1/*
2 *  linux/arch/parisc/mm/init.c
3 *
4 *  Copyright (C) 1995	Linus Torvalds
5 *  Copyright 1999 SuSE GmbH
6 *    changed by Philipp Rumpf
7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
10 *
11 */
12
13
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/bootmem.h>
17#include <linux/delay.h>
18#include <linux/init.h>
19#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
20#include <linux/initrd.h>
21#include <linux/swap.h>
22#include <linux/unistd.h>
23#include <linux/nodemask.h>	/* for node_online_map */
24#include <linux/pagemap.h>	/* for release_pages and page_cache_release */
25
26#include <asm/pgalloc.h>
27#include <asm/pgtable.h>
28#include <asm/tlb.h>
29#include <asm/pdc_chassis.h>
30#include <asm/mmzone.h>
31#include <asm/sections.h>
32
33DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
34
35extern int  data_start;
36
37#ifdef CONFIG_DISCONTIGMEM
38struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
39bootmem_data_t bmem_data[MAX_NUMNODES] __read_mostly;
40unsigned char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
41#endif
42
43static struct resource data_resource = {
44	.name	= "Kernel data",
45	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
46};
47
48static struct resource code_resource = {
49	.name	= "Kernel code",
50	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
51};
52
53static struct resource pdcdata_resource = {
54	.name	= "PDC data (Page Zero)",
55	.start	= 0,
56	.end	= 0x9ff,
57	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
58};
59
60static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
61
62/* The following array is initialized from the firmware specific
63 * information retrieved in kernel/inventory.c.
64 */
65
66physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
67int npmem_ranges __read_mostly;
68
69#ifdef CONFIG_64BIT
70#define MAX_MEM         (~0UL)
71#else /* !CONFIG_64BIT */
72#define MAX_MEM         (3584U*1024U*1024U)
73#endif /* !CONFIG_64BIT */
74
75static unsigned long mem_limit __read_mostly = MAX_MEM;
76
77static void __init mem_limit_func(void)
78{
79	char *cp, *end;
80	unsigned long limit;
81
82	/* We need this before __setup() functions are called */
83
84	limit = MAX_MEM;
85	for (cp = boot_command_line; *cp; ) {
86		if (memcmp(cp, "mem=", 4) == 0) {
87			cp += 4;
88			limit = memparse(cp, &end);
89			if (end != cp)
90				break;
91			cp = end;
92		} else {
93			while (*cp != ' ' && *cp)
94				++cp;
95			while (*cp == ' ')
96				++cp;
97		}
98	}
99
100	if (limit < mem_limit)
101		mem_limit = limit;
102}
103
104#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
105
106static void __init setup_bootmem(void)
107{
108	unsigned long bootmap_size;
109	unsigned long mem_max;
110	unsigned long bootmap_pages;
111	unsigned long bootmap_start_pfn;
112	unsigned long bootmap_pfn;
113#ifndef CONFIG_DISCONTIGMEM
114	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115	int npmem_holes;
116#endif
117	int i, sysram_resource_count;
118
119	disable_sr_hashing(); /* Turn off space register hashing */
120
121	/*
122	 * Sort the ranges. Since the number of ranges is typically
123	 * small, and performance is not an issue here, just do
124	 * a simple insertion sort.
125	 */
126
127	for (i = 1; i < npmem_ranges; i++) {
128		int j;
129
130		for (j = i; j > 0; j--) {
131			unsigned long tmp;
132
133			if (pmem_ranges[j-1].start_pfn <
134			    pmem_ranges[j].start_pfn) {
135
136				break;
137			}
138			tmp = pmem_ranges[j-1].start_pfn;
139			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
140			pmem_ranges[j].start_pfn = tmp;
141			tmp = pmem_ranges[j-1].pages;
142			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
143			pmem_ranges[j].pages = tmp;
144		}
145	}
146
147#ifndef CONFIG_DISCONTIGMEM
148	/*
149	 * Throw out ranges that are too far apart (controlled by
150	 * MAX_GAP).
