1/* $Id: fault.c,v 1.1.1.1 2007/08/03 18:52:04 Exp $
2 *
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License.  See the file "COPYING" in the main directory of this archive
5 * for more details.
6 *
7 *
8 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
9 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
10 * Copyright 1999 Hewlett Packard Co.
11 *
12 */
13
14#include <linux/mm.h>
15#include <linux/ptrace.h>
16#include <linux/sched.h>
17#include <linux/interrupt.h>
18#include <linux/module.h>
19
20#include <asm/uaccess.h>
21#include <asm/traps.h>
22
23#define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
24			 /*  dumped to the console via printk)          */
25
26
27/* Various important other fields */
28#define bit22set(x)		(x & 0x00000200)
29#define bits23_25set(x)		(x & 0x000001c0)
30#define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
31				/* extended opcode is 0x6a */
32
33#define BITSSET		0x1c0	/* for identifying LDCW */
34
35
36DEFINE_PER_CPU(struct exception_data, exception_data);
37
38/*
39 * parisc_acctyp(unsigned int inst) --
40 *    Given a PA-RISC memory access instruction, determine if the
41 *    the instruction would perform a memory read or memory write
42 *    operation.
43 *
44 *    This function assumes that the given instruction is a memory access
45 *    instruction (i.e. you should really only call it if you know that
46 *    the instruction has generated some sort of a memory access fault).
47 *
48 * Returns:
49 *   VM_READ  if read operation
50 *   VM_WRITE if write operation
51 *   VM_EXEC  if execute operation
52 */
53static unsigned long
54parisc_acctyp(unsigned long code, unsigned int inst)
55{
56	if (code == 6 || code == 16)
57	    return VM_EXEC;
58
59	switch (inst & 0xf0000000) {
60	case 0x40000000: /* load */
61	case 0x50000000: /* new load */
62		return VM_READ;
63
64	case 0x60000000: /* store */
65	case 0x70000000: /* new store */
66		return VM_WRITE;
67
68	case 0x20000000: /* coproc */
69	case 0x30000000: /* coproc2 */
70		if (bit22set(inst))
71			return VM_WRITE;
72
73	case 0x0: /* indexed/memory management */
74		if (bit22set(inst)) {
75			/*
76			 * Check for the 'Graphics Flush Read' instruction.
77			 * It resembles an FDC instruction, except for bits
78			 * 20 and 21. Any combination other than zero will
79			 * utilize the block mover functionality on some
80			 * older PA-RISC platforms.  The case where a block
81			 * move is performed from VM to graphics IO space
82			 * should be treated as a READ.
83			 *
84			 * The significance of bits 20,21 in the FDC
85			 * instruction is:
86			 *
87			 *   00  Flush data cache (normal instruction behavior)
88			 *   01  Graphics flush write  (IO space -> VM)
89			 *   10  Graphics flush read   (VM -> IO space)
90			 *   11  Graphics flush read/write (VM <-> IO space)
91			 */
92			if (isGraphicsFlushRead(inst))
93				return VM_READ;
94			return VM_WRITE;
95		} else {
96			/*
97			 * Check for LDCWX and LDCWS (semaphore instructions).
98			 * If bits 23 through 25 are all 1's it is one of
99			 * the above two instructions and is a write.
100			 *
101			 * Note: With the limited bits we are looking at,
102			 * this will also catch PROBEW and PROBEWI. However,
103			 * these should never get in here because they don't
104			 * generate exceptions of the type:
105			 *   Data TLB miss fault/data page fault
106			 *   Data memory protection trap
107			 */
108			if (bits23_25set(inst) == BITSSET)
109				return VM_WRITE;
110		}
111		return VM_READ; /* Default */
112	}
113	return VM_READ; /* Default */
114}
115
116#undef bit22set
117#undef bits23_25set
118#undef isGraphicsFlushRead
119#undef BITSSET
120
121
122
123void do_page_fault(struct pt_regs *regs, unsigned long code,
124			      unsigned long address)
125{
126	struct vm_area_struct *vma, *prev_vma;
127	struct task_struct *tsk = current;
128	struct mm_struct *mm = tsk->mm;
129	const struct exception_table_entry *fix;
130	unsigned long acc_type;
131
132	if (in_atomic() || !mm)
133		goto no_context;
134
135	down_read(&mm->mmap_sem);
136	vma = find_vma_prev(mm, address, &prev_vma);
137	if (!vma || address < vma->vm_start)
138		goto check_expansion;
139/*
140 * Ok, we have a good vm_area for this memory access. We still need to
141 * check the access permissions.
142 */
143
144good_area:
145
146	acc_type = parisc_acctyp(code,regs->iir);
147
148	if ((vma->vm_flags & acc_type) != acc_type)
149		goto bad_area;
150
151	/*
152	 * If for any reason at all we couldn't handle the fault, make
153	 * sure we exit gracefully rather than endlessly redo the
154	 * fault.
155	 */
156
157	switch (handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0)) {
158	      case VM_FAULT_MINOR:
159		++current->min_flt;
160		break;
161	      case VM_FAULT_MAJOR:
162		++current->maj_flt;
163		break;
164	      case VM_FAULT_SIGBUS:
165		/*
166		 * We hit a shared mapping outside of the file, or some
167		 * other thing happened to us that made us unable to
168		 * handle the page fault gracefully.
169		 */
170		goto bad_area;
171	      default:
172		goto out_of_memory;
173	}
174	up_read(&mm->mmap_sem);
175	return;
176
177check_expansion:
178	vma = prev_vma;
179	if (vma && (expand_stack(vma, address) == 0))
180		goto good_area;
181
182/*
183 * Something tried to access memory that isn't in our memory map..
184 */
185bad_area:
186	up_read(&mm->mmap_sem);
187
188	if (user_mode(regs)) {
189		struct siginfo si;
190
191#ifdef PRINT_USER_FAULTS
192		printk(KERN_DEBUG "\n");
193		printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
194		    tsk->pid, tsk->comm, code, address);
195		if (vma) {
196			printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
197					vma->vm_start, vma->vm_end);
198		}
199		show_regs(regs);
200#endif
201		si.si_signo = SIGSEGV;
202		si.si_errno = 0;
203		si.si_code = SEGV_MAPERR;
204		si.si_addr = (void __user *) address;
205		force_sig_info(SIGSEGV, &si, current);
206		return;
207	}
208
209no_context:
210
211	if (!user_mode(regs)) {
212		fix = search_exception_tables(regs->iaoq[0]);
213
214		if (fix) {
215			struct exception_data *d;
216
217			d = &__get_cpu_var(exception_data);
218			d->fault_ip = regs->iaoq[0];
219			d->fault_space = regs->isr;
220			d->fault_addr = regs->ior;
221
222			regs->iaoq[0] = ((fix->fixup) & ~3);
223
224			/*
225			 * NOTE: In some cases the faulting instruction
226			 * may be in the delay slot of a branch. We
227			 * don't want to take the branch, so we don't
228			 * increment iaoq[1], instead we set it to be
229			 * iaoq[0]+4, and clear the B bit in the PSW
230			 */
231
232			regs->iaoq[1] = regs->iaoq[0] + 4;
233			regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
234
235			return;
236		}
237	}
238
239	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
240
241  out_of_memory:
242	up_read(&mm->mmap_sem);
243	printk(KERN_CRIT "VM: killing process %s\n", current->comm);
244	if (user_mode(regs))
245		do_exit(SIGKILL);
246	goto no_context;
247}
248