatile__ ("nop");
558	asm __volatile__ ("nop");
559	asm __volatile__ ("nop");
560	asm __volatile__ ("nop");
561	panic("Unexpected wakeup!\n");
562}
563