151	 */
152
153	for (i = 1; i < npmem_ranges; i++) {
154		if (pmem_ranges[i].start_pfn -
155			(pmem_ranges[i-1].start_pfn +
156			 pmem_ranges[i-1].pages) > MAX_GAP) {
157			npmem_ranges = i;
158			printk("Large gap in memory detected (%ld pages). "
159			       "Consider turning on CONFIG_DISCONTIGMEM\n",
160			       pmem_ranges[i].start_pfn -
161			       (pmem_ranges[i-1].start_pfn +
162			        pmem_ranges[i-1].pages));
163			break;
164		}
165	}
166#endif
167
168	if (npmem_ranges > 1) {
169
170		/* Print the memory ranges */
171
172		printk(KERN_INFO "Memory Ranges:\n");
173
174		for (i = 0; i < npmem_ranges; i++) {
175			unsigned long start;
176			unsigned long size;
177
178			size = (pmem_ranges[i].pages << PAGE_SHIFT);
179			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181				i,start, start + (size - 1), size >> 20);
182		}
183	}
184
185	sysram_resource_count = npmem_ranges;
186	for (i = 0; i < sysram_resource_count; i++) {
187		struct resource *res = &sysram_resources[i];
188		res->name = "System RAM";
189		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
190		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
191		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
192		request_resource(&iomem_resource, res);
193	}
194
195	/*
196	 * For 32 bit kernels we limit the amount of memory we can
197	 * support, in order to preserve enough kernel address space
198	 * for other purposes. For 64 bit kernels we don't normally
199	 * limit the memory, but this mechanism can be used to
200	 * artificially limit the amount of memory (and it is written
201	 * to work with multiple memory ranges).
202	 */
203
204	mem_limit_func();       /* check for "mem=" argument */
205
206	mem_max = 0;
207	num_physpages = 0;
208	for (i = 0; i < npmem_ranges; i++) {
209		unsigned long rsize;
210
211		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
212		if ((mem_max + rsize) > mem_limit) {
213			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
214			if (mem_max == mem_limit)
215				npmem_ranges = i;
216			else {
217				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
218						       - (mem_max >> PAGE_SHIFT);
219				npmem_ranges = i + 1;
220				mem_max = mem_limit;
221			}
222	        num_physpages += pmem_ranges[i].pages;
223			break;
224		}
225	    num_physpages += pmem_ranges[i].pages;
226		mem_max += rsize;
227	}
228
229	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
230
231#ifndef CONFIG_DISCONTIGMEM
232	/* Merge the ranges, keeping track of the holes */
233
234	{
235		unsigned long end_pfn;
236		unsigned long hole_pages;
237
238		npmem_holes = 0;
239		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
240		for (i = 1; i < npmem_ranges; i++) {
241
242			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
243			if (hole_pages) {
244				pmem_holes[npmem_holes].start_pfn = end_pfn;
245				pmem_holes[npmem_holes++].pages = hole_pages;
246				end_pfn += hole_pages;
247			}
248			end_pfn += pmem_ranges[i].pages;
249		}
250
251		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
252		npmem_ranges = 1;
253	}
254#endif
255
256	bootmap_pages = 0;
257	for (i = 0; i < npmem_ranges; i++)
258		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
259
260	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
261
262#ifdef CONFIG_DISCONTIGMEM
263	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
264		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
265		NODE_DATA(i)->bdata = &bmem_data[i];
266	}
267	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
268
269	for (i = 0; i < npmem_ranges; i++)
270		node_set_online(i);
271#endif
272
273	/*
274	 * Initialize and free the full range of memory in each range.
275	 * Note that the only writing these routines do are to the bootmap,
276	 * and we've made sure to locate the bootmap properly so that they
277	 * won't be writing over anything important.
278	 */
279
280	bootmap_pfn = bootmap_start_pfn;
281	max_pfn = 0;
282	for (i = 0; i < npmem_ranges; i++) {
283		unsigned long start_pfn;
284		unsigned long npages;
285
286		start_pfn = pmem_ranges[i].start_pfn;
287		npages = pmem_ranges[i].pages;
288
289		bootmap_size = init_bootmem_node(NODE_DATA(i),
290						bootmap_pfn,
291						start_pfn,
292						(start_pfn + npages) );
293		free_bootmem_node(NODE_DATA(i),
294				  (start_pfn << PAGE_SHIFT),
295				  (npages << PAGE_SHIFT) );
296		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
297		if ((start_pfn + npages) > max_pfn)
298			max_pfn = start_pfn + npages;
299	}
300
301	/* IOMMU is always used to access "high mem" on those boxes
302	 * that can support enough mem that a PCI device couldn't
303	 * directly DMA to any physical addresses.
304	 * ISA DMA support will need to revisit this.
305	 */
306	max_low_pfn = max_pfn;
307
308	if ((bootmap_pfn - bootmap_start_pfn) != bootmap_pages) {
309		printk(KERN_WARNING "WARNING! bootmap sizing is messed up!\n");
310		BUG();
311	}
312
313	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
314
315#define PDC_CONSOLE_IO_IODC_SIZE 32768
316
317	reserve_bootmem_node(NODE_DATA(0), 0UL,
318			(unsigned long)(PAGE0->mem_free + PDC_CONSOLE_IO_IODC_SIZE));
319	reserve_bootmem_node(NODE_DATA(0), __pa((unsigned long)_text),
320			(unsigned long)(_end - _text));
321	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
322			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT));
323
324#ifndef CONFIG_DISCONTIGMEM
325
326	/* reserve the holes */
327
328	for (i = 0; i < npmem_holes; i++) {
329		reserve_bootmem_node(NODE_DATA(0),
330				(pmem_holes[i].start_pfn << PAGE_SHIFT),
331				(pmem_holes[i].pages << PAGE_SHIFT));
332	}
333#endif
334
335#ifdef CONFIG_BLK_DEV_INITRD
336	if (initrd_start) {
337		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
338		if (__pa(initrd_start) < mem_max) {
339			unsigned long initrd_reserve;
340
341			if (__pa(initrd_end) > mem_max) {
342				initrd_reserve = mem_max - __pa(initrd_start);
343			} else {
344				initrd_reserve = initrd_end - initrd_start;
345			}
346			initrd_below_start_ok = 1;
347			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
348
349			reserve_bootmem_node(NODE_DATA(0),__pa(initrd_start), initrd_reserve);
350		}
351	}
352#endif
353
354	data_resource.start =  virt_to_phys(&data_start);
355	data_resource.end = virt_to_phys(_end) - 1;
356	code_resource.start = virt_to_phys(_text);
357	code_resource.end = virt_to_phys(&data_start)-1;
358
359	/* We don't know which region the kernel will be in, so try
360	 * all of them.
361	 */
362	for (i = 0; i < sysram_resource_count; i++) {
363		struct resource *res = &sysram_resources[i];
364		request_resource(res, &code_resource);
365		request_resource(res, &data_resource);
366	}
367	request_resource(&sysram_resources[0], &pdcdata_resource);
368}
369
370void free_initmem(void)
371{
372	unsigned long addr, init_begin, init_end;
373
374	printk(KERN_INFO "Freeing unused kernel memory: ");
375
376#ifdef CONFIG_DEBUG_KERNEL
377	/* Attempt to catch anyone trying to execute code here
378	 * by filling the page with BRK insns.
379	 *
380	 * If we disable interrupts for all CPUs, then IPI stops working.
381	 * Kinda breaks the global cache flushing.
382	 */
383	local_irq_disable();
384
385	memset(__init_begin, 0x00,
386		(unsigned long)__init_end - (unsigned long)__init_begin);
387
388	flush_data_cache();
389	asm volatile("sync" : : );
390	flush_icache_range((unsigned long)__init_begin, (unsigned long)__init_end);
391	asm volatile("sync" : : );
392
393	local_irq_enable();
394#endif
395
396	/* align __init_begin and __init_end to page size,
397	   ignoring linker script where we might have tried to save RAM */
398	init_begin = PAGE_ALIGN((unsigned long)(__init_begin));
399	init_end   = PAGE_ALIGN((unsigned long)(__init_end));
400	for (addr = init_begin; addr < init_end; addr += PAGE_SIZE) {
401		ClearPageReserved(virt_to_page(addr));
402		init_page_count(virt_to_page(addr));
403		free_page(addr);
404		num_physpages++;
405		totalram_pages++;
406	}
407
408	/* set up a new led state on systems shipped LED State panel */
409	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
410
411	printk("%luk freed\n", (init_end - init_begin) >> 10);
412}
413
414
415#ifdef CONFIG_DEBUG_RODATA
416void mark_rodata_ro(void)
417{
418	/* rodata memory was already mapped with KERNEL_RO access rights by
419           pagetable_init() and map_pages(). No need to do additional stuff here */
420	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
421		(unsigned long)(__end_rodata - __start_rodata) >> 10);
422}
423#endif
424
425
426/*
427 * Just an arbitrary offset to serve as a "hole" between mapping areas
428 * (between top of physical memory and a potential pcxl dma mapping
429 * area, and below the vmalloc mapping area).
430 *
431 * The current 32K value just means that there will be a 32K "hole"
432 * between mapping areas. That means that  any out-of-bounds memory
433 * accesses will hopefully be caught. The vmalloc() routines leaves
434 * a hole of 4kB between each vmalloced area for the same reason.
435 */
436
437 /* Leave room for gateway page expansion */
438#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
439#error KERNEL_MAP_START is in gateway reserved region
440#endif
441#define MAP_START (KERNEL_MAP_START)
442
443#define VM_MAP_OFFSET  (32*1024)
444#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
445				     & ~(VM_MAP_OFFSET-1)))
446
447void *vmalloc_start __read_mostly;
448EXPORT_SYMBOL(vmalloc_start);
449
450#ifdef CONFIG_PA11
451unsigned long pcxl_dma_start __read_mostly;
452#endif
453
454void __init mem_init(void)
455{
456	int codesize, reservedpages, datasize, initsize;
457
458	high_memory = __va((max_pfn << PAGE_SHIFT));
459
460#ifndef CONFIG_DISCONTIGMEM
461	max_mapnr = page_to_pfn(virt_to_page(high_memory - 1)) + 1;
462	totalram_pages += free_all_bootmem();
463#else
464	{
465		int i;
466
467		for (i = 0; i < npmem_ranges; i++)
468			totalram_pages += free_all_bootmem_node(NODE_DATA(i));
469	}
470#endif
471
472	codesize = (unsigned long)_etext - (unsigned long)_text;
473	datasize = (unsigned long)_edata - (unsigned long)_etext;
474	initsize = (unsigned long)__init_end - (unsigned long)__init_begin;
475
476	reservedpages = 0;
477{
478	unsigned long pfn;
479#ifdef CONFIG_DISCONTIGMEM
480	int i;
481
482	for (i = 0; i < npmem_ranges; i++) {
483		for (pfn = node_start_pfn(i); pfn < node_end_pfn(i); pfn++) {
484			if (PageReserved(pfn_to_page(pfn)))
485				reservedpages++;
486		}
487	}
488#else /* !CONFIG_DISCONTIGMEM */
489	for (pfn = 0; pfn < max_pfn; pfn++) {
490		/*
491		 * Only count reserved RAM pages
492		 */
493		if (PageReserved(pfn_to_page(pfn)))
494			reservedpages++;
495	}
496#endif
497}
498
499#ifdef CONFIG_PA11
500	if (hppa_dma_ops == &pcxl_dma_ops) {
501		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
502		vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start + PCXL_DMA_MAP_SIZE);
503	} else {
504		pcxl_dma_start = 0;
505		vmalloc_start = SET_MAP_OFFSET(MAP_START);
506	}
507#else
508	vmalloc_start = SET_MAP_OFFSET(MAP_START);
509#endif
510
511	printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init)\n",
512		(unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
513		num_physpages << (PAGE_SHIFT-10),
514		codesize >> 10,
515		reservedpages << (PAGE_SHIFT-10),
516		datasize >> 10,
517		initsize >> 10
518	);
519
520#ifdef CONFIG_DEBUG_KERNEL     /* double-sanity-check paranoia */
521	printk("virtual kernel memory layout:\n"
522	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
523	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
524	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
525	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
526	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
527
528	       (void*)VMALLOC_START, (void*)VMALLOC_END,
529	       (VMALLOC_END - VMALLOC_START) >> 20,
530
531	       __va(0), high_memory,
532	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
533
534	       __init_begin, __init_end,
535	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
536
537	       _etext, _edata,
538	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
539
540	       _text, _etext,
541	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
542#endif
543}
544
545unsigned long *empty_zero_page __read_mostly;
546
547void show_mem(void)
548{
549	int i,free = 0,total = 0,reserved = 0;
550	int shared = 0, cached = 0;
551
552	printk(KERN_INFO "Mem-info:\n");
553	show_free_areas();
554	printk(KERN_INFO "Free swap:	 %6ldkB\n",
555				nr_swap_pages<<(PAGE_SHIFT-10));
556#ifndef CONFIG_DISCONTIGMEM
557	i = max_mapnr;
558	while (i-- > 0) {
559		total++;
560		if (PageReserved(mem_map+i))
561			reserved++;
562		else if (PageSwapCache(mem_map+i))
563			cached++;
564		else if (!page_count(&mem_map[i]))
565			free++;
566		else
567			shared += page_count(&mem_map[i]) - 1;
568	}
569#else
570	for (i = 0; i < npmem_ranges; i++) {
571		int j;
572
573		for (j = node_start_pfn(i); j < node_end_pfn(i); j++) {
574			struct page *p;
575			unsigned long flags;
576
577			pgdat_resize_lock(NODE_DATA(i), &flags);
578			p = nid_page_nr(i, j) - node_start_pfn(i);
579
580			total++;
581			if (PageReserved(p))
582				reserved++;
583			else if (PageSwapCache(p))
584				cached++;
585			else if (!page_count(p))
586				free++;
587			else
588				shared += page_count(p) - 1;
589			pgdat_resize_unlock(NODE_DATA(i), &flags);
590        	}
591	}
592#endif
593	printk(KERN_INFO "%d pages of RAM\n", total);
594	printk(KERN_INFO "%d reserved pages\n", reserved);
595	printk(KERN_INFO "%d pages shared\n", shared);
596	printk(KERN_INFO "%d pages swap cached\n", cached);
597
598
599#ifdef CONFIG_DISCONTIGMEM
600	{
601		struct zonelist *zl;
602		int i, j, k;
603
604		for (i = 0; i < npmem_ranges; i++) {
605			for (j = 0; j < MAX_NR_ZONES; j++) {
606				zl = NODE_DATA(i)->node_zonelists + j;
607
608				printk("Zone list for zone %d on node %d: ", j, i);
609				for (k = 0; zl->zones[k] != NULL; k++)
610					printk("[%ld/%s] ", zone_to_nid(zl->zones[k]), zl->zones[k]->name);
611				printk("\n");
612			}
613		}
614	}
615#endif
616}
617
618
619static void __init map_pages(unsigned long start_vaddr, unsigned long start_paddr, unsigned long size, pgprot_t pgprot)
620{
621	pgd_t *pg_dir;
622	pmd_t *pmd;
623	pte_t *pg_table;
624	unsigned long end_paddr;
625	unsigned long start_pmd;
626	unsigned long start_pte;
627	unsigned long tmp1;
628	unsigned long tmp2;
629	unsigned long address;
630	unsigned long ro_start;
631	unsigned long ro_end;
632	unsigned long fv_addr;
633	unsigned long gw_addr;
634	extern const unsigned long fault_vector_20;
635	extern void * const linux_gateway_page;
636
637	ro_start = __pa((unsigned long)_text);
638	ro_end   = __pa((unsigned long)&data_start);
639	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
640	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
641
642	end_paddr = start_paddr + size;
643
644	pg_dir = pgd_offset_k(start_vaddr);
645
646#if PTRS_PER_PMD == 1
647	start_pmd = 0;
648#else
649	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
650#endif
651	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
652
653	address = start_paddr;
654	while (address < end_paddr) {
655#if PTRS_PER_PMD == 1
656		pmd = (pmd_t *)__pa(pg_dir);
657#else
658		pmd = (pmd_t *)pgd_address(*pg_dir);
659
660		/*
661		 * pmd is physical at this point
662		 */
663
664		if (!pmd) {
665			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE << PMD_ORDER);
666			pmd = (pmd_t *) __pa(pmd);
667		}
668
669		pgd_populate(NULL, pg_dir, __va(pmd));
670#endif
671		pg_dir++;
672
673		/* now change pmd to kernel virtual addresses */
674
675		pmd = (pmd_t *)__va(pmd) + start_pmd;
676		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++,pmd++) {
677
678			/*
679			 * pg_table is physical at this point
680			 */
681
682			pg_table = (pte_t *)pmd_address(*pmd);
683			if (!pg_table) {
684				pg_table = (pte_t *)
685					alloc_bootmem_low_pages_node(NODE_DATA(0),PAGE_SIZE);
686				pg_table = (pte_t *) __pa(pg_table);
687			}
688
689			pmd_populate_kernel(NULL, pmd, __va(pg_table));
690
691			/* now change pg_table to kernel virtual addresses */
692
693			pg_table = (pte_t *) __va(pg_table) + start_pte;
694			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++,pg_table++) {
695				pte_t pte;
696
697				/*
698				 * Map the fault vector writable so we can
699				 * write the HPMC checksum.
700				 */
701#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
702				if (address >= ro_start && address < ro_end
703							&& address != fv_addr
704							&& address != gw_addr)
705				    pte = __mk_pte(address, PAGE_KERNEL_RO);
706				else
707#endif
708				    pte = __mk_pte(address, pgprot);
709
710				if (address >= end_paddr)
711					pte_val(pte) = 0;
712
713				set_pte(pg_table, pte);
714
715				address += PAGE_SIZE;
716			}
717			start_pte = 0;
718
719			if (address >= end_paddr)
720			    break;
721		}
722		start_pmd = 0;
723	}
724}
725
726/*
727 * pagetable_init() sets up the page tables
728 *
729 * Note that gateway_init() places the Linux gateway page at page 0.
730 * Since gateway pages cannot be dereferenced this has the desirable
731 * side effect of trapping those pesky NULL-reference errors in the
732 * kernel.
733 */
734static void __init pagetable_init(void)
735{
736	int range;
737
738	/* Map each physical memory range to its kernel vaddr */
739
740	for (range = 0; range < npmem_ranges; range++) {
741		unsigned long start_paddr;
742		unsigned long end_paddr;
743		unsigned long size;
744
745		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
746		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
747		size = pmem_ranges[range].pages << PAGE_SHIFT;
748
749		map_pages((unsigned long)__va(start_paddr), start_paddr,
750			size, PAGE_KERNEL);
751	}
752
753#ifdef CONFIG_BLK_DEV_INITRD
754	if (initrd_end && initrd_end > mem_limit) {
755		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
756		map_pages(initrd_start, __pa(initrd_start),
757			initrd_end - initrd_start, PAGE_KERNEL);
758	}
759#endif
760
761	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
762	memset(empty_zero_page, 0, PAGE_SIZE);
763}
764
765static void __init gateway_init(void)
766{
767	unsigned long linux_gateway_page_addr;
768	extern void * const linux_gateway_page;
769
770	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
771
772	/*
773	 * Setup Linux Gateway page.
774	 *
775	 * The Linux gateway page will reside in kernel space (on virtual
776	 * page 0), so it doesn't need to be aliased into user space.
777	 */
778
779	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
780		PAGE_SIZE, PAGE_GATEWAY);
781}
782
783#ifdef CONFIG_HPUX
784void
785map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
786{
787	pgd_t *pg_dir;
788	pmd_t *pmd;
789	pte_t *pg_table;
790	unsigned long start_pmd;
791	unsigned long start_pte;
792	unsigned long address;
793	unsigned long hpux_gw_page_addr;
794	extern void * const hpux_gateway_page;
795
796	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
797
798	/*
799	 * Setup HP-UX Gateway page.
800	 *
801	 * The HP-UX gateway page resides in the user address space,
802	 * so it needs to be aliased into each process.
803	 */
804
805	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
806
807#if PTRS_PER_PMD == 1
808	start_pmd = 0;
809#else
810	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
811#endif
812	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
813
814	address = __pa(&hpux_gateway_page);
815#if PTRS_PER_PMD == 1
816	pmd = (pmd_t *)__pa(pg_dir);
817#else
818	pmd = (pmd_t *) pgd_address(*pg_dir);
819
820	/*
821	 * pmd is physical at this point
822	 */
823
824	if (!pmd) {
825		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
826		pmd = (pmd_t *) __pa(pmd);
827	}
828
829	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
830#endif
831	/* now change pmd to kernel virtual addresses */
832
833	pmd = (pmd_t *)__va(pmd) + start_pmd;
834
835	/*
836	 * pg_table is physical at this point
837	 */
838
839	pg_table = (pte_t *) pmd_address(*pmd);
840	if (!pg_table)
841		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
842
843	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
844
845	/* now change pg_table to kernel virtual addresses */
846
847	pg_table = (pte_t *) __va(pg_table) + start_pte;
848	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
849}
850EXPORT_SYMBOL(map_hpux_gateway_page);
851#endif
852
853void __init paging_init(void)
854{
855	int i;
856
857	setup_bootmem();
858	pagetable_init();
859	gateway_init();
860	flush_cache_all_local(); /* start with known state */
861	flush_tlb_all_local(NULL);
862
863	for (i = 0; i < npmem_ranges; i++) {
864		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
865
866		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
867
868#ifdef CONFIG_DISCONTIGMEM
869		/* Need to initialize the pfnnid_map before we can initialize
870		   the zone */
871		{
872		    int j;
873		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
874			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
875			 j++) {
876			pfnnid_map[j] = i;
877		    }
878		}
879#endif
880
881		free_area_init_node(i, NODE_DATA(i), zones_size,
882				pmem_ranges[i].start_pfn, NULL);
883	}
884}
885
886#ifdef CONFIG_PA20
887
888/*
889 * Currently, all PA20 chips have 18 bit protection IDs, which is the
890 * limiting factor (space ids are 32 bits).
891 */
892
893#define NR_SPACE_IDS 262144
894
895#else
896
897/*
898 * Currently we have a one-to-one relationship between space IDs and
899 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
900 * support 15 bit protection IDs, so that is the limiting factor.
901 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
902 * probably not worth the effort for a special case here.
903 */
904
905#define NR_SPACE_IDS 32768
906
907#endif  /* !CONFIG_PA20 */
908
909#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
910#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
911
912static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
913static unsigned long dirty_space_id[SID_ARRAY_SIZE];
914static unsigned long space_id_index;
915static unsigned long free_space_ids = NR_SPACE_IDS - 1;
916static unsigned long dirty_space_ids = 0;
917
918static DEFINE_SPINLOCK(sid_lock);
919
920unsigned long alloc_sid(void)
921{
922	unsigned long index;
923
924	spin_lock(&sid_lock);
925
926	if (free_space_ids == 0) {
927		if (dirty_space_ids != 0) {
928			spin_unlock(&sid_lock);
929			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
930			spin_lock(&sid_lock);
931		}
932		BUG_ON(free_space_ids == 0);
933	}
934
935	free_space_ids--;
936
937	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
938	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
939	space_id_index = index;
940
941	spin_unlock(&sid_lock);
942
943	return index << SPACEID_SHIFT;
944}
945
946void free_sid(unsigned long spaceid)
947{
948	unsigned long index = spaceid >> SPACEID_SHIFT;
949	unsigned long *dirty_space_offset;
950
951	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
952	index &= (BITS_PER_LONG - 1);
953
954	spin_lock(&sid_lock);
955
956	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
957
958	*dirty_space_offset |= (1L << index);
959	dirty_space_ids++;
960
961	spin_unlock(&sid_lock);
962}
963
964
965#ifdef CONFIG_SMP
966static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
967{
968	int i;
969
970	/* NOTE: sid_lock must be held upon entry */
971
972	*ndirtyptr = dirty_space_ids;
973	if (dirty_space_ids != 0) {
974	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
975		dirty_array[i] = dirty_space_id[i];
976		dirty_space_id[i] = 0;
977	    }
978	    dirty_space_ids = 0;
979	}
980
981	return;
982}
983
984static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
985{
986	int i;
987
988	/* NOTE: sid_lock must be held upon entry */
989
990	if (ndirty != 0) {
991		for (i = 0; i < SID_ARRAY_SIZE; i++) {
992			space_id[i] ^= dirty_array[i];
993		}
994
995		free_space_ids += ndirty;
996		space_id_index = 0;
997	}
998}
999
1000#else /* CONFIG_SMP */
1001
1002static void recycle_sids(void)
1003{
1004	int i;
1005
1006	/* NOTE: sid_lock must be held upon entry */
1007
1008	if (dirty_space_ids != 0) {
1009		for (i = 0; i < SID_ARRAY_SIZE; i++) {
1010			space_id[i] ^= dirty_space_id[i];
1011			dirty_space_id[i] = 0;
1012		}
1013
1014		free_space_ids += dirty_space_ids;
1015		dirty_space_ids = 0;
1016		space_id_index = 0;
1017	}
1018}
1019#endif
1020
1021/*
1022 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
1023 * purged, we can safely reuse the space ids that were released but
1024 * not flushed from the tlb.
1025 */
1026
1027#ifdef CONFIG_SMP
1028
1029static unsigned long recycle_ndirty;
1030static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1031static unsigned int recycle_inuse;
1032
1033void flush_tlb_all(void)
1034{
1035	int do_recycle;
1036
1037	do_recycle = 0;
1038	spin_lock(&sid_lock);
1039	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1040	    BUG_ON(recycle_inuse);
1041	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1042	    recycle_inuse++;
1043	    do_recycle++;
1044	}
1045	spin_unlock(&sid_lock);
1046	on_each_cpu(flush_tlb_all_local, NULL, 1, 1);
1047	if (do_recycle) {
1048	    spin_lock(&sid_lock);
1049	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1050	    recycle_inuse = 0;
1051	    spin_unlock(&sid_lock);
1052	}
1053}
1054#else
1055void flush_tlb_all(void)
1056{
1057	spin_lock(&sid_lock);
1058	flush_tlb_all_local(NULL);
1059	recycle_sids();
1060	spin_unlock(&sid_lock);
1061}
1062#endif
1063
1064#ifdef CONFIG_BLK_DEV_INITRD
1065void free_initrd_mem(unsigned long start, unsigned long end)
1066{
1067	if (start >= end)
1068		return;
1069	printk(KERN_INFO "Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
1070	for (; start < end; start += PAGE_SIZE) {
1071		ClearPageReserved(virt_to_page(start));
1072		init_page_count(virt_to_page(start));
1073		free_page(start);
1074		num_physpages++;
1075		totalram_pages++;
1076	}
1077}
1078#endif
1